
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

A META-THEORETIC APPROACH TO MODELING AND SIMULATION

Mamadou K. Traoré

LIMOS CNRS UMR 6158
Université Blaise Pascal

Campus des Cézeaux
63177 Aubière Cedex, FRANCE

ABSTRACT

We aim at building a methodological framework that inte-
grates various methods and key concepts in a more coher-
ent Modeling and Simulation architecture. The required
flexibility for such a framework can be achieved by model-
ing the modeling process itself. The essence of this process
lies in refining successive abstraction levels, each level
into a lower one. The traversal of these abstraction levels,
from the highest level (the more abstract) to the lowest one
(the more detailed) involves two aspects: (1) System
knowledge reside at different levels of a specification hier-
archy; (2) many formalisms are often required for knowl-
edge specification. As multi-formalism modeling provides
a powerful means to deal with many formalisms, we show
that modeling in addition the specification hierarchy pro-
vides the means to support many modeling processes. Both
means are combined in a common meta-theoretic approach
to enhance flexibility of the integrative framework.

1 INTRODUCTION

As an inter-disciplinary complex problem solving para-
digm, Modeling and Simulation (M&S) addresses various
applications, leading to diverse methods and underlying
concepts. Consequently, it is desirable to integrate these
methods and concepts in a coherent methodological
framework. The M&S architecture in which our framework
is growing is depicted in Figure 1. It attempts to unify ma-
jor M&S issues, merging the following key approaches to-
gether and with various experiences:

•
•

•

The M&S life cycle (Nance 1994).
The synthesis of the relationships between a real
system, its conceptual representation and its soft-
ware simulator (Zeigler 1976).
The analysis of M&S models design and execu-
tion (Fishwick 1995).

The identification phase, which initiates the M&S life
cycle, starts with the announcement of a problem. The
problem formulation is the process to identify both the real

Simulation
results

Current state Simulator

System

Objective

APPLICATION

INTEGRATED COMPUTER-AID DECISION SUPPORT

IDENTIFICATION
PHASE

ENGINEERING
PHASE

(M&S PROCESS)

INTEGRATION
PHASE

Knowledge
extraction scheme Commands

Experimental
data

Validation

Problem
announcement

Problem
formulation

Conceptual
model

Verification

Verification

Specification

Knowledge base

Figure 1: A Unified Architecture for the M&S Life Cycle

world system (entities and their relationship, environ-
mental constraints, ...) and the objectives of the M&S study
(e.g. criteria evaluation, performance optimization, future
prediction, ...). This iterative (and sometimes multi-
threaded) phase, which is often driven by exchanges be-
tween model designers and application domain experts,

Traoré

leads to both quantitative knowledge (knowledge on nu-
merical data gained from physical measures, observation,
or experts), and qualitative knowledge (knowledge on the
system structure and behavior). The concept of experimen-
tal frame refers to the limited set of circumstances under
which these knowledge are relevant (Zeigler 1976).

The engineering phase, also known as the M&S proc-
ess, is an iterative three steps model building process,
which is based on the identified knowledge. From the sys-
tem and objectives, a valid conceptual representation must
be designed, and then translated into a valid executable
program (i.e., the simulator). The means to accredit both
conceptual and executable models within the context of the
experimental frame are labeled VV&A, for Verification,
Validation & Accreditation (Balci 1997, Robinson 1999).
Verification is the process of checking the consistency of
an abstraction level with respect to a previous one it is de-
rived from, while validation is the process of comparing
simulation results with real world experiments (at this
stage, imperfect or missing knowledge could be adjusted).

The integration phase embeds the simulation system in
a decision-making support (man or a computer-based
monitoring environment). In a problem solving perspec-
tive, experiments are planned and driven by simulation,
and the results are used to solve the problem, and eventu-
ally other problems of the same class; quantitative simula-
tion provides a descriptive tool which is dissociated from
and used by the problem solving knowledge (most of the
time, this knowledge is built upon Operations Research or
Artificial Intelligence tools (Ören 1989), while qualitative
simulation embeds the problem solving knowledge (Wild
and Pignatiello Jr 1994). In a knowledge base perspective,
information can be extracted from the conceptual model to
provide other integrated solvers with data for decision
making. In a monitoring perspective, a monitoring envi-
ronment (either in a real-time or an off-line context) gets
the current state of the real world system, initiates simula-
tion experiments, analyzes their results, and infers correc-
tive commands to send to the system. In the case the real
system has to be built or modified, these commands are
made of design decisions.

The scope of our emerging methodological framework
covers the M&S process. Section 2 recalls that the essence
of this process is the traversal of abstraction levels, which
is focused here (experimental frame, verification and vali-
dation issues are not covered by the present work). Various
discipline-oriented methods and underlying concepts are
often used to perform this traversal. A meta-theoretic ap-
proach is presented in section 3 to deal with them in a ge-
neric way. It combines both multi-formalism modeling and
modeling of specification hierarchy. A conclusion is given
in section 4, with some prospects on the framework sup-
porting software platform.
2 METHODOLOGICAL FRAMEWORK
FOR THE MODELING AND
SIMULATION PROCESS

The key issue in simulation model engineering is how to
put into correspondence a given system, its conceptual rep-
resentation (in the context of the focused objectives) and a
valid simulator. In other words, how does one start with a
basic representation of the problem announced and refine
the successive abstraction levels that depicts the solution at
different levels of understanding? Various empirical meth-
ods are proposed in the literature to perform this traversal
of abstraction levels. Some of them are very application-
oriented. Some other adapt general methods and tools to
simulation (e.g. UML class diagrams are widely used in
object-oriented simulation studies).

To support diverse methods and underlying concepts,
we aim at building the methodological framework pre-
sented in Figure 2. It relies on three major concepts:

•

•
•

Orthogonal design, implementation and experi-
mentation.
Hierarchical specification.
Multi-formalism.

Formalism B

Formalism A

Legend

Abstraction level Association mapping

System morphism

Level of resolution

Level of specification

Formalism
transformation

Implementation

Execution language

Conceptual formalism

Figure 2: Methodological Framework for M&S Process

Traoré

2.1 Orthogonal Design, Experimentation

and Implementation

As mentioned previously, the traversal of abstraction levels
is incremental in nature, and successive refinements are
necessary to translate the initial problem into an executive
solution. Along this process, it is admitted that the repre-
sentation of a modeler’s conceptual understanding should
be separated from its translation into an executive simula-
tion program, so as to avoid that execution details clutter
the problem understanding (the so-called Dijkstra’s princi-
ple of separation of concerns). This is why the framework
shown in Figure 2 exhibits two orthogonal dimensions
(each of them is composed of parallel sheets that represent
different formalisms): one dimension for design (the upper
part of the framework), and the other for implementation.
The framework involves a third dimension, which is or-
thogonal to both the design and implementation dimen-
sions, and which relates to model experimentation (for
more clarity, this dimension is not shown in Figure 2; how-
ever, one can mention that experimental frames are formal-
ized in this dimension, and that verification and validation
issues are tackled through this formalization).

2.2 Hierarchical Specification

Systems theory distinguishes between system structure and
behavior. Knowledge about these structure and behavior
cannot be entirely specified at the same level. Indeed, vari-
ous perspectives should be considered when specifying a
system, among which are the major ones:

•

•

•

Modularity, which key principles are decomposi-
tion (the system is decomposed into a set of com-
ponents, which in turn, can be decomposable),
and aggregation (existing components are aggre-
gated into larger components, which in turn, can
be aggregated).
Functional behavior, which depicts the outer
manifestation of the system.
Internal connectivity, which describes the rela-
tionships inside the system.

A rigorous modeling method consists of a hierarchy of
specification levels, each level being mapped into a
neighbor level, and each level revealing more knowledge
on system structure and behavior than the preceding one.
The design dimension shown in Figure 2 exhibits an ex-
ample of specification hierarchy, which three levels are
mapped one into the following. A mapping describes the
conditions under which one can move from a level to an-
other one. Notice that a system can be specified at two dif-
ferent levels of resolution (i.e., one model of the system is
more detailed than the other); in that case, there should be
a system morphism that establishes a correspondence be-
tween these models at each level of the specification hier-
archy (Zeigler et al. 2000).
•

•

A specification hierarchy is also required at the im-
plementation level, even we do not show it in Figure 2 (for
clarity purposes). A specification hierarchy that must be
formalized at the implementation level is the one com-
posed of the three so-called world views (the lower speci-
fication level addressing the event-oriented view, the mid-
dle level addressing the activity-oriented view, and the
upper level addressing the process-oriented view).

2.3 Multi-Formalism

Various formalisms are often necessary during the tra-
versal of abstraction levels. Specifying the entire knowl-
edge, a single formalism can rarely fits the needs. Multi-
formalism (i.e., the use of many formalism in the same
M&S process) has pros and cons:

At the design level, multi-formalism is a powerful
means to capture all the aspects of a system. A
multi-formalism model combines declarative,
functional, constraint and spatial aspects (Fish-
wick 1995). Inversely, it is very hard to catch the
overall semantics of a multi-formalism model.
Also, VV&A processes are easier to process with
a single-formalism model. Some formalisms
(DEVS, Bond Graphs…) are expressive enough to
subsume many other ones; then, they can be used
to convert multi-formalism models into single-
formalism models (Vangheluwe 2000).
At the implementation level, multi-formalism re-
fers to co-simulation, i.e. each sub-model of the
overall model is simulated with a formalism-
specific simulator (as already mentioned, each
sheet of the framework presented in Figure 2
represents a formalism). This favors the reusing of
existing simulators, while requiring at the same
time the building of an often hard-to-achieve in-
teroperability platform.

The idea behind our framework is the following: (1)
allow a modeler to design his conceptual model, using
multi-formalism (or a single formalism, in simple cases);
(2) produce a semantic specification that is world-view in-
dependent, amenable to automated diagnosis and automati-
cally transformable to an executable version; (3) allow the
integration of existing simulators.

Multi-formalism modeling, also called formalism
meta-modeling, has proven to be a powerful means to sup-
port many formalisms (Vangheluwe and De Lara 2002). It
establishes a correspondence between data structures so
that a model expressed in a given formalism can be trans-
lated into another formalism, using the data structures
transformation rules. This movement (formalism transfor-
mation) is orthogonal and complementary to the movement
through the specification hierarchy. Both movements con-
stitute the traversal of abstraction levels. Hence, modeling
the specification hierarchy, in addition to modeling the

Traoré

formalisms, could provide the means to integrate many
modeling processes in the same framework.

3 META-THEORETIC
APPROACHES TO M&S

Here, we deal with meta-modeling. This concept covers
diverse understanding in the literature, like the followings:

•

•

•

•

A meta-model plays a role of a model for another
model (Merkuryeva and Merkuryev 1999).
Meta-models are approximations of simulation
models (Dos Santos and Porta Nova 1999).
Meta-modeling concerns the description of classes
of models (Vangheluwe et al. 2002).
A meta-model is a relatively small, simple model
that approximates the “behavior” of a large, com-
plex model (Davis 2003).

In our sense, meta-modeling is the process of building
models of models. A specification hierarchy is a static rep-
resentation of a modeling process; then a model of this hi-
erarchy is a specification meta-model (as opposed to for-
malism meta-model). The traversal of abstraction levels
requires both movements through specification hierarchy
and formalisms space; hence our framework combines
both the formalism and the specification meta-models.

3.1 Formalism vs. Specification Meta-Modeling

Table 1 compares the formalism and the specification
meta-modeling. For the latter, we use UML instead of the
Entity-Relationship (ER) formalism, used in (Vangheluwe
and De Lara 2002) for formalism meta-modeling. Both
formalisms, extended with the Object Constraint Lan-
guage, are convenient for meta-modeling, but the use of
UML is more coherent with the object-oriented software
we intend to build as the framework support.

Table 1: Formalism vs. Specification Meta-Modeling
 Formalism Specification

Meta-meta model ER UML
Meta-model ER specification

of FSA
UML class dia-
gram of specifica-
tion hierarchy

Model FSA model DEVS specifica-
tion hierarchy

Execution Simulation Traversal of ab-
straction levels

A formalism meta-model is a model of formalism, e.g.

an ER specification of FSA (Figure 3.a), while a specifica-
tion meta-model is a model of specification hierarchy (Fig-
ure 3.b; the ER formalism is used here, only for the purpose
of comparison). A specification meta-model can generate a
specification hierarchy, as the one established in the DEVS
framework, in the same way that an FSA meta-model can
generate dynamic models. Figures 4.a and 4.b illustrate such
generated models (in Figure 4.b, AMij denotes the associa-
tion mapping from level i to level j, while JCij denotes the
justifying conditions to climb up the hierarchy from level j
to level i; an overview of the DEVS specification hierarchy
is given in Appendix B). Also, similar to the principle of
executing a graph grammar on a particular FSA model to
produce a simulation trace, executing an adequate graph
grammar on a specification hierarchy will result in a tra-
versal of abstraction levels. This grammar describes a set of
clauses related to the mapping conditions.

FSAState
Name

Initial type
FinalType

FSATransition Mapping

Level
Interface

Component
Mechanism

a) b)

Figure 3: Meta-Models (Examples)

1

1

0

1

0
0

JC01AM10

JC12AM21

JC23AM32

JC34AM43

a) b)

Coupled system
<T,X,Y>

<D, {Md, d∈D}>
<EIC,EOC,IC>

State transition
<T,X,Y>

<S>
<δint, δext,λ,ta>

Input/Output function
<T,X,Y>

<Ω,F>

Input/Output relation
<T,X,Y>

<Ω,R>

Observation frame
<T,X,Y>

Figure 4: Models (Examples)

Traoré

3.2 Modeling The Specification Hierarchy

Our specification meta-model is presented in Figure 5, us-
ing UML. A detail is given below:

•

•

•

•

•

•

An abstraction level is composed of three aspects:
the interface, mechanism, and composition ab-
stractions.
The interface abstraction defines the model’s
boundaries and the way the model can be used
(e.g. objects, agents, modules).
The mechanism abstraction describes the behavior
of the model. It defines by either a set of operating
algorithms, or a set of connecting rules (for the
components of the model).
The composition abstraction describes the abstract
set of model’s components, which can be simple
state variables, or models in their turns.
Each aspect of an abstraction level has attributes,
i.e. a set of items that a modeler can define, add to
or retrieve from the aspect. These items belong to
the specification formalism that the modeler can
also define, using formalism meta-modeling.
A mapping establishes a correspondence between
two abstraction levels. A mapping abstraction is
composed of a set of clauses, each of which being
composed of a condition and an action (to per-
form when the condition is satisfied).

A graph grammar is used to map a current abstraction
level to a new one. Before showing the operational seman-
tics of such grammar, we first propose (in the next section)
a formalization of the specification meta-model.

Abstraction level

Interface

Composition

Mechanism

Aspect
items

addItem()
retrieveItem()

Mapping

2

Clause

*

Condition

Action

Figure 5: Specification Meta-Model (UML)
3.3 Formalization of the
Specification Meta-Model

The specification meta-model can be used to produce a
specification hierarchy in the design dimension shown in
Figure 2, as well as in the implementation dimension. No-
tice that in this latter case, the interface abstraction relates
to the partitioning of the simulation program, the mecha-
nism abstraction relates to the simulation synchronization
mechanisms, and the composition abstraction relates to the
programming variables. One way to ease the manipulation
of this specification meta-model is to formalize it in a clear
abstract form. Both, abstraction level and mapping abstrac-
tion, are formalized as explained hereafter.

We define an abstraction level as a structure:

L = <I, C, M>

•

•

•

•

−

−

•

I is the interface abstraction. It is a set of parame-
ters (or inputs) that can be transmitted to the
model (in the form of streams of commands, con-
ditions or data), and results (or outputs) that are
generated by the model (again in the form of
stream of commands, conditions or data). An ex-
ample of interface definition is the set
{(φk,Ωk,ρk)k=1,2,…} where φk is a stream, Ωk the set
of possible values that can be transmitted through
this stream, and ρk the polarity of the stream (e.g.
1 for inputs, and –1 for outputs).
C is the Composition abstraction. It is a set of
models (notice that in an etymological sense, even
a simple variable is a model).
M is the mechanism abstraction. It is a set of rules
that govern the model (how model inputs are trans-
formed into its outputs and how model components
interacts). All rules are described by clauses.

To enhance the understanding of this formalization, let
us give hereafter three examples of abstraction levels:

A simple variable x which can take its values in
set E, can be defined as follows:

x = <{(m,E,1), (r,E,-1)}, {x}, {Rm,Rr}>

where m and r stands respectively for
“memorization” and “restitution”,
Rm is the rule to put the value in stream m to
x, and Rr is the rule to put the value of x in
stream r.

An Object O, with an attribute a and a method set
that operates on parameters in E, a method get
that returns values in F, and a method run that op-
erates on parameters in G and returns values in H,
can be defined as follows:

O = <{(s,E,1), (g,F,-1), (r,G,1), (r,H,-1)}, a, S>

Traoré

−

−
−

−

−

−

•

−

−

•
•
•

where s, g and r stands respectively for “set”,
“get” and “run”,
S is {Rset,Rget,Rrun}∪{fk}k=1,2,…
Rset is a rule to pick values from stream s and
to update attribute a,
Rget is a rule to translate the value of attribute
a into the format of stream g,
Rrun is a rule to get values from stream r,
compute new values and translate them into
r’s format,
fk is the kth internal auxiliary rule which is
useful for the other rules.

A multi-agents system N, if viewed as a network
of agents, can be specified as follows:

N = <∅,{A1, A2, A3, ...},{Rk}k=1,2,…>

where A1, A2, A3, ...are the agents of the
network,
Rk is the kth agents communication rule.

We define a mapping abstraction as a structure:

∇ = < L i, L f, A, {(ci, ai), i∈ A}>

Li and L f are the initial and final levels,
A is the set of clause names,
ci is a condition, and ai is an action, for each i∈ A.

A graph grammar is used to perform the mapping of
the initial level into the final one (which is then created),
by applying the actions of the mapping abstraction when
their associated conditions are satisfied:

Li = <Ii, Ci, Mi> ∇ → Lf = <If, Cf, Mf>

c1 is satisfied ⇒ perform a1 on If, Cf, and Mf

c2 is satisfied ⇒ perform a2 on If, Cf, and Mf

…

3.4 Graph Grammars to the Traversal
of Abstraction Levels

Here, we describe the operational semantics of a graph
grammar associated to the traversal of abstraction levels in
the DEVS specification hierarchy. We limits the discussion
to the hierarchy climbing from level 1 to level 2. Readers
unfamiliar to DEVS can find a summary of the formalism
in Appendix A and an overview of the specification hierar-
chy in Appendix B (as already mentioned).

The justifying conditions established in (Zeigler 1976)
for inferring knowledge at the level of “Input/Output Func-
tion Observation” from knowledge at the “Input/Output
Relation Observation” (respectively level 2 and level 1)
can be formalized in the following way: given all the pairs
(ωi,ρi) ∈ R, the modeler has to provide a set {(aj,bj) / ∀ j,
∃! i such that the input of ωi when the system is in state aj,
•
•

produces the output ρi and let the system in state bj}. In
other words, we can construct a graph, which nodes are the
identified states of the system, and we link any node aj to
its corresponding node bj with the corresponding edge
(ωi,ρi). The justifying conditions impose that:

Every state of the graph must be reachable.
Conflicting edges are not allowed, i.e. edges with
the same ω and ρ, and starting from the same state
and ending at different states (as shown in Figure
6 with doted arrows).

The graph grammar operates according to the principle
illustrated in Figure 6. Given the left-hand-side (LHS) ab-
straction level (level 2), the modeler specifies a set of 4-
uples that correspond to the observed pairs of initial and
final states, associated to their causal Input/Output pairs.
Conditions of the clauses are evaluated and their corre-
sponding actions are performed. A state is said to be identi-
fied if it appears, once at least, as the third member of a 4-
uple. The specific Λ node of the of the right-hand-side
(RHS) abstraction level indicates identified states. The
graph grammar produces the RHS abstraction level as the
result of the mapping operation. The graph that appears
there obviously defines the set of Input/Output function of
the corresponding abstraction level.

Ii = <T, X, Y>
Ci = ∅

Mi = <Ω, R>

Li
If = <T, X, Y>

Cf = ∅
Mf = <Ω, F>

Lf

ω1, ρ1, a1, a3
ω1, ρ2, a1, a2
ω2, ρ2, a1, a2

…

Modeler’s inputs

Left-hand-side
abstraction level

Right-hand-side
abstraction level

c1: a state is identified ⇒ augment F with it
Clauses

c2: a current edge is not conflicting ⇒ augment F with it

ω2

Λ

a1 a2

a3

ρ1ω1 ρ1

ρ2 ω1 ω1

ω2

ρ1

ρ1

F = R = (ω2, ρ2)
(ω2, ρ2)

…

∇

Figure 6: Operational Scheme for the Graph Grammar

4 CONCLUSION

We have presented a meta-theoretic approach to M&S,
based on the modeling of the modeling process itself. It
combines the known multi-formalism modeling approach
to the modeling of the specification hierarchy (which is the

Traoré

essence of the M&S process). Such a combination can
achieve the required flexibility for the methodological
framework that we have define to integrate many methods
and their underlying concepts. This approach is being im-
plemented in an object-oriented software platform devel-
oped in Java, with the following requirements:

•

•

•

•

•

•

•
•

•

•
•

•

•

•

A Design layer (executable either in a web
browser or in stand-alone), which supports
graphical multi-formalism model design, execu-
tion, documentation and reuse.
An Execution layer, which provides the imple-
mented simulation libraries.
A Network layer, which ensures simulators inter-
operability.

The approach does not escape from the following limi-
tations that are inherent in using graph grammars:

In the most general case, verifying the satisfaction
of mapping conditions between two abstraction
levels is a problem of sub-graph isomorphism,
which is known to be NP-complete.
In a practical point of view, it can be hard to ex-
press the mapping circumstances by clauses.

APPENDIX A: THE DEVS FORMALISM

Figure 7 summarizes a part of the evolution of the DEVS
formalism. The initial DEVS model (that we name here
GDM) has been introduced as:

GDM = <X, S, Y, δint, δext, λ, ta>

S is a set of states, and the model is supposed to
be at any time in some state s∈S.
X is the set of input values (external events).
Y is the set of output values (computed by the
model).
e = ta(s) is the time elapsed since last change in
the model. When it expires before any external
event occurs, the system outputs the value y =
λ(s), and changes to state δint(s).
δint : S → S defines the internal transition function.
λ: S → Y is the output function. An output is pos-
sible only before an internal transition.
ta : S → R0,∞ defines the time advance function
(positive real values, including 0 and ∞).
δext : Q × X → S is the external transition function.
If an external event x∈X occurs before the expira-
tion time, the system changes to state δext (s,e,x).
Q = { (s,e) / s∈S, 0≤e≤ta(s)} is the total state set.

To make modeling easier and to allow the building of
hierarchical coupled models, input and output ports have
been introduced for receiving and sending messages.
To build
hierarchical

models
Coupled Atomic

Generic DEVS Model (GDM)

DEVS model with ports

Classic DEVS
atomic model

(CDAM)

Sequential

Parallel

Parallel DEVS
atomic model

(PDAM)

Classic DEVS
coupled model

(CDCM)

Parallel DEVS
coupled model

(PDCM)

to ease
modeling

to take into
account

implementation
constraints

Figure 7: Evolution of the DEVS Formalism

Moreover, the following constraints have been established:
(1) since two ports of an atomic model cannot simultane-
ously receive or send messages, input events (as well as
output events) must be serialized. (2) In a coupled model,
no direct feedback loop is allowed, i.e. no output port of a
component may be connected to one of its input port.
Atomic model with ports (CDAM) and coupled model with
ports (CDCM) are respectively defined as:

CDAM = <X, S, Y, δint, δext, λ, ta>

CDCM = <X,Y,D,{Md, d∈D},EIC,EOC,IC, Select>

•

•

•
•
•

•

•

•

•

•

•

X = { (p, v) / p ∈ InPorts, v ∈ Xp } is the set of
input ports and values,
Y = { (p, v) / p ∈ OutPorts, v ∈ Yp } is the set of
output ports and values.
D is the set of the component names,
Md is a DEVS model, ∀ d∈D,
EIC (External Input Coupling) connect external
inputs to component inputs,
EIC ⊆ {((N,ipN),(d,ipd)) / ipN ∈ InPorts, d ∈ D,
ipd ∈ InPortsd}
EOC (External Output Coupling) connect compo-
nent outputs to external outputs,
EOC ⊆ {((d,opd),(N,opN)) / opN ∈ OutPorts, d ∈
D, opd ∈ OutPortsd}
IC (Internal Coupling) connect component outputs
to component inputs,
IC ⊆ {((a,ipa),(b,ipb)) / a ∈ D, b ∈ D, ipa ∈ Out-
Portsa, ipb ∈ InPortsb}
Select : 2D–{} → D is the tie-breaking function
that serializes the actions of concurrent imminent
components.

A revision to these preceding models was introduced
later to fit to the hardware and software evolution from se-
quential execution to parallel one. The former sequential
DEVS models are labeled as being part of Classic DEVS,

Traoré

while the coming parallel versions are labeled Parallel
DEVS. Parallel DEVS models lead with bags of inputs and
outputs instead of single ones. A confluent transition is
used to define the next state of the model in case of colli-
sion between external and internal events. The tie-breaking
function becomes obsolete (all imminent components gen-
erating their outputs which are distributed to their destina-
tion according to the coupling information). The parallel
models (atomic: PDAM, coupled: PDCM) are defined as:

PDAM = <X, S, Y, δint, δext, δcon, λ, ta>

PDCM = <X, Y, D, {Md / d∈D}, EIC, EOC, IC>

•

•
•
•

•

•

•

•

•

δext : Q × Xa → S is the external transition func-
tion, where a = Card (InPorts),
λ : S → Yb is the output function, where
b = Card(OutPorts),
δcon : Q × Xa → S is the confluent function.

APPENDIX B: THE DEVS SPECIFICATION
HIERARCHY

The DEVS specification hierarchy consists of five increas-
ing detailed levels (from level 0 to level 4):

The Input/Output Observation frame (level 0) de-
scribes the system as a black box, and is defined
as IO = <T, X, Y>, where T is the time base, X is
the input values set, and Y is the output values set.
The Input/Output Relation Observation (level 1)
describes the system behavior by a set of I/O
pairs: IORO = <T, X, Ω, Y, R>, where T, X, and
Y are the same as for IO, Ω ⊆ (X,T) is the set of
allowable input segments, R ⊆ Ω × (Y,T) is the
IO relation, and (ω,ρ) ∈R ⇒ dom(ω) = dom(ρ).
The Input/Output Function Observation (level 2)
describes the set of functions that partitions the
I/O relation set: IOFO = <T, X, Ω, Y, F>, where
T, X, Ω and Y are the same as for IORO, f ∈ F ⇒
f = Ω × (Y, T) is a function, and ρ = f(ω) ⇒
dom(ρ) = dom(ω).
The Input/Output System (level 3) describes the
state set and the state transition functions of the
system: IOS = <T, X, Ω, S, Y, δint, δext, λ, ta>
where T, X, Ω and Y are the same as for IOFO,
and S, δint, δext, λ, ta are described in Appendix A.
The Network System (level 4) describes the sys-
tem as a set of interconnected components: NS =
<T,X,Ω,Y,D,{Md, d∈D},EIC,EOC,IC> where T,
X, Ω and Y are the same as for IOS, and D, Md,
EIC, EOC, and IC are described in Appendix A.

Mapping specification levels suggest two issues: (1)
going from structure to behavior, i.e. converting a descrip-
tion at a level to a description at a lower level, and (2) in-
ferring structure from behavior, i.e. climbing up the hierar-
chy. While the downward mapping is straightforward, the
upward one is less so, and is possible only under special
circumstances called justifying conditions (Zeigler 1976).

REFERENCES

Balci, O. 1997. Principles of Simulation Model Validation,
Verification, and Testing. Transactions of the SCS 13
(1), 3-12.

Davis, P., and J. Bigelow. 2003. Motivated Metmodels.
Synthesis of Cause-Effect Reasoning and Statistical
Metamodeling. RAND Corporation, US.

Dos Santos, I. R. and A. M. O. Porta Nova. 1999. The
Main Issues in Nonlinear Simulation Metamodel Es-
timation. In Proceedings of the 1999 Winter Simula-
tion Conference, eds. Farrington, Nembhard, Sturrock,
and Ewans, 502-509. Phoenix, AZ.

Fishwick, P. 1995. Simulation Model Design and Execu-
tion. Building Digital Worlds. Prentice Hall Inc.,
Englewood Cliffs, NJ.

Merkuryeva, G. and Y. Merkuryev. 1999. Metamodelling
in Computer Simulation: State of Art. In Preprints of
the Advanced Summer Institute’99 on Life Cycle Ap-
proaches to Production Systems: Management, Con-
trol, and Supervision, 2 p. Lueven, Belgium.

Nance, R. E. 1994. The Conical Methodology and the Evo-
lution of Simulation Model Development. Annals of
Operations Research 53, 1-45.

Ören, T. I. 1989. A paradigm for Artificial Intelligence in
software engineering. In Advances in Artificial Intelli-
gence in Software Engineering, ed. Ören, vol. 1, JAI
Press, Greenwich, CN.

Robinson, S. 1999. Simulation Verification, Validation and
Confidence : a Tutorial. Transaction of the SCS 16 (2),
63-69.

Vangheluwe, H. L. 2000. DEVS as a Common Denomina-
tor for Multi-formalism Hybrid Systems Modelling.
IEEE International Symposium on Computer-Aided
Control System Design, ed. Varga, 129-134. IEEE
Computer Society Press. Anchorage, Alaska.

Vangheluwe, H. L., J. De Lara, and P. J. Mosterman. 2002.
An Introduction to Multi-Paradigm Modelling and
Simulation. In Proceedings of the 2002 AI, Simulation
and Planning in High Autonomy Systems, eds. Barros
and Giambiasi, 9-20. Lisbon, Portugal.

Vangheluwe, H. L., and J. De Lara. 2002. Meta-Models
Are Models Too. In Proceedings of the 2002 Winter
Simulation Conference, eds. Yücesan, Chen, Snow-
don, and Charnes, 597-605. IEEE Computer Society
Press. San Diego, CA.

Wild, R. H., and J. J. Pignatiello Jr. 1994. Finding Stable
System Designs: a Reverse Simulation Technique.
Communications of the ACM 37 (10), 87-98.

Traoré

Zeigler, B. P. 1976. Theory of Modelling and Simulation.

Wiley & Sons, N.Y.
Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory

of modeling and simulation. Integrating discrete event
and continuous complex dynamic systems. 2nd Ed.
Academic Press.

AUTHOR BIOGRAPHY

MAMADOU K. TRAORE is Associate Professor in
Computer Science at the Blaise Pascal University of Cler-
mont-Ferrand, France. His current research focuses on
multi-concept modeling and simulation. He can be con-
tacted by e-mail at <traore@isima.fr>, and his web
page is <http://www.isima.fr/~traore>.

http://www.isima.fr/~traore

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 604
	02: 605
	03: 606
	04: 607
	05: 608
	06: 609
	07: 610
	08: 611
	09: 612

