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ABSTRACT 

Analyses of benefits due to changes in the National Air-
space System (NAS) tend to focus on the delay reduction 
(or similar metric) given a fixed traffic schedule.  In this 
paper, we explore the use of simulation optimization to 
solve for the increased traffic volume that the proposed 
change can support given a constant delay.  The increased 
traffic volume as a result of the change can therefore be 
considered another benefit metric.  As the NAS is a highly 
nonlinear stochastic system, the technique required to 
compute the increase traffic volume necessarily requires 
stochastic optimization methods. 

1 INTRODUCTION 

Simulation is an often-used technique to evaluate the bene-
fits of planned improvements to the NAS. These improve-
ments include avionics upgrades, new arrival and departure 
procedures at airports, precision navigation using satellite 
technology, and many other technologies.  Improvements 
to the NAS, and the associated benefit assessment through 
simulation, is especially important given the future growth 
rates predicted for air transportation (Gentry 2003). 

In evaluating the benefits of planned improvements, 
the usual benefit metrics are expressed in terms of delay or 
throughput, or simple functions that combine the two.  It is 
quite common for a simulation scenario to be configured 
with a “before” and “after” case, and the change in delay, 
efficiency, and other metrics is computed.  Those tech-
nologies and procedures showing a measurable reduction 
in delay or increase in efficiency, while maintaining or in-
creasing safety, are candidates for implementation. 

In the canonical study of NAS improvements, the traf-
fic level is either held constant or grown to a volume that 
represents expected future air traffic growth, and then the 
before/after metrics are computed.  In this paper, we intro-
duce a technique that allows the value of the metrics to be 
held constant while computing the resulting traffic volume.  
 
In other words, this technique determines the volume of 
traffic with the new technology that produces the same de-
lay (or throughput or efficiency) that is observed with cur-
rent technology.  It answers the question, how much traffic 
growth can the proposed operational change handle? 

Determining the traffic growth that produces the same 
level of delay provides analysts an additional metric into 
the benefits of the proposed change.  In this paper, we will 
concentrate on the use of two different simulation optimi-
zation techniques (simulated annealing and simultaneous 
perturbation stochastic approximation) to answer this ques-
tion, and illustrate their use on a generic sample problem. 

2 PROBLEM FORMULATION 

For clarity, this paper will use delay as the fundamental 
metric for air traffic analysis.  In most benefits computa-
tions, traffic volume is input to the simulation while the de-
lay metric is output from it.  When computing the traffic 
volume that can be supported with a given level of delay, 
we are reversing these two variables: delay is input to the 
simulation, while traffic volume is the output. 

The problem is made more difficult because, for a 
given level of delay, the traffic schedule that can produce 
that delay is non-unique.  This fact arises in part because 
air traffic scheduling is closely tied to peak hours of activ-
ity during the day.  For example, system delay is virtually 
unchanged if more traffic is added to airports at 2:00 AM 
local time.  However, the same amount of traffic added to a 
major airport at 2:00 PM can produce a measurable in-
crease in system delay.  Consequently, the increase in traf-
fic volume has to be handled carefully, so as to reduce the 
spurious effects of scheduling policies on delay. 

To evaluate the traffic volume’s effect on system delay, 
we are using a new system-wide model developed by The 
MITRE Corporation’s Center for Advanced Aviation Sys-
tems Development (CAASD).  The model has a level of 
resolution mid-way between traditional system-wide models 
of the NAS (such as DPAT, NASPAC, LMINET) and more 
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detailed NAS emulations (such as TAAM).  Although de-
veloped as a sequential simulation, the  model is built using 
the latest simulation technology on the latest hardware. Its 
performance is reasonable: the simulation executes the 
72,000+ flights in this scenario in a few minutes. 

In this study, we configured the model to handle all 
domestic traffic within the continental United States, as 
well as all international arrivals and departures.  The top 31  
airports are constrained to limit the number of arrivals and 
departures they can handle per hour, based upon runway 
geometry, expected weather, aircraft fleet mix, and other 
factors. We call these 31 airports the modeled airports.  All 
other airports (those we call the unmodeled airports) are 
unconstrained with regard to their capacity. 

Among many other metrics, the model computes the 
arrival and departure delays for a given flight schedule.  
The arrival and departure delays are the model-computed 
length of time flights wait to use a runway.  The delay tar-
geting algorithm uses the average system delay metric.   
The average system delay is the mean of the arrival and 
departure delays for all flights using one of the 31 modeled 
airports. For simplicity, we will use the term “system de-
lay” to refer to this metric. 

  As flights are added to the schedule, the system delay 
generally increases, while removing flights from the 
schedule generally reduces the system delay.  In this study, 
we developed a method using simulation optimization to 
increase the system delay of a particular flight schedule by 
increasing the number of flights in that schedule. We call 
the target system delay value tρ  and the baseline system 
delay value .bρ   Because we want to keep the target sys-
tem delay within bounds, we require that the maximum de-
parture or arrival delay at any of the individual airports be 
less than the parameter .pρ    

3 THE SIMULATION  
OPTIMIZATION APPROACH 

Simulation optimization is the use of search methods to 
find input parameter settings that improve selected output 
measures of a simulated system (Boesel 2001).   The moti-
vation for doing simulation optimization is to support ana-
lytical studies that use simulation to study real world sys-
tems.  Applications of this technique include transportation 
systems, manufacturing systems, supply chains, call cen-
ters and finance (Fu 2001). 
 Most simulation optimization approaches include the 
following components: an objective function, a set of con-
straints, an optimization algorithm, and a simulation en-
gine.  The optimization algorithm attempts to find a mini-
mum or maximum value for the objective function.  The 
objective function is a wrapper for the simulation that 
translates parameters from the optimization algorithm to a 
configuration object that the simulation uses.  The objec-
tive function also gathers values from the simulation output 
to generate a single result.  The constraints define valid so-
lutions based on the objective function input parameters 
and/or results. 

3.1 Objective Function 

The simulation optimization strategy is expressed as a con-
strained stochastic optimization problem.  This problem 
has the following form: 

 
  (1) ( )min ,

G
L θ

∈θ

 

where  is the objective function of interest,  

is the parameter vector and  is the constraint set 
on .  In order to effectively execute the optimization, 

 needs to exhibit a global minimum for flight sched-
ules that produce an system delay value that equals 

( )L θ dθ ∈ℜ

t

dG ⊂ ℜ
θ

( )θL
ρ .  A 

simple relation that exhibits this behavior is: 
 

 ,t sρ ρ−  (2) 
 
where sρ  is the system delay produced by the simulation.  
The objective function also needs to be parameterized in 
some way on the simulation input.  Since we want to find a 
flight schedule that produces a minimum of relation (2), we 
map the objective function parameters,  to the flight 
schedule.  The mapping takes each element of  to repre-
sent the number of arrival or departure flights to add at a 
particular airport over the baseline schedule.  The total 
number of elements in  is: 

,θ
θ

θ
 

 2 ,An nθ =  (3) 
 
where An  is the number of capacitated airports and the fac-
tor of 2 accounts for the fact that we treat the number of 
arrival and departure flights separately.  Based on the use 
of 31 modeled airports, .  Each flight is a discrete 
unit; therefore, the range of each parameter element is the 
set of non-negative integers.   

62nθ =

Each new departure at one of the 31 modeled airports is 
created by cloning a randomly chosen departure flight from 
the baseline flight schedule and perturbing the departure 
time of the new flight by a random period of time. The arri-
val airport is set to one of the unmodeled airports. A similar 
procedure is used for arrivals.  This approach ensures that 
the original and resulting flight schedule will be structured 
similarly.  Flights during times of peak air traffic are more 
likely to be cloned than those during times of very low air 
traffic, and hence the resulting schedule will have “peaks” 
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and “valleys” similar to the original schedule.  Producing a 
similar schedule for a given level of system delay is an im-
portant requirement for these types of studies. 
 Since each realization of a particular traffic volume θ  
is created by a random process, a particular instance of θ  
will map to many different schedules. For example, if the 
traffic volumeθ  represents an increase of five flights at 
airport ,in  different realizations of the random selection of 
which five flights to clone will result in different traffic 
schedules. Each of these schedules will likely map to a dif-
ferent value for .sρ  This characteristic is important since 
randomness in the flight creation process will create noise 
in the objective function measurements.  The noisy objec-
tive function can be expressed as: 

 
 ( ) ( )t sy θ ρ ρ θ= −  (4) 
 
where ( )sρ θ  is the system delay produced by the simula-
tion for the associated values of .θ   The distribution of the 
noise and its dependency on θ  is unknown.   

Air traffic models tend to be non-linear with respect to 
changes in the flight schedule.  Because of this, the objective 
function will probably have many local optima (i.e. the func-
tion is probably non-convex).  Like the noise, the detailed 
mathematical nature of the objective function is unknown. 

3.2 Constraints 

The objective function requires that each element of θ  to be 
a non-negative integer.  This constraint is satisfied by a sim-
ple projection operator .θΨ   Solutions that satisfy the opti-
mization criteria by producing a large amount of system de-
lay at a small number of the capacitated airports while 
producing very little system delay at the rest of the capaci-
tated airports are unacceptable.  A solution should produce 
system delay at each airport that is bound within a certain 
reasonable range.  To address this issue we add a penalty 
constraint, ( ),P θ  to the objective function that penalizes so-
lutions which result in system delay values for individual 
airports that are greater than a threshold value .pρ  

3.3 Optimization Algorithm 

No single optimization algorithm has a general theoretical 
framework that addresses all of the characteristics of our 
particular objective function ( )y θ .  These characteristics 
are: (probably) non-convex, measurement noise, discrete 
and the use of a penalty function.  Since we will have to 
make some theoretical compromises with any algorithm, 
we tested two different algorithms on the optimization: 
fixed gain SPSA (simultaneous perturbation stochastic ap-
proximation) and τ  threshold SAN (simulated annealing).  
We choose the fixed gain version of SPSA (Gerencsér 
1999) because the values of θ  for this problem are defined 
on the set of non-negative integers, and fixed gain SPSA is 
designed for optimization on discrete sets.  Also, this is a 
fairly high dimensionality problem, 62nθ = , and the 
SPSA estimate of the gradient is efficient for high dimen-
sionality θ  relative to the standard finite difference proce-
dure.   We choose τ  threshold SAN since the τ  threshold 
is designed to deal with the effects of noise.  Also, this is a 
discrete problem and SAN was developed for discrete 
problems (Kirkpatrick and Gellatt 1981).   
 SPSA is a stochastic approximation algorithm that 
uses an estimate of the gradient based on a random pertur-
bation of two measurements per iteration.  The fixed gain 
version of SPSA assumes that ( )L θ , where θ  is defined 
on a discrete set, can be extended to a real valued version 
of ( )L θ .  The gradient estimate is defined for this real 
value extension.   SAN is a localized random search algo-
rithm that accepts inferior solutions with a non-zero prob-
ability.  SAN has a well-established global optimization 
theory, but can be slow to converge.  Table 1 describes the 
suitability of each of the algorithms to address each of the 
characteristics of ( )y θ  in terms of the available theory. 

 
Table 1: Suitability of Algorithms to Address Various 
Mathematical Characteristics of Objective Functions 

Algorithm Objective  
Function  
Features 

τ -SAN Fixed-Gain 
SPSA 

Non-convex General  
theory 

Theory for real 

Discrete General  
theory 

Theory for  
convex 

Noisy Limited  
theory 

General theory 

Penalty  
function 

No theory Theory for  
real-convex 

 
From Table 1 it is clear that both algorithms fall short of 
addressing all the characteristics of ( )y θ .  Based on a sim-
ple ranking that ignores the unknowns associated with  the 
theory for each algorithm, it appears that τ  threshold SAN 
is better suited to handle ( )y θ  than fixed gain SPSA. 

In addition to the difficult objective function charac-
teristics, the objective function is relatively time consum-
ing to evaluate because it requires a simulation run.  Each 
run of the simulation used to generate the results requires 
about 80 seconds, though this can be much longer for 
simulation configurations that include a large number of 
flights (on the order of many minutes).   This runtime lim-
its the number of iterations that can be performed in a par-
ticular time period. 
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The form of the penalty function used in the optimiza-
tion can have an impact on the performance of the optimi-
zation.  There is published theory on the use of penalty 
functions with SPSA on problems where the objective 
function is convex and the parameters are real valued 
(Wang and Spall 1999).  Since  is discrete and is 
probably non-convex, this theory does not directly apply.  
Despite the lack of a strong theoretical foundation for the 
discrete case we will use the method developed in Wang 
and Spall (1999). 

( )y θ

The penalty function we use for the SPSA optimiza-
tion has the following form: 

 

 ( )(1( ) max ,0 ,
0

n
P q

i

θ )β
θ

β
= ∑

=
θ  (5) 

 
where  is defined as: ( )q θ

 

 
( )( )( )

( ) .
s

i i pn
q

n

ρ θ ρ
θ

−
=  (6) 

 
The function ( )( )s

iρ θ  is the delay of all the flights arriving 
or departing from a particular airport (  is not a power but 
a superscript to indicate that this is simulation output),  
is the total number of arriving or departing flights at the 
particular airport and  is the total number of flights 
counted for delay calculations.  The  value 

s
ni

n
β  is taken to 

be one for all the runs in this work.  For the SPSA runs, the 
penalty constraint is scaled by an increasing sequence,  

of the optimization iteration index   This increasing se-
quence is suggested by the theory presented in Wang and 
Spall (1999).  The modified objective function with the 
penalty function has the following form: 

,rk
.k

 
 ( )( ) ( ) .t s ky θ r Pρ ρ θ= − + θ  (7) 
 
 We use the same penalty function given in (7) for the 
SAN optimization, but we do not scale the penalty function 
by the  sequence.  We chose not to include the  scal-
ing since SAN theory does not address the case where the 
objective function varies by iteration.  By removing the  
scaling factor the penalty function becomes part of the ob-
jective function.  This addresses the problem related to a 
lack of theory regarding the use of penalty functions with 
SAN (see Table 1).  

rk rk

rk

 Since  penalizes the addition of delay to the sys-
tem. while the core objective function relation, 

( )P θ

(t s )ρ ρ θ− , can reward the addition of delay,  there is a 
trade off between the effects of these factors on the objec-
tive function value.  The challenge for the optimization al-
gorithm is to find a value for  that minimizes θ

( )t sρ ρ θ−
(y θ

 yet keeps .  Since all the compo-
nents of  will always be positive or zero, the theoreti-
cal minimum for 

( ) 0P θ =
)

[ ]( )E y θ  is zero. 

3tρ =
7.5.pρ =

( )y θ
[cθ = … c

)X
(θ

( )θX s

[80,=

4 EXPERIMENT AND RESULTS 

The benchmark scenario has an system delay of 1.37 min-
utes.  The target system delay parameter was chosen to be 

 while the penalty function threshold was chosen to 
be  The goal of the optimization is to find the 
traffic volume that achieves an system delay of 3 minutes 
with a maximum departure and arrival delay of 7.5 minutes 
at the 31 modeled airports. 

4.1 Measuring Objective Function Noise 

To quantify the noise in the objective function, we com-
puted  five times using a trivial solution. All trivial 
solutions take the form ], ,  where c is a non-
negative integer value.  The results of these runs are shown 
in Table 2.   is the sample mean of  and (θ ( )y θ ( )s θ  is 
the sample standard deviation of . The measured 
noise level for the solutions chosen here varies quite a bit, 
but is less than 1% of the mean in all cases.   

)y

 
Table 2:  Results of the Six Trivial Solution Runs 

Values of θ  ( )θ  ( )( )s Xθ θ

5 1.606374 0.006091 0.003791 
10 1.591614 0.003598 0.002261 
20 1.542896 0.006754 0.004378 
40 1.461600 0.009288 0.006355 
80 1.222824 0.005143 0.004206 

 
 Given the results in Table 2, we used the starting solu-
tion ]0 ,80θ …  for all runs.  It is the trivial test solu-
tion with the lowest sample mean. 

4.2 SPSA Results 

One of the challenges with the SPSA runs was dealing with 
the constant step gain coefficient, a. The magnitude of the 
elements of many of the gradient estimates generated using 
the system delay target objective function are less than one.  
The fixed gain SPSA procedure described in Gerencsér 
(1999) uses the following fixed gain gradient estimate: 
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( ) ( )ˆˆ ˆz
k k k kg gθ = 

θ̂ 
 ) where  is the basic SPSA gra-

dient estimate and 

( ˆˆk kg θ

( 1 , , )px x =  x    and    … ix    indi-

cates the integer less than or equal to xi  and closest to ix .  

Based on this procedure, the product a g  would 

almost always be zero or a negative number regardless of 
the value of  since the elements of  will almost 

always be -1 or 0.  To avoid this limitation, the objective 
function  was scaled by a factor  before the floor 
operation was applied and the step gain was set to a .  
Another open issue was the choice for the scaling se-
quence, .   Since this should be a very slowly growing 
sequence, we tried the following relations: 

(ˆ z θ

( )k̂θ

))ˆ
k k(

ˆ z
kg

a′

a

( )y θ

kr

1=

1 3r k=k  and 

( )1 21 ln
2kr k= .  The latter sequence was used for the work 

done in Hutchison and Hill (2001). 
 Four different SPSA runs were computed overnight 
(approximately 12 hours), though no run managed to 
achieve more than 200 objective function evaluations.  All 
of the runs diverged  (i.e., the objective function value 
grew rapidly) after some number of well behaved itera-
tions.  A plot of the objective function value as a function 
of iteration for run 2 is shown in Figure 1.  Notice that the 
objective function value is reduced until iteration 45 and 
then starts to grow rapidly.  These high objective function 
values correspond to solutions that include a very large  
 

Table 3: Summary of SPSA Runs 
 a′  c  kr  Obj. Fcn. 

Value 
Run 1 500 1 1 3k  Diverged 
Run 2 1000 1 1 3k  Diverged 

Run 3 500 1 ( 1 21 ln
2

k )  Diverged 

Run 4 1000 1 ( 1 21 ln
2

k )  Diverged 
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Figure 1: The Objective Function Value as a Func-
tion of Iteration for SPSA Run Number 2. 
number of additional flights.  The large number of flights 
made the simulation runtime very long which made the av-
erage runtime/iteration for the SPSA runs quite long (on 
the order of many minutes). 
 All the divergent solutions violated the penalty con-
straint.  One problem may be that the step gain, , is too 
large.  If this is the problem it is not straight forward to ad-
dress because with  the run would often make no 
progress because the gradient estimate was often rounded 
to zero by the floor operation.  Another problem may be 
that the scaling sequence,  is too aggressive.  A more 
fundamental problem may be that the objective function 
violates one or more of the conditions required for conver-
gence of SPSA.  The most likely problem is that there is a 
fundamental theoretical limitation.   Recall from section 
3.3 that there is no published theory supporting the use of 
penalty functions with fixed gain SPSA on non-convex ob-
jective functions.  Wang and Spall (1999) noted that the 
estimate of the penalty function needs to be unbiased in or-
der to guarantee convergence .  In this work the gradient of 
the penalty function is estimated using the simultaneous 
perturbation technique which certainly has bias. 

a′

500a′ =

kr ,

4.3 SAN Results 

We applied a version of SAN that uses the Gaussian distri-
bution to generate candidate solutions at each iteration.  
The use of the Gaussian distribution requires a temperature 
schedule that decreases no faster than ( ) 0 log( )T k=T k , 
where  is the initial temperature (Spall 2003).  Each run 
was allowed 200 objective function evaluations (which is 
200 iterations).   All of the runs were able to reduce the ob-
jective function value by more than 50%, but none were 
able to satisfy the penalty constraint within the 200 itera-
tions.  The results for the Gaussian SAN runs are summa-
rized in Table 4.  The parameter 

0T

0gT  is the initial genera-
tion temperature while T  is the initial acceptance 
temperature.  The variance of the Gaussian generation dis-
tribution is determined by the generation temperature, 
while the Boltzmann-Gibbs state probability exponential is 
scaled by the inverse of the acceptance temperature.  We 
set the  value to 0.003 for all the runs.  The choice is 
based on the guidelines provided in Spall (2003).  We as-
sumed the system delay target objective function contains 
many local minima so we chose a positive value for  .   
We chose a magnitude of 0.003 because that value is on 
par with the measured standard deviation of the noise 
based on the data listed in Table 2 (section 4.1).  The re-
sults of three SAN runs are shown in Table 4 below. 

0a

τ

τ

 Because the results for the third run shown in Table 4 
were the most promising, we did two more runs with the 
“Settings 3” parameters from Table 4.  The average pro-
gress of the objective value of the current solution is plot-
ted in Figure 2.  The sample mean of the objective function 
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Table 4:  Summary of SAN Runs 
 

0gT   0aT  Variant Obj. fcn. 
value 

Settings 1 100 0.1 Gaussian 0.545 
Settings 2 225 0.1 Gaussian 0.399 
Settings 3 900 0.1 Gaussian 0.042 
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Figure 2: The Mean Objective Function Value of the 
SAN Solution for Three Runs with the “Settings 3” Pa-
rameters from Table 4. 

 
of the current solution at iteration 200 is 0.0776 and the 
95% confidence interval for the final objective function 
value is [ ]0.0254,0.1299 .   
 To get an idea of how well the penalty constraint was 
satisfied, we gathered data on the maximum departure and 
arrival delay at all the capacitated airports.  This sample 
mean of the iteration 200 current solution maximum delay 
at any airport is 9.900 and the 95% confidence interval for 
this value is [ ]7.864,11.94 .   The goal of the penalty con-
straint was to keep the maximum departure and arrival de-
lay below 7.5.  Clearly the sample mean of the maximum 
delay result does not satisfy this constraint, and both 
bounds of the 95% confidence interval are higher than 7.5.  
 The second run using the “Settings 3” parameters was 
allowed to run out to 500 iterations.  Figure 3 is a plot of 
the objective function value of the current solution, the 
candidate solution and the candidate maximum arrival or 
departure delay at any airport for this run.  It is clear from 
the plot that the maximum airport delay is making progress 
towards a solution that satisfies the penalty constraint.  The 
penalty constraint is first satisfied by a current solution at 
iteration 330.  The objective function value of the current 
solution at iteration 330 is 0.017. 

4.4 Overall Results 

Because the SPSA runs did not converge, we concentrate 
only on the SAN results here.   For each of the three runs 
using the settings in Table 4, the number of (arrivals, de-
partures) added to the schedule was: (4597, 4451), (5812, 
6047), (5539, 5738).  These volumes were distributed over 
the 31 modeled airports, although the details of that distri-
bution are not shown here (for space reason).   
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Figure 3:  Plot of Details for Run 2 using the “Set-
tings 3” Parameters from Table 4. 
 

 These three solutions differ in quality, as shown by the 
objective function values recorded in Table 4.  If these re-
sults were the result of an actual analysis of a NAS change, 
we might conclude that the change could support about 
4,000 to 6,000 additional flights, producing approximately 
the same system delay as before the change.  However, as 
the simulation optimization technology shown here is still 
under investigation, we have not yet used it for an actual 
NAS analysis. 

5 CONCLUSIONS 

The results for the  threshold SAN approach show prom-
ise while the constant gain SPSA method requires more in-
vestigation.  Based on the list of potential problems for 
constant gain SPSA in Table 1, this is not surprising.  SAN 
came to look even more promising than Table 1 suggests 
with the establishment (based on experiment) of the very 
low noise level and the merging of the penalty function 
into the objective function proper.  More runs of SAN will 
be required to gain confidence in the procedure. 

τ

The procedure is useful for an optimization savvy ana-
lyst who can save more time by tuning the objective function 
parameters than by solving the problem using alternate ap-
proaches.  However, this procedure is unlikely to become a 
turn-key solution for NAS analysis because each problem is 
unique and requires hand-tuning of the various parameters in 
the objective function. Despite the need to tune parameters, 
we expect that this procedure (or similar procedures) will be 
useful for future benefit metrics computation.   
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