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ABSTRACT

The stochastic root finding problem (SRFP) involves finding
points in a region where a function attains a prespecifie
target value, using only a consistent estimator of the func
tion. Due to the properties that the SRFP contexts entai
the development of good solutions to SRFPs has prove
difficult, at least in the multi-dimensional setting. This pa-
per discusses certain key issues, insights and complexiti
for SRFPs. Some of these are important in that they poin
to phenomena that contribute to the difficulties that arise in
the development of efficient algorithms for SRFPs. Other
are simply observations, sometimes obvious, but importan
for providing useful insight into algorithm development.

1 INTRODUCTION

The deterministic root finding problem is a well-researched
problem in mathematics. It involves a known function
g : Rq → Rq, a known targetγ ∈ Rq, and an unknown
root x∗ ∈ Rq. The problem is to determine the unique root
x = x∗, whereg attains the target valueγ . The targetγ
usually represents the desired level of a system’s performan
to be obtained by controlling the vector of inputsx. Several
famous and efficient numerical methods such as bisectio
search, Newton’s method and regula falsi (Conte and D
Boor, 1980) have been devised for the single-dimensiona
case (q = 1).

A generalization of the deterministic root finding prob-
lem is the comparatively less-known stochastic root finding
problem (SRFP) (Chen, 1994; Chen and Schmeiser, 1994
2001). Unlike the deterministic root finding problem where
the functiong is known to the researcher, in the SRFP a
consistent estimatorYm(x) of g(x) is all that is available.
This implies that the researcher may have to sample a larg
number of times to obtain an accurate valueg(x) for any
x in the domain ofg. SRFPs arise often in the control of
stochastic systems where a performance function (g) of the
system is known only through an oracle (e.g a simulator
or has a complex analytical form.
,

Formally, the SRFP is stated as follows (Chen an
Schmeiser, 1994b, 2001):

Given: (a) a constant vectorγ ∈ Rq and (b) a (com-
puter) procedure for generating, for anyx ∈ Rq, a
q-dimensional consistent estimateYm(x) of g(x).

Find: the unique rootx∗ satisfying g(x) = γ using
only the procedure.

Five useful criteria by which algorithms for SRFPs can
be evaluated are (1) numerical stability, (2) robustness, (
convergence, (4) computational efficiency and (5) the abilit
to report solution accuracy (Chen, 1994).Numerical stabil-
ity is a qualitative measure of the actual performance of th
algorithm when implemented on a digital computer. Thi
is by contrast to theoretical performance measures that d
count issues such as computer arithmetic and floating-po
representation.Robustnessis another qualitative measure
signifying how sensitive the algorithm is to the starting
values of the different parameters in the algorithm. A goo
algorithm should not be overly sensitive to parameter star
ing values so that the need for user tuning of paramete
becomes minimal. It is often easy to develop heuristics fo
setting algorithmic parameters so that a small class of pro
lems are solved efficiently. The objective however shoul
be the development of a ‘black-box’ algorithm that will
perform well across a wide range ofg functions without
having to specially set algorithmic parameters.Convergence
refers to asymptotic convergence in some probability me
sure. Although convergence is a measure that may not
indicative of the finite-time performance of the algorithm
an algorithm that guarantees convergence is more desira
than one that does not.Computational efficiencyis the
tradeoff function that will be used to relate solution quality
with the amount of computing effort involved. It can be
measured as E(work× squared error) with smaller values
indicating higher efficiencies. This measure is useful in
that it measures both the finite and asymptotic performan
of the algorithm in terms of the solution quality and the
effort expended (in terms of computer time) in obtaining th
solution. A related issue is the estimation of the solutio
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accuracy during each iteration. On account of randomn
in the estimator ofg, the solution at each stage is itse
random. If the current solution isXi and the true root is
x∗, a useful measure of accuracy is the mean squared e
E(Xi −x∗)2. Of the two components, variance Var(Xi ) and
squared bias E2(Xi − x∗) that make up the mean square
error, methods for estimating Var(Xi ) can be designed. The
bias, however, is often inestimable. Researchers thus r
tinely use Var(Xi ) as the sole measure of accuracy of th
current solution. If the bias is substantial (often due
the non-linear nature ofg) and persists over an extende
number of iterations, variance may be a poor measure
accuracy.

SRFPs form an important class of problems that h
direct application in a wide variety of disciplines includ
ing statistics, operations research, transportation syste
engineering, telecommunication systems engineering a
aerospace engineering. The context is usually performa
control or optimization in a stochastic setting (Spall, 1999
To this extent, efficient algorithms, as measured by the c
teria stated, are important, but they have been difficult
design in the multi-dimensional context.

2 ISSUES

The objective of this paper is to discuss certain key issues
the context of SRFPs. Some of these issues are importan
that they point to phenomenathat contribute to the difficulti
that arise in the development of efficient algorithms fo
SRFPs. Other issues discussed are simply observati
sometimes obvious, but important nevertheless because
may provide useful insight into algorithm development. Th
issues are broadly classified as (i) Problem Interpretati
(ii) Nature of g, (iii) Dimensionality and (iv) Stochasticity.

2.1 Problem Interpretation

One useful way of looking at the general SRFP equati
g(x) = γ, g : <q → <q, γ ∈ <q is as a nonlinear system
of equations:

g1(x1, x2, . . . , xq) = γ1

g2(x1, x2, . . . , xq) = γ2

... (1)

gq(x1, x2, . . . , xq) = γq

where gi : <q → <, γi ∈ <. Let Ei represent the set
of solutionsx that solve thei th equationgi (x) = γi , x ∈
<q, i ∈ {1, 2, . . . , q}. Clearly, Ei ⊂ <q. Then the set of
solutions to the non-linear system is

E∗ =
q⋂

i=1

Ei .
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The setsEi present an interesting contrast between
linear and nonlinear systems. If thegi are linear, then each
Ei is either empty, has exactly one element or has infinite
number of elements (in fact,Ei can have one element only
if q = 1). From linear algebra, it is also true that their
intersectionE∗ possesses the same property —E∗ is either
empty, has exactly one element or has infinite elements.

By contrast, when thegi are nonlinear, the constituent
solution setsEi can each have any number of elements
Likewise, their intersectionE∗ can also have any number
of elements.

SRFPs require the solution of the non-linear system (1
but the functionsgi in (1) are not observable. This is why
many current methods (Chen and Schmeiser, 2001; Spa
1999; Andradóttir, 1990) for SRFPs repeatedly construc
and solve an approximate non-linear system during eac
iteration:

Y1,m(x1, x2, . . . , xq) = γ1

Y2,m(x1, x2, . . . , xq) = γ2

... (2)

Yq,m(x1, x2, . . . , xq) = γq

where eachYi,m is a random variable.
It is instructive to think of (2) as a deformation of (1).

The extent of this deformation is explicitly dependent on
the sample sizem. Larger sample sizes deform (1) lesser
in the sense that for eachx

lim
m→∞ Ym(x) = g(x), a.s.

Therefore, under weak conditions,

lim
m→∞ Y−1

m (γ ) = g−1(γ ), a.s.

It is in this sense that SRFP solution methods that pro
gressively solve (2) using increasing sample sizes (e.g
retrospective approximation methods) can be thought o
as homotopymethods (Allgower and Georg, 1990; Todd,
1976) for stochastic root finding.

2.2 Nature of g

In all of algorithm design there is a trade-off to be made
between algorithm efficiency and applicability. Applicabil-
ity is decided by the nature of assumptions made on th
constituent function(s) defining the problem class. Stronge
assumptions afford the development of better algorithms bu
often decrease applicability. Likewise, weaker assumption
while increasing the size of the applicable problem clas
inhibit the development of efficient algorithms.
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In the context of SRFPs, the assumptions aboutg
predominantly decide the size of the applicable proble
class. Some form of continuity assumption (ranging from
continuity at the root to continuous-everywhere) ong seems
necessary to devise algorithms that are applicable in practi
This is because lack of any guarantee about continuity mea
functional estimates at different points in the domain ofg
leave no clues about the location of the root.

Even continuity over the entire domain is not sufficien
to guarantee that any specific algorithm will have goo
finite-time performance on every instance in its problem
class. In other words, given any algorithm, it is easy t
construct continuous-everywhereg functions for which the
algorithm converges arbitrarily slowly.

Several works on the single-dimensional SRFP, includ
ing the original work by Robbins and Munro (1951), assum
monotonicity of g. Monotonicity, an assumption that ap-
pears strong, is actually quite reasonable for many settin
in which SRFPs arise. For example,g can be argued to
be monotone in many single-dimensional SRFP motivatin
contexts (Chen and Schmeiser, 1994a, 1994b). Monoto
icty, in combinationwith some sort of continuityassumption
is useful because it affords the design of efficient searc
algorithms that make intelligent movement decisions bas
on functional estimates at different points.

Differentiability of g, on the other hand, seems like a
debatable assumption and depends on the specific cont
in which the SRFP arises. Ifg is differentiable, it is easy to
improve the asymptotic efficieny of any convergent searc
algorithm. This is often done by switching the searc
scheme in the algorithm to a technique such as the sec
method as soon as searching evolves to a region close
the root. ‘Close to the root’ is often difficult to quantify,
however, in any rigorous and verifiable fashion.

2.3 Dimensionality

Developing algorithms for general SRFPs (q ≥ 1) seems to
present some additional challenges as compared to the sin
dimensional context. This is primarily because searching f
solutions in a single dimension (<) may proceed only in one
of two possible directions (right or left). By contrast, there
are infinitely many potential directions when searching i
<q, q ≥ 2. This issue lies at the heart of many convergenc
and algorithm-efficiency related complications that arise i
the multi-dimensional context.

For example, interpolation is a concept that is routinel
used in single-dimensional search algorithms. Interpolatio
in a single dimension is usually preceeded by the iden
fication of an interval (called abounding region) whose
end-points straddle the targetγ . This concept of bounding
the target using functional values is useful in the following
e.
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sense: ifg(x1) and g(x2)(g : < → <, x1, x2 ∈ <) bound
the targetγ ∈ <, i.e if

(g(x1) − γ )(g(x2) − γ ) < 0,

then assumingg is continuous,x1 andx2 bound the rootx∗
(from the intermediate value theorem). An interval(x1, x2)

containing the root is thus identified in the process.
For the multi-dimensional case, however, the form of

the bounding region is unclear. It could be any closed regio
such as a cube, a simplex, a sphere or any irregular clos
object that contains the target.

More importantly, bounding the target is not as helpful in
the multi-dimensional case as it is in the single-dimensiona
case. As Figure 1 suggests, bounding the target using a
object such as a simplex does not automatically imply tha
the root x∗ has been bounded. This is because function
have much moredirectional freedomin <q as compared to
<.

Another example that illustrates the lack of seamles
transition from single to multiple dimensions arises in the
context of the assumptions ong. It was argued in Section 2.2
that in a single dimensiong can be assumed to be monotone.
While being reasonable, the assumption helps immensely
the development of efficient search algorithms. It is unclea
however, as to what the corresponding assumption woul
be in a multi-dimensional setting.

2.4 Stochasticity

In an SRFP (unlike deterministic root-finding problems),
accurate functional estimates ofg(x) are not readily available
(without computational cost) to the algorithm. As a result,
an algorithm that attempts to search for the true root b
obtaining clues from functional estimates must explicitly
account for randomness. Thus, an intelligent algorithm
would base its search direction decisions on a probabilit
model that includes the nature of the estimator ofg.

Another feature that warrants careful consideration in
the design of algorithms for the solutions to SRFPs is th
choice of sample size across iterations. The sample-sizin
issue is central to the classic trade-off between computa
tional efficiency and solution accuracy. The sequence o
sample sizes across iterations,{mi }, should be such that
lim i→∞ mi = ∞ (otherwise, the sampling error associated
with a finite sample size will restrict asymptotic solution
quality). Furthermore, it is also natural that the sequenc
{mi } should be chosen to be increasing so that the varianc
of the solutions obtained reduce across iterations. What
not obvious, however, but critical in terms of computing
effort, is the actual sequence of sample sizes{mi } to be
used.
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3 SUMMARY

SRFPs are an important class of problems that has fou
application in a wide range of areas. Recently, seve
algorithms have been developed and solve SRFPs efficien
in the single-dimensional context. The problem in multip
dimensions, however, seems to pose some challenges.
is in part because there seem to be no obvious mu
dimensional analogues to some assumptions aboutg (such as
monotonicity) that single-dimensional algorithms routine
make. In addition, there seems to be a lack of analogues
useful single-dimensional search concepts such as bound
and bisection. Further investigation in these areas m
be useful in the design of numerically stable, robust a
computationally efficient algorithms for general SRFPs.
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