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ABSTRACT 

We aim at building a methodological framework that inte-
grates various methods and key concepts in a more coher-
ent Modeling and Simulation architecture. The required 
flexibility for such a framework can be achieved by model-
ing the modeling process itself. The essence of this process 
lies in refining successive abstraction levels, each level 
into a lower one. The traversal of these abstraction levels, 
from the highest level (the more abstract) to the lowest one 
(the more detailed) involves two aspects: (1) System 
knowledge reside at different levels of a specification hier-
archy; (2) many formalisms are often required for knowl-
edge specification. As multi-formalism modeling provides 
a powerful means to deal with many formalisms, we show 
that modeling in addition the specification hierarchy pro-
vides the means to support many modeling processes. Both 
means are combined in a common meta-theoretic approach 
to enhance flexibility of the integrative framework. 

1 INTRODUCTION 

As an inter-disciplinary complex problem solving para-
digm, Modeling and Simulation (M&S) addresses various 
applications, leading to diverse methods and underlying 
concepts. Consequently, it is desirable to integrate these 
methods and concepts in a coherent methodological 
framework. The M&S architecture in which our framework 
is growing is depicted in Figure 1. It attempts to unify ma-
jor M&S issues, merging the following key approaches to-
gether and with various experiences: 

• 
• 

• 

The M&S life cycle (Nance 1994). 
The synthesis of the relationships between a real 
system, its conceptual representation and its soft-
ware simulator (Zeigler 1976). 
The analysis of M&S models design and execu-
tion (Fishwick 1995). 

The identification phase, which initiates the M&S life 
cycle, starts with the announcement of a problem. The 
problem formulation is the process to identify both the real  
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Figure 1: A Unified Architecture for the M&S Life Cycle 

 
world system (entities and their relationship, environ-
mental constraints, ...) and the objectives of the M&S study 
(e.g. criteria evaluation, performance optimization, future 
prediction, ...). This iterative (and sometimes multi-
threaded) phase, which is often driven by exchanges be-
tween model designers and application domain experts, 
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leads to both quantitative knowledge (knowledge on nu-
merical data gained from physical measures, observation, 
or experts), and qualitative knowledge (knowledge on the 
system structure and behavior). The concept of experimen-
tal frame refers to the limited set of circumstances under 
which these knowledge are relevant (Zeigler 1976). 

The engineering phase, also known as the M&S proc-
ess, is an iterative three steps model building process, 
which is based on the identified knowledge. From the sys-
tem and objectives, a valid conceptual representation must 
be designed, and then translated into a valid executable 
program (i.e., the simulator). The means to accredit both 
conceptual and executable models within the context of the 
experimental frame are labeled VV&A, for Verification, 
Validation & Accreditation (Balci 1997, Robinson 1999). 
Verification is the process of checking the consistency of 
an abstraction level with respect to a previous one it is de-
rived from, while validation is the process of comparing 
simulation results with real world experiments (at this 
stage, imperfect or missing knowledge could be adjusted). 

The integration phase embeds the simulation system in 
a decision-making support (man or a computer-based 
monitoring environment). In a problem solving perspec-
tive, experiments are planned and driven by simulation, 
and the results are used to solve the problem, and eventu-
ally other problems of the same class; quantitative simula-
tion provides a descriptive tool which is dissociated from 
and used by the problem solving knowledge (most of the 
time, this knowledge is built upon Operations Research or 
Artificial Intelligence tools (Ören 1989), while qualitative 
simulation embeds the problem solving knowledge (Wild 
and Pignatiello Jr 1994). In a knowledge base perspective, 
information can be extracted from the conceptual model to 
provide other integrated solvers with data for decision 
making. In a monitoring perspective, a monitoring envi-
ronment (either in a real-time or an off-line context) gets 
the current state of the real world system, initiates simula-
tion experiments, analyzes their results, and infers correc-
tive commands to send to the system. In the case the real 
system has to be built or modified, these commands are 
made of design decisions. 

The scope of our emerging methodological framework 
covers the M&S process. Section 2 recalls that the essence 
of this process is the traversal of abstraction levels, which 
is focused here (experimental frame, verification and vali-
dation issues are not covered by the present work). Various 
discipline-oriented methods and underlying concepts are 
often used to perform this traversal. A meta-theoretic ap-
proach is presented in section 3 to deal with them in a ge-
neric way. It combines both multi-formalism modeling and 
modeling of specification hierarchy. A conclusion is given 
in section 4, with some prospects on the framework sup-
porting software platform. 
2 METHODOLOGICAL FRAMEWORK  
FOR THE MODELING AND  
SIMULATION PROCESS 

The key issue in simulation model engineering is how to
put into correspondence a given system, its conceptual rep-
resentation (in the context of the focused objectives) and a
valid simulator. In other words, how does one start with a 
basic representation of the problem announced and refine
the successive abstraction levels that depicts the solution at 
different levels of understanding? Various empirical meth-
ods are proposed in the literature to perform this traversal
of abstraction levels. Some of them are very application-
oriented. Some other adapt general methods and tools to
simulation (e.g. UML class diagrams are widely used in 
object-oriented simulation studies). 

To support diverse methods and underlying concepts,
we aim at building the methodological framework pre-
sented in Figure 2. It relies on three major concepts: 

• 

• 
• 

Orthogonal design, implementation and experi-
mentation. 
Hierarchical specification. 
Multi-formalism. 
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Figure 2: Methodological Framework for M&S Process 
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2.1 Orthogonal Design, Experimentation  

and Implementation 

As mentioned previously, the traversal of abstraction levels 
is incremental in nature, and successive refinements are 
necessary to translate the initial problem into an executive 
solution. Along this process, it is admitted that the repre-
sentation of a modeler’s conceptual understanding should 
be separated from its translation into an executive simula-
tion program, so as to avoid that execution details clutter 
the problem understanding (the so-called Dijkstra’s princi-
ple of separation of concerns). This is why the framework 
shown in Figure 2 exhibits two orthogonal dimensions 
(each of them is composed of parallel sheets that represent 
different formalisms): one dimension for design (the upper 
part of the framework), and the other for implementation. 
The framework involves a third dimension, which is or-
thogonal to both the design and implementation dimen-
sions, and which relates to model experimentation (for 
more clarity, this dimension is not shown in Figure 2; how-
ever, one can mention that experimental frames are formal-
ized in this dimension, and that verification and validation 
issues are tackled through this formalization). 

2.2 Hierarchical Specification 

Systems theory distinguishes between system structure and 
behavior. Knowledge about these structure and behavior 
cannot be entirely specified at the same level. Indeed, vari-
ous perspectives should be considered when specifying a 
system, among which are the major ones: 

• 

• 

• 

Modularity, which key principles are decomposi-
tion (the system is decomposed into a set of com-
ponents, which in turn, can be decomposable), 
and aggregation (existing components are aggre-
gated into larger components, which in turn, can 
be aggregated). 
Functional behavior, which depicts the outer 
manifestation of the system. 
Internal connectivity, which describes the rela-
tionships inside the system. 

A rigorous modeling method consists of a hierarchy of 
specification levels, each level being mapped into a 
neighbor level, and each level revealing more knowledge 
on system structure and behavior than the preceding one. 
The design dimension shown in Figure 2 exhibits an ex-
ample of specification hierarchy, which three levels are 
mapped one into the following. A mapping describes the 
conditions under which one can move from a level to an-
other one. Notice that a system can be specified at two dif-
ferent levels of resolution (i.e., one model of the system is 
more detailed than the other); in that case, there should be 
a system morphism that establishes a correspondence be-
tween these models at each level of the specification hier-
archy (Zeigler et al. 2000). 
• 

• 

A specification hierarchy is also required at the im-
plementation level, even we do not show it in Figure 2 (for 
clarity purposes). A specification hierarchy that must be 
formalized at the implementation level is the one com-
posed of the three so-called world views (the lower speci-
fication level addressing the event-oriented view, the mid-
dle level addressing the activity-oriented view, and the 
upper level addressing the process-oriented view). 

2.3 Multi-Formalism 

Various formalisms are often necessary during the tra-
versal of abstraction levels. Specifying the entire knowl-
edge, a single formalism can rarely fits the needs. Multi-
formalism (i.e., the use of many formalism in the same 
M&S process) has pros and cons: 

At the design level, multi-formalism is a powerful 
means to capture all the aspects of a system. A 
multi-formalism model combines declarative, 
functional, constraint and spatial aspects (Fish-
wick 1995). Inversely, it is very hard to catch the 
overall semantics of a multi-formalism model. 
Also, VV&A processes are easier to process with 
a single-formalism model. Some formalisms 
(DEVS, Bond Graphs…) are expressive enough to 
subsume many other ones; then, they can be used 
to convert multi-formalism models into single-
formalism models (Vangheluwe 2000). 
At the implementation level, multi-formalism re-
fers to co-simulation, i.e. each sub-model of the 
overall model is simulated with a formalism-
specific simulator (as already mentioned, each 
sheet of the framework presented in Figure 2 
represents a formalism). This favors the reusing of 
existing simulators, while requiring at the same 
time the building of an often hard-to-achieve in-
teroperability platform. 

The idea behind our framework is the following: (1) 
allow a modeler to design his conceptual model, using 
multi-formalism (or a single formalism, in simple cases); 
(2) produce a semantic specification that is world-view in-
dependent, amenable to automated diagnosis and automati-
cally transformable to an executable version; (3) allow the 
integration of existing simulators. 

Multi-formalism modeling, also called formalism 
meta-modeling, has proven to be a powerful means to sup-
port many formalisms (Vangheluwe and De Lara 2002). It 
establishes a correspondence between data structures so 
that a model expressed in a given formalism can be trans-
lated into another formalism, using the data structures 
transformation rules. This movement (formalism transfor-
mation) is orthogonal and complementary to the movement 
through the specification hierarchy. Both movements con-
stitute the traversal of abstraction levels. Hence, modeling 
the specification hierarchy, in addition to modeling the 
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formalisms, could provide the means to integrate many 
modeling processes in the same framework. 

3 META-THEORETIC  
APPROACHES TO M&S 

Here, we deal with meta-modeling. This concept covers 
diverse understanding in the literature, like the followings: 

• 

• 

• 

• 

A meta-model plays a role of a model for another 
model (Merkuryeva and Merkuryev 1999). 
Meta-models are approximations of simulation 
models (Dos Santos and Porta Nova 1999). 
Meta-modeling concerns the description of classes 
of models (Vangheluwe et al. 2002). 
A meta-model is a relatively small, simple model 
that approximates the “behavior” of a large, com-
plex model (Davis 2003). 

In our sense, meta-modeling is the process of building 
models of models. A specification hierarchy is a static rep-
resentation of a modeling process; then a model of this hi-
erarchy is a specification meta-model (as opposed to for-
malism meta-model). The traversal of abstraction levels 
requires both movements through specification hierarchy 
and formalisms space; hence our framework combines 
both the formalism and the specification meta-models. 

3.1 Formalism vs. Specification Meta-Modeling 

Table 1 compares the formalism and the specification 
meta-modeling. For the latter, we use UML instead of the 
Entity-Relationship (ER) formalism, used in (Vangheluwe 
and De Lara 2002) for formalism meta-modeling. Both 
formalisms, extended with the Object Constraint Lan-
guage, are convenient for meta-modeling, but the use of 
UML is more coherent with the object-oriented software 
we intend to build as the framework support. 
 

Table 1: Formalism vs. Specification Meta-Modeling 
 Formalism Specification 

Meta-meta model ER UML 
Meta-model ER specification 

of FSA 
UML class dia-
gram of specifica-
tion hierarchy 

Model FSA model DEVS specifica-
tion hierarchy 

Execution Simulation Traversal of ab-
straction levels 

 
A formalism meta-model is a model of formalism, e.g. 

an ER specification of FSA (Figure 3.a), while a specifica-
tion meta-model is a model of specification hierarchy (Fig-
ure 3.b; the ER formalism is used here, only for the purpose 
of comparison). A specification meta-model can generate a 
specification hierarchy, as the one established in the DEVS 
framework, in the same way that an FSA meta-model can 
generate dynamic models. Figures 4.a and 4.b illustrate such 
generated models (in Figure 4.b, AMij denotes the associa-
tion mapping from level i to level j, while JCij denotes the 
justifying conditions to climb up the hierarchy from level j 
to level i; an overview of the DEVS specification hierarchy 
is given in Appendix B). Also, similar to the principle of 
executing a graph grammar on a particular FSA model to 
produce a simulation trace, executing an adequate graph 
grammar on a specification hierarchy will result in a tra-
versal of abstraction levels. This grammar describes a set of 
clauses related to the mapping conditions. 
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3.2 Modeling The Specification Hierarchy 

Our specification meta-model is presented in Figure 5, us-
ing UML. A detail is given below: 

• 

• 

• 

• 

• 

• 

An abstraction level is composed of three aspects: 
the interface, mechanism, and composition ab-
stractions. 
The interface abstraction defines the model’s 
boundaries and the way the model can be used 
(e.g. objects, agents, modules). 
The mechanism abstraction describes the behavior 
of the model. It defines by either a set of operating 
algorithms, or a set of connecting rules (for the 
components of the model). 
The composition abstraction describes the abstract 
set of model’s components, which can be simple 
state variables, or models in their turns. 
Each aspect of an abstraction level has attributes, 
i.e. a set of items that a modeler can define, add to 
or retrieve from the aspect. These items belong to 
the specification formalism that the modeler can 
also define, using formalism meta-modeling. 
A mapping establishes a correspondence between 
two abstraction levels. A mapping abstraction is 
composed of a set of clauses, each of which being 
composed of a condition and an action (to per-
form when the condition is satisfied). 

A graph grammar is used to map a current abstraction 
level to a new one. Before showing the operational seman-
tics of such grammar, we first propose (in the next section) 
a formalization of the specification meta-model. 
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Figure 5: Specification Meta-Model (UML) 
3.3 Formalization of the  
Specification Meta-Model 

The specification meta-model can be used to produce a 
specification hierarchy in the design dimension shown in 
Figure 2, as well as in the implementation dimension. No-
tice that in this latter case, the interface abstraction relates 
to the partitioning of the simulation program, the mecha-
nism abstraction relates to the simulation synchronization 
mechanisms, and the composition abstraction relates to the 
programming variables. One way to ease the manipulation 
of this specification meta-model is to formalize it in a clear 
abstract form. Both, abstraction level and mapping abstrac-
tion, are formalized as explained hereafter. 

We define an abstraction level as a structure: 
 

L = <I, C, M> 
 

• 

• 

• 

• 

− 

− 

• 

I is the interface abstraction. It is a set of parame-
ters (or inputs) that can be transmitted to the 
model (in the form of streams of commands, con-
ditions or data), and results (or outputs) that are 
generated by the model (again in the form of 
stream of commands, conditions or data). An ex-
ample of interface definition is the set 
{(φk,Ωk,ρk)k=1,2,…} where φk is a stream, Ωk the set 
of possible values that can be transmitted through 
this stream, and ρk the polarity of the stream (e.g. 
1 for inputs, and –1 for outputs). 
C is the Composition abstraction. It is a set of 
models (notice that in an etymological sense, even 
a simple variable is a model). 
M is the mechanism abstraction. It is a set of rules 
that govern the model (how model inputs are trans-
formed into its outputs and how model components 
interacts). All rules are described by clauses. 

To enhance the understanding of this formalization, let 
us give hereafter three examples of abstraction levels: 

A simple variable x which can take its values in 
set E, can be defined as follows: 

 
x = <{(m,E,1), (r,E,-1)}, {x}, {Rm,Rr}> 

 
where m and r stands respectively for 
“memorization” and “restitution”, 
Rm is the rule to put the value in stream m to 
x, and Rr is the rule to put the value of x in 
stream r. 

An Object O, with an attribute a and a method set 
that operates on parameters in E, a method get 
that returns values in F, and a method run that op-
erates on parameters in G and returns values in H, 
can be defined as follows: 

 
O = <{(s,E,1), (g,F,-1), (r,G,1), (r,H,-1)}, a, S> 
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− 

− 
− 

− 

− 

− 

• 

− 

− 

• 
• 
• 

where s, g and r stands respectively for “set”, 
“get” and “run”, 
S is {Rset,Rget,Rrun}∪{fk}k=1,2,… 
Rset is a rule to pick values from stream s and 
to update attribute a, 
Rget is a rule to translate the value of attribute 
a into the format of stream g, 
Rrun is a rule to get values from stream r, 
compute new values and translate them into 
r’s format, 
fk is the kth internal auxiliary rule which is 
useful for the other rules. 

A multi-agents system N, if viewed as a network 
of agents, can be specified as follows: 

 
N = <∅,{A1, A2, A3, ...},{Rk}k=1,2,…> 

 
where A1, A2, A3, ...are the agents of the 
network, 
Rk is the kth agents communication rule. 

We define a mapping abstraction as a structure: 
 

∇ = < L i, L f, A, {(ci, ai), i∈ A}> 
 

Li and L f are the initial and final levels, 
A is the set of clause names, 
ci is a condition, and ai is an action, for each i∈ A. 

A graph grammar is used to perform the mapping of 
the initial level into the final one (which is then created), 
by applying the actions of the mapping abstraction when 
their associated conditions are satisfied: 

 
Li = <Ii, Ci, Mi>  ∇ → Lf = <If, Cf, Mf> 

c1 is satisfied ⇒ perform a1 on If, Cf, and Mf 

c2 is satisfied ⇒ perform a2 on If, Cf, and Mf 

… 

3.4 Graph Grammars to the Traversal  
of Abstraction Levels 

Here, we describe the operational semantics of a graph 
grammar associated to the traversal of abstraction levels in 
the DEVS specification hierarchy. We limits the discussion 
to the hierarchy climbing from level 1 to level 2. Readers 
unfamiliar to DEVS can find a summary of the formalism 
in Appendix A and an overview of the specification hierar-
chy in Appendix B (as already mentioned). 

The justifying conditions established in (Zeigler 1976) 
for inferring knowledge at the level of “Input/Output Func-
tion Observation” from knowledge at the “Input/Output 
Relation Observation” (respectively level 2 and level 1) 
can be formalized in the following way: given all the pairs 
(ωi,ρi) ∈ R, the modeler has to provide a set {(aj,bj) / ∀ j, 
∃! i such that the input of ωi when the system is in state aj, 
• 
• 

produces the output ρi and let the system in state bj}. In 
other words, we can construct a graph, which nodes are the 
identified states of the system, and we link any node aj to 
its corresponding node bj with the corresponding edge 
(ωi,ρi). The justifying conditions impose that: 

Every state of the graph must be reachable. 
Conflicting edges are not allowed, i.e. edges with 
the same ω and ρ, and starting from the same state 
and ending at different states (as shown in Figure 
6 with doted arrows). 

The graph grammar operates according to the principle 
illustrated in Figure 6. Given the left-hand-side (LHS) ab-
straction level (level 2), the modeler specifies a set of 4-
uples that correspond to the observed pairs of initial and 
final states, associated to their causal Input/Output pairs. 
Conditions of the clauses are evaluated and their corre-
sponding actions are performed. A state is said to be identi-
fied if it appears, once at least, as the third member of a 4-
uple. The specific Λ node of the of the right-hand-side 
(RHS) abstraction level indicates identified states. The 
graph grammar produces the RHS abstraction level as the 
result of the mapping operation. The graph that appears 
there obviously defines the set of Input/Output function of 
the corresponding abstraction level. 
 
 

Ii = <T, X, Y> 
Ci = ∅ 

Mi = <Ω, R> 

Li 
If = <T, X, Y> 

Cf = ∅ 
Mf = <Ω, F> 

Lf 
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ω2, ρ2, a1, a2 

… 

Modeler’s inputs 
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abstraction level
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Clauses 

c2: a current edge is not conflicting ⇒ augment F with it 

ω2 

Λ 

a1 a2 

a3

ρ1ω1 ρ1 

ρ2 ω1 ω1

ω2

ρ1

ρ1

F = R = (ω2, ρ2) 
(ω2, ρ2) 

… 

∇ 

 
Figure 6: Operational Scheme for the Graph Grammar 

4 CONCLUSION 

We have presented a meta-theoretic approach to M&S, 
based on the modeling of the modeling process itself. It 
combines the known multi-formalism modeling approach 
to the modeling of the specification hierarchy (which is the 
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essence of the M&S process). Such a combination can 
achieve the required flexibility for the methodological 
framework that we have define to integrate many methods 
and their underlying concepts. This approach is being im-
plemented in an object-oriented software platform devel-
oped in Java, with the following requirements: 

• 

• 

• 

• 

• 

• 

• 
• 

• 

• 
• 

• 

• 

• 

A Design layer (executable either in a web 
browser or in stand-alone), which supports 
graphical multi-formalism model design, execu-
tion, documentation and reuse. 
An Execution layer, which provides the imple-
mented simulation libraries. 
A Network layer, which ensures simulators inter-
operability. 

The approach does not escape from the following limi-
tations that are inherent in using graph grammars: 

In the most general case, verifying the satisfaction 
of mapping conditions between two abstraction 
levels is a problem of sub-graph isomorphism, 
which is known to be NP-complete. 
In a practical point of view, it can be hard to ex-
press the mapping circumstances by clauses. 

APPENDIX A: THE DEVS FORMALISM 

Figure 7 summarizes a part of the evolution of the DEVS 
formalism. The initial DEVS model (that we name here 
GDM) has been introduced as: 

 
GDM = <X, S, Y, δint, δext, λ, ta> 

 
S is a set of states, and the model is supposed to 
be at any time in some state s∈S. 
X is the set of input values (external events). 
Y is the set of output values (computed by the 
model). 
e = ta(s) is the time elapsed since last change in 
the model. When it expires before any external 
event occurs, the system outputs the value y = 
λ(s), and changes to state δint(s). 
δint : S → S defines the internal transition function. 
λ: S → Y is the output function. An output is pos-
sible only before an internal transition. 
ta : S → R0,∞ defines the time advance function 
(positive real values, including 0 and ∞). 
δext : Q × X → S is the external transition function. 
If an external event x∈X occurs before the expira-
tion time, the system changes to state δext (s,e,x). 
Q = { (s,e) / s∈S, 0≤e≤ta(s)} is the total state set. 

To make modeling easier and to allow the building of 
hierarchical coupled models, input and output ports have 
been introduced for receiving and sending messages.  
To build 
hierarchical 

models 
Coupled Atomic 

Generic DEVS Model (GDM) 

DEVS model with ports 

Classic DEVS 
atomic model 

(CDAM) 

Sequential 

Parallel 

Parallel DEVS 
atomic model 

(PDAM) 

Classic DEVS 
coupled model 

(CDCM) 

Parallel DEVS 
coupled model 

(PDCM) 

to ease 
modeling 

to take into 
account 

implementation 
constraints 

 

 

Figure 7: Evolution of the DEVS Formalism 
 

Moreover, the following constraints have been established: 
(1) since two ports of an atomic model cannot simultane-
ously receive or send messages, input events (as well as 
output events) must be serialized. (2) In a coupled model, 
no direct feedback loop is allowed, i.e. no output port of a 
component may be connected to one of its input port. 
Atomic model with ports (CDAM) and coupled model with 
ports (CDCM) are respectively defined as: 

 
CDAM = <X, S, Y, δint, δext, λ, ta> 

CDCM = <X,Y,D,{Md, d∈D},EIC,EOC,IC, Select> 
 

• 

• 

• 
• 
• 

• 

• 

• 

• 

• 

• 

X = { (p, v) / p ∈ InPorts, v ∈ Xp } is the set of 
input ports and values, 
Y = { (p, v) / p ∈ OutPorts, v ∈ Yp } is the set of 
output ports and values. 
D is the set of the component names, 
Md is a DEVS model, ∀ d∈D, 
EIC (External Input Coupling) connect external 
inputs to component inputs, 
EIC ⊆ {((N,ipN),(d,ipd)) / ipN ∈ InPorts, d ∈ D, 
ipd ∈ InPortsd} 
EOC (External Output Coupling) connect compo-
nent outputs to external outputs, 
EOC ⊆ {((d,opd),(N,opN)) / opN ∈ OutPorts, d ∈ 
D, opd ∈ OutPortsd} 
IC (Internal Coupling) connect component outputs 
to component inputs, 
IC ⊆ {((a,ipa),(b,ipb)) / a ∈ D, b ∈ D, ipa ∈ Out-
Portsa, ipb ∈ InPortsb} 
Select : 2D–{} → D is the tie-breaking function 
that serializes the actions of concurrent imminent 
components. 

A revision to these preceding models was introduced 
later to fit to the hardware and software evolution from se-
quential execution to parallel one. The former sequential 
DEVS models are labeled as being part of Classic DEVS, 
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while the coming parallel versions are labeled Parallel 
DEVS. Parallel DEVS models lead with bags of inputs and 
outputs instead of single ones. A confluent transition is 
used to define the next state of the model in case of colli-
sion between external and internal events. The tie-breaking 
function becomes obsolete (all imminent components gen-
erating their outputs which are distributed to their destina-
tion according to the coupling information). The parallel 
models (atomic: PDAM, coupled: PDCM) are defined as: 

 
PDAM = <X, S, Y, δint, δext, δcon, λ, ta> 

PDCM = <X, Y, D, {Md / d∈D}, EIC, EOC, IC> 
 

• 

• 
• 
• 

• 

• 

• 

• 

• 

δext : Q × Xa → S is the external transition func-
tion, where a = Card (InPorts), 
λ : S → Yb is the output function, where 
b = Card(OutPorts), 
δcon : Q × Xa → S is the confluent function. 

APPENDIX B: THE DEVS SPECIFICATION 
HIERARCHY 

The DEVS specification hierarchy consists of five increas-
ing detailed levels (from level 0 to level 4): 

The Input/Output Observation frame (level 0) de-
scribes the system as a black box, and is defined 
as IO = <T, X, Y>, where T is the time base, X is 
the input values set, and Y is the output values set. 
The Input/Output Relation Observation (level 1) 
describes the system behavior by a set of I/O 
pairs: IORO = <T, X, Ω, Y, R>, where T, X, and 
Y are the same as for IO, Ω ⊆ (X,T) is the set of 
allowable input segments, R ⊆ Ω × (Y,T) is the 
IO relation, and (ω,ρ) ∈R ⇒ dom(ω) = dom(ρ). 
The Input/Output Function Observation (level 2) 
describes the set of functions that partitions the 
I/O relation set: IOFO = <T, X, Ω, Y, F>, where 
T, X, Ω and Y are the same as for IORO, f ∈ F ⇒ 
f = Ω × (Y, T) is a function, and ρ = f(ω) ⇒ 
dom(ρ) = dom(ω). 
The Input/Output System (level 3) describes the 
state set and the state transition functions of the 
system: IOS = <T, X, Ω, S, Y, δint, δext, λ, ta> 
where T, X, Ω and Y are the same as for IOFO, 
and S, δint, δext, λ, ta are described in Appendix A. 
The Network System (level 4) describes the sys-
tem as a set of interconnected components: NS = 
<T,X,Ω,Y,D,{Md, d∈D},EIC,EOC,IC> where T, 
X, Ω and Y are the same as for IOS, and D, Md, 
EIC, EOC, and IC are described in Appendix A. 

Mapping specification levels suggest two issues: (1) 
going from structure to behavior, i.e. converting a descrip-
tion at a level to a description at a lower level, and (2) in-
ferring structure from behavior, i.e. climbing up the hierar-
chy. While the downward mapping is straightforward, the 
upward one is less so, and is possible only under special 
circumstances called justifying conditions (Zeigler 1976). 
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