
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

QUEUEING-NETWORK STABILITY: SIMULATION-BASED CHECKING

Jamie R. Wieland
Raghu Pasupathy

Bruce W. Schmeiser

School of Industrial Engineering
Purdue University

West Lafayette, IN 47907, U.S.A.

le
l
e
-
m
m

,

e
t

e
g

o

a

-
,
e
e

at
—
n.
y
to

en
uf-
s
n-
ival
ity
ld
-

d

d
es
ut
g
he
is
e
it
ge
ate

nd
g
e

at
e
ks
g

cal
ABSTRACT

Queueing networks are either stable or unstable, with stab
networks having finite performance measures and unstab
networks having asymptotically many customers as tim
goes to infinity. Stochastic simulation methods for es
timating steady-state performance measures often assu
that the network is stable. Here, we discuss the proble
of checking whether a given network is stable when the
stability-checking algorithm is allowed only to view arrivals
and departures from the network.

1 THE STABILITY-CHECKING PROBLEM

Given only simulation code of a queueing-network model
we consider the problem of developing a statistical algorithm
to check whether the network isstable. Informally, stable
means that the network behavior does not explode in th
limit as time goes to infinity. Note that this problem is abou
long-run network equilibrium, not initial-transient bias of
point estimators.

1.1 Motivation

The need for checking network stability using simulation
arises in two contexts. In the first context, the network
is being simulated to estimate time-average performanc
measures. In the second context, the network is bein
probabilistically analyzed to determine whether stability
exists, and simulation is used as an empirical guide t
obtain insight.

In the first context, simulation practitioners often as-
sume that the network is stable. Here, the purpose of
stability-checking algorithm is to protect the practitioner
when stability is not present. When a simulation run un
expectedly ends with an ‘out-of-memory’ error message
the practitioner needs to decide whether to provide mor
memory—perhaps the computational requirements for th
e

e

simulation run were underestimated—or to conclude th
the network is not as intended and is in fact unstable
possibly due to coding error or parameter misspecificatio
When a long-run simulation ends without error, a stabilit
check could alert the practitioner if the network appears
be unstable.

In the second context, probability researchers have be
active during the last decade in studying necessary and s
ficient conditions for network stability. This research ha
flourished since the discovery that a network can be u
stable even though every station has instantaneous arr
rate less than instantaneous service rate (traffic intens
less than one). Having a simulation-based algorithm wou
improve the efficiency of analyzing networks, because sim
ulation experimentation can provide empirical insight an
conjectures.

Dai and Meyn (1995), Banks and Dai (1997), an
Sharifnia (1997) simulate networks to develop conjectur
about the stability of multiclass queueing networks, b
they do not develop statistical decision rules for classifyin
networks as stable or unstable. Banks and Dai plot t
expected customer time in the network and show that it
increasing linearly over time. Sharifnia plots the averag
number of jobs in the network, and also shows that
increases linearly over time. Dai and Meyn plot the avera
queue lengths at each station and show that they oscill
with increasing magnitude.

1.2 Organization

This paper is organized as follows. In this section, terms a
notation are defined, followed by five criteria for comparin
stability-checking algorithms and a discussion about th
definition of network stability. Section 2 covers issues th
make determining stability difficult. Section 3 contains thre
properties that are fundamental to all queueing networ
and therefore might form the basis for a stability-checkin
algorithm. Section 4 compares simulation and mathemati

Wieland, Pasupathy, and Schmeiser

e
an
ta
s

s
th
e
,
se
of

re
fo

o

-
.
s
ce
to
of
of
er

e
s,

ns

e

al

th
r
er
els
ill

n

l
p-

n
is
ror

n

l,

if

le,

le
nt
m

analysis for checking stability. Section 5 contains som
thoughts about algorithm design. Section 6 presents
example stability-checking algorithm based on batching da
from a long-run simulation experiment. Section 7 contain
conclusions and thoughts about future research.

1.3 Terms and Notation

A queueing-network model has, by definition, customer
arriving and departing across a boundary that separates
network from the outside world. For every non-negativ
time t , let A(t) denote the number of customer arrivals
D(t) denote the number of customer departures. From the
fundamental counting processes, and the initial number
customersN(0), at any timet the number of customers in
the network

N(t) = N(0) + A(t) − D(t)

can be computed, as can the utilizationU(t) = I (N(t) > 0),

where I is the indicator function.
We assume that, from the given simulation code, the

is available a realization of these output-data processes
any interval of time[0, τ], whereτ is the simulation run
length. Based on this one realization, our problem is t
check whether the network is stable.

Several stability-checking problem instances can co
exist in a single network model and a single simulation run
All of these output-data processes can be indexed by cu
tomer type and network boundary. In this case, each choi
of customer and each choice of network boundary leads
a different problem instance. For example, the number
priority customers might be stable despite the number
other customers being unstable. Similarly, the first serv
might be stable despite other servers being unstable. W
write as if there is only one problem instance; nevertheles
having the simulation collect output data for each problem
instance allows individual, although dependent, conclusio
for each instance.

1.4 Criteria for Comparing Algorithms

Given the simulation code for a network model, from which
output-data processesA(t), D(t), N(t), andU(t) can be
obtained for the time interval[0, τ], we wish to develop
algorithm(s) to check whether the network is stable. Th
fundamental output of the algorithm is binary; we arbitrarily
say the output isC = 0 if the algorithm chooses stable and
C = 1 if the algorithm chooses unstable.

We consider the following five criteria for comparing
stability-checking algorithms.

1. Applicable to many network models. Ideally, the
algorithm performs well regardless of network
specifics.
e

r

-

2. Easy (or no) algorithm tuning; that is, little (or no)
human effort.

3. Fast to compute. Simulation requiresO(τ) com-
puting. A stability-checking algorithm that is
slower thanO(τ) takes additional computing time
that would be better used to produce addition
simulation output data.

4. High probability of correctly classifying (PCC) the
network; that is, P(C = 0) is high for a stable model
and P(C = 1) is high for an unstable model. PCC
depends upon both the given model and run leng
τ . Whether the algorithm is correct for a particula
practitioner is dependent upon the random-numb
seed chosen by the practitioner, but unstable mod
that are close to being stable (and vice versa) w
require a long run lengthτ . For a model that is
known to be stable, an algorithm developer ca
use Monte Carlo simulation estimate PCC with

PCC=
∑m

j =1 Cj

m
,

where Cj is the value returned by the stability-
checking algorithm for thej th simulated practi-
tioner. Similarly, for an unstable model

PCC=
∑m

j =1(1 − Cj)

m
.

5. The final criterion is the ability to provide a usefu
confidence statement to the practitioner. One a
proach is to report̂PCC, an estimated value of PCC
for the given model and output-data realization. A
algorithm developer can assess the quality of th
confidence statement with the mean squared er
(mse)

E[(P̂CC−PCC)2] = Var[P̂CC]+bias2[P̂CC, PCC],

which can be estimated by Monte Carlo simulatio
with

m̂se=
∑m

j =1(P̂CCj − PCC)2

m
.

We discuss these criteria in terms of a class of trivia
and unreasonable, coin-flipping algorithms,AC(α). The
algorithm flips a coin that has probability 1− α of head
and α of tail and classifies the given network as stable
head appears and unstable if tail appears. Ifα = 0 this
always-stable algorithm concludes that the network is stab
regardless of the given network and realization. Ifα = 1/2,
this fair-coin algorithm concludes that the network is stab
half the time and unstable half the time, again independe
of the network and realization. The always-stable algorith

Wieland, Pasupathy, and Schmeiser

e

g

-

ic
le
e

a

el

e,

s.
e

,
e

-

th
e-
s-

is
g

e
t

ls

-
al.

rs
c-

s

s

y

ed
ht

ers.
applies to any model, requires no tuning, and is fast, so th
first three criteria are satisfied. (If the fair-coin algorithm
is viewed as a special case of the class of coin-flippin
algorithms, the value ofα needs to be determined; this
process of determining the value is algorithm tuning.)

Criterion 4 is more interesting. The fair-coin algorithm
AC(1/2) has PCC= 1/2 for all models and all realiza-
tions, regardless of run length. The always-stable algorithm
AC(0) has PCC= 1 for every stable model and PCC= 0
for every unstable model, regardless of the model and re
alization. Figure 1 shows PCC for two algorithms—the
fair-coin algorithmAC(1/2) andAC(0.05)—as a function
of some change in the model parameter such as the serv
rate in a time-homogeneous single-server queue. Stab
networks are on the left and unstable are on the right. Th
AC(0.05) values of PCC are 0.95 for stable models and
0.05 for unstable models. The fair-coin algorithmAC(1/2),
which is not reasonable, demonstrates that a reasonable
gorithm has PCC> 1/2 for most models. (A reasonable
algorithm does not, however, need PCC> 1/2 for every
model, because the cost of classifying an unstable mod
as stable might be quite different from classifying a stable
model as unstable.) In general, the higher the PCC curv
the better the algorithm.

Figure 1: PCC Curve for Coin Flip AlgorithmAC

Criterion 5 is not as fundamental as Criterion 4, but
good statistical algorithms provide confidence statement
Here the fair-coin algorithm is better than the always-stabl
algorithm: AC can report, exactly, its PCC value, while
AS does not know whether its PCC value is zero or one
since it does not know whether the given network is stabl
or unstable.

1.5 Defining Network Stability

When comparing stability-checking algorithms,stability
must be defined precisely. With such a definition, a stability
checking algorithm’s PCC is defined for a given model and
run lengthτ .
e

l-

Various definitions have been used, based on bo
sample-path behavior and moment behavior. For tim
homogeneous networks, Dai (1996) has the number of cu
tomers diverging to infinity with probability one as the
definition of an unstable network. An example definition
for a stable network, used by Dai and Jennings (2003),
the long-run instantaneous input rate of the network bein
equalled by the long-run instantaneous output rate.

As a practical matter, a model that is stable under on
definition is likely to be stable under another definition, bu
for many pairs of stability definitions there is a set of mode
for which the classification differs. Simulation practitioners
will seldom want to choose their own stability definition,
while probabilists may need to be more careful.

The definition of stability requires some additional con
sideration when the network input parameters are season

Let γ (t) denote the queueing network input paramete
(e.g., arrival rates, service rates), which is a vector of fun
tions defined for all non-negative timest . The parameters
are time homogeneousif γ (t) is constant over time. The
parameters areseasonalif there is a constant timeδ so that
γ (t) = γ (t + kδ) for every non-negative integerk. The
parameters aretime-heterogeneousif γ (t) is allowed to be
any arbitrary function oft .

We do not consider models with time-heterogeneou
input parameters, because if the model parametersγ (t) can
change arbitrarily after timeτ , then no finite run lengthτ is
sufficient to reach a conclusion about network behavior a
time goes to infinity. The data observed during[0, τ] must
be representative of network behavior after timeτ . Ideally
the process observed during[0, τ] is identical to the process
after τ . The initial-transient issue is a typical reason wh
[0, τ] is only representative rather than identical.

To consider stability of seasonal models a time-averag
definition is reasonable, since the number of customers mig
not explode and yet

lim
τ→∞ E(N(τ))

does not exist. As a working definition, we define stability
based on the time-averaged expected number of custom
That is, a network isstableif

lim
τ→∞

∫ τ

0

E(N(t))

τ
dt

is a finite constant, sayθ . We use this definition because
of our simulation orientation. A long-run simulation ex-
periment of lengthτ naturally estimates the performance
measureθ with the point estimator

θ̂ =
∫ τ

0

N(t)

τ
dt.

Wieland, Pasupathy, and Schmeiser

d

o
n

e
ta
n

c
r

-
u
th

e
d
)

-
e
,
m
n

s
d

h
s
y
ly
e-
er

-
rk)
is
the
t
.

-
l

l-
g

y
le,
lt
g

ec-
al
e
e
k’
s
e
,

s
es
rs
t

-
ast
s.

l

If the value of the performance measureθ is not finite, then
trying to estimateθ using simulation makes no sense, since
simulation point estimates are always finite.

Alternatively, and probably with little change in any
resulting algorithm, we could define stability as requiring
that θ̂ goes to a finiteθ with probability one. With either
definition, the observed value ofθ̂ will play a central role
in any reasonable algorithm.

Leibniz’s Rule applied toθ shows that any seasonal
model that is stable under the time-average expecte
number-of-customers definition satisfiesλN = 0, where

λN = lim
τ→∞

E(N(τ))

τ

is the time-averaged rate of change of the expected number
customers. For seasonal models, this condition is equivale
to λA = λD , where

λA = lim
τ→∞

E(A(τ))

τ

and

λD = lim
τ→∞

E(D(τ))

τ
.

Notice that for stable seasonal modelsλA = λD , de-
spite the instantaneous arrival rate not being equal to th
instantaneous departure rate. In general, the choice of s
bility definition for seasonal models needs to depend upo
time averages rather than instantaneous rates.

2 DIFFICULTY IN ESTABLISHING STABILITY

Until the past decade, it was thought that having traffi
intensity less than one at every network station (we refe
to this as theusual traffic condition) was sufficient for
establishing stability of queueing networks, where traffic
intensity is the ratio of the effective arrival rate to the service
rate at a given station. This condition does hold for single
class networks and single-server multiclass networks, b
several counterexamples have been presented that show
the usual traffic condition is not sufficient for establishing
stability in multi-server multiclass queueing networks. Som
counterexamples can be found in, for example, Kumar an
Seidman (1990), Rybko and Stolyar (1993),Seidman (1994
and Bramson (1994a, b).

These counterexamples illustrate that stability is af
fected by factors other than the traffic intensity. Thes
network factors include network routing, scheduling policy
differences in service rates between classes at the sa
server, and dependence among arrival, service, and routi
processes.

A common element in many of these counterexample
is inefficient use of resources. For example, Banks an
-

f
t

-

t
at

,

e
g

Dai (1997) simulate the Bramson (1994a) network, whic
is a multiclass two-station network with re-entrance. Thi
network has the traffic intensity of 0.90, scheduling polic
FIFO, and the respective station utilizations of approximate
0.76 and 0.85. These low utilizations are unexpected b
cause the scheduling policy is non-idling and the numb
of customers in the network is consistently growing with
time (run length is 100,000 customer departures).

From a simulation perspective, we take a slightly differ
ent view on counterexamples (such as the Bramson netwo
that are unstable despite the fact that the traffic intensity
less than one at each station. Rather than saying that
usual traffic condition is not sufficient for stability, say tha
the effective arrival rate is affected by the network factors
Although calculating analytically the effective arrival rate
might be difficult, simulation algorithms need only to es
timate the effective arrival rate. With this view, the usua
traffic condition for stability still holds.

The implications of these counterexamples are as fo
lows: (1) If the network factors are fundamental in causin
instability, the most efficient way to stabilize the network
may not be obvious. In fact, adding service capacity ma
not be necessary to achieve stability. (See, for examp
Kumar and Seidman (1990) or Sharifnia (1997)). This resu
is also reinforced by Dai (1996) who shows that increasin
the service rate for a given class of customers does not n
essarily stabilize a multiclass network because the glob
stability region is not monotone with respect to the servic
time vector. (2) Utilization is not necessarily representativ
of stability because unstable networks can have ‘bottlenec
servers with low utilization. The problem, however, doe
not result from too little service capacity, but rather th
network factors. (3) When scheduling priority customers
instability can result if the first customer class is alway
prioritized over the second class with no corrective measur
in place for situations where the second class of custome
consistently accumulates for long periods of time withou
receiving service.

3 WHAT IS FUNDAMENTAL?

The following three queueing-network properties are fun
damental in assessing whether a network is stable, at le
if stability is based on time-average number of customer

3.1 Subnetworks

A network is stable if all, says < ∞, stations within the
network are stable. IfNi (t) is the number of customers in
queuei at time t , then N(t) = ∑s

i=0 Ni (t). Therefore, if
any Ni is unstable, thenN is unstable. The converse is also
true, in that if N is unstable, then one or more individua
stations are unstable.

Wieland, Pasupathy, and Schmeiser

e

e
h

s

,
e

e

te

If

fo
-
ty
s
h

th
t

s

rk,
ds
e,

be
n
t

ed
th
e
le
r;

s
an

n-
,
ten
s

y
ns
ths
er
e

n
a
to
m

-
er

f-

s

3.2 Little’s Law

Stability-checking algorithms can be based on either numb
of customers or customer times in the network. Little’s
Law is usually written asL = λW for a time-homogeneous
network, withλ being the instantaneous arrival and departur
rate for a stable network. The time-average analogy, whic
includes seasonal models, is

L = lim
τ→∞

∫ τ

0

E(N(t))

τ
dt

and therefore

W = L

λA

defines a time-averaged mean time in the network. A
always with Little’s Law, the result can be applied to the
network model as a whole or to any part. If, however
time-homogeneous data are collected from a seasonal n
work model everyδ time units, then collecting number of
customers is well defined, whereas collecting times in th
network is not.

3.3 Linear Growth

For seasonal and time-homogeneous networks with

lim
τ→∞

E(A(τ))

τ
= λA

and

lim
τ→∞

E(D(τ))

τ
= λD

the expected number of customers has linear growth ra
with asymptotic slope

λN = λA − λD.

This result holds for both stable and unstable networks.
the network is stable,λN = 0. If the network is unstable,
λN > 0. Therefore, a stability-checking algorithm could
base its answer on an estimate ofλN . From Little’s Law,
the expected time in the network also grows linearly.

4 DISADVANTAGES OF SIMULATION
FOR CHECKING STABILITY

Both the simulation and analysis approaches are useful
determining network stability. The analytical approach con
siders a class of network models, answering with certain
whether the class is stable, or providing no answer becau
the network class is intractable. The simulation approac
considers a particular network, always answering, but wi
some associated sampling-error uncertainty. Compared
probability analysis, using simulation to check stability ha
r

t-

r

e

o

the advantages that it applies to any queueing netwo
it always provides an answer, and the practitioner nee
only to provide a simulation code. There are, of cours
disadvantages.

For three reasons, a simulation-based algorithm can
wrong, concluding that the given network is stable whe
it is unstable, and vice versa. First, the initial transien
can make the data collected from[0, τ] appear unstable,
especially whenN(0) is much smaller than the expected
number of customers. Second, data from heavily load
stable networks have high autocorrelations, so the run leng
τ must be quite large to estimate long-run performanc
measures. Third, sample paths for a heavily loaded stab
network and and a barely unstable network are quite simila
no discontinuity occurs, for example, in M/M/1 models a
traffic intensity increases from less than one to greater th
one.

Another disadvantage is that, because a simulatio
based algorithm is correct only some fraction of the time
a confidence statement is required. Such statements of
are true only asymptotically and, even if the assumption
hold, are easily misunderstood by the practitioner.

Finally, simulation seems to be restricted to stabilit
definitions based on rates and moments. Stability definitio
based on asymptotic almost-sure bounds on sample pa
are tractable only with mathematical analysis. On the oth
hand, the first-order stability definition, based on averag
number of customers directly can be extended to

θk = lim
τ→∞

∫ τ

0

E(Nk(t))

τ
dt,

for positive integersk, allowing stability to be based (for
example) on the variance of customer numbers.

5 ALGORITHM CONSIDERATIONS

The stability-checking problem assumes that a simulatio
code is given for the network model of interest. To obtain
particular stability-checking problem instance, we need
have three additional types of information about the proble
context.

First, is a definition of stability to be specified? A rea
sonable default definition is that the time-averaged numb
in the network has finite limitθ .

Second, is the run lengthτ fixed? For a simulation
practitioner whose experiment has ended with an ‘out-o
memory’ error message,τ is fixed. For a researcher who
is investigating stability issues,τ can be chosen, with the
option of increasing the run length to obtain better algorithm
performance.

Third, is the length of the network seasonality,δ, known
to the algorithm? If the network is time-homogeneous, doe
the algorithm know? Asymptotically, many algorithms will

Wieland, Pasupathy, and Schmeiser

,

-

d

e
n

l

d

-

n

e

nd

ns:

lt

st,
e-
,

to

e
al

f

al

ing
is

ue,
perform the same with or without seasonality knowledge
but for short run lengthsτ , seasonality knowledge should
help an algorithm.

Now, given a problem instance, a specific stability-
checking algorithm can be designed. There are at leas
three high-level design decisions to be made.

First, the algorithm can take either a Bayesian or fre-
quentist framework. Ideally, the algorithm should be able
to reflect the prior probabilities of whether the network is
stable or unstable, which favors a Bayesian approach. Ad
ditionally, the algorithm should be able to reflect the costs
of incorrect classifications, both concluding stable for an
unstable network and vice versa, which either framework
can do.

Second, the algorithm can be based on either numbe
in the network or times in the network (or possibly both).
Law (1975) shows that direct estimation ofL or of W
is less efficient than estimating mean queueing time, an
then indirectly estimatingL and W. Law considered only
single-station networks, but the same statistical advantag
can be obtained in general networks by estimating mea
time in the network by substituting mean service time for
observed service time. If the assumption that the simulation
code is given is taken literally, however, so that only the
processesA, D, andN are observed, indirect estimation is
not possible.

Third, the algorithm can use data from the entire network
or data from individual stations. If ans-station network has
only one station that is unstable, then the instability signa
from that station alone will be easier to detect than from
the aggregate network.

6 A STABILITY-CHECKING ALGORITHM

To illustrate the key issues in designing a simulation-base
stability-checking algorithm, we present an example fre-
quentist algorithm,AB. This algorithm is based on estimat-
ing the time-average network growth rate,λN = E(N(τ))/τ ,
with batching used to estimate sampling error. The algo
rithm is based on classical hypothesis testing, with null
hypothesisH0: λN = 0 and alternative hypothesisH1:
λN > 0. That is,H0 is that the network is stable andH1
is that the network is unstable. This algorithm is presented
with no computational results or claim of particularly good
performance; rather it is to serve as a basis for discussio
of algorithmic issues in Section 6.2.

6.1 Algorithm AB

Given: Observed output dataN(t) for 0 ≤ t ≤ τ .
Step 0. Choose a number of batches,b, with a default

value ofb = 10. Choose a nominal probability of
type I error, with a default value ofα = 0.05.
t

r

Step 1. For each batchj = 2, . . . , b, compute the
batch observation

λ̂N, j =
∫ j τ/b

(j −1)τ/b

N(t)

τ/b
dt,

the time-average number in the network during th
j th batch.

Step 2. Compute the difference between the last a
second batch observations:

λ̂N = λ̂N,b − λ̂N,2

Step 3. Compute the variance of the batch observatio

s2 =
∑b

j =2 λ̂2
N, j − bλ̂2

N

b − 2
.

Step 4. Conclude unstable if and only ifH0 is rejected;
that is, reject whenever

λ̂N√
2s

> t1−α,b−2,

where t1−α,b−2 is the 1− α Student-T quantile
with b − 2 degrees of freedom. (For the defau
values ofb = 10 andα = 0.05, t1−α,b−2 = 1.86
and stability is rejected if̂λN > 2.63s.)

6.2 Critique of Algorithm AB

How does AlgorithmAB fare in terms of the five criteria
for comparing algorithms discussed in Section 1.4? Fir
it is general and applicable to any seasonal (including tim
homogeneous) network. Second, the number of batchesb,
and the probability of type I error,α, are ‘magic’ parameters,
with values that the practitioner should not be asked
choose; the default values ofb = 10 andα = 0.05 are not
surprising, but other values could well be better. Third, th
algorithm is fast and easy to implement. Fourth, the nomin
value of PCC is 1−α if the network is stable and unknown
if the network is unstable. Fifth, thep value (the probability
that aT value is greater than the observedλ̂N/(s/

√
b)) is

often taken as a kind of confidence statement.
Algorithm AB leaves much to be desired in terms o

Criterion 4. For a fixed run lengthτ , Figure 2 shows PCC
as a function of the network model; think of the horizont
axis as being the traffic intensity of anM/M/1 model in this
example. The figure’s curves assume that the underly
assumptions all hold: that is, that the initial transient
negligible, the batch valueŝλN, j are essentially normally
distributed and independent. These assumptions, if tr
would provide PCC= 1−α for any stable network, which

Wieland, Pasupathy, and Schmeiser

r
ith
n

g

re

e
,
tc

-
e

ot

e
c

o

k

e

ls
e
,

ny

-
l is
y-
me
u-

’s
is traffic intensityρ < 1 for this M/M/1 example. Because
there is no discontinuity of sample-path behavior atρ = 1,
there is a discontinuity in PCC, with suddenly PCC= α.
The value of PCC then increases monotonically to one fo
networks that are more and more unstable. Even here w
all assumptions being true, the effect of increasing the ru
lengthτ is only to raise the PCC curve for values ofρ > 1;
the value for stable models can be raised only by lowerin
the values for unstable networks.

Figure 2: Example PCC Curve for AlgorithmAB
under Assumptions

The assumptions, of course, never hold exactly. The
is an initial transient, which tends to look like instability.
For this reason,AB uses the second batch rather than th
first in Step 2. For stable networks close to instability
large autocorrelations cause dependence between the ba
valuesλ̂N, j , causing the standard-error estimates/

√
b to

be too small for any given run lengthτ and number of
batchesb. For asymptotically large batches, however, the
batch observationŝλN, j are normal and independent for
both stable and unstable networks. UnderH0, the Step-2
point estimator,

λ̂N = λ̂N,b − λ̂N,2,

is asymptotically normal with mean zero.
Our use of the time-average batch observationsλ̂N, j is

important to obtaining the appropriate asymptotic perfor
mance. Initially, our batch observations in Step 1 were th
simpler

λ̃N, j = N(j τ/b) − N((j − 1)τ/b))

τ/b
,

the rate of change inN(t) during the j th batch. Then
corresponding point estimator ofλN , the average of the
batch observations, is

λ̃N = N(τ)

τ
.

h

Because this point estimator is based only on a snapsh
of the number of customers at timeτ , rather than a time
average, it is not asymptotically normal, despite being th
mean of batch observations in Step 2. To provide a specifi
example, assume that the model isM/M/1 with traffic
intensity ρ. Then at steady state,N(t) has a geometric
distribution with mean E(N(t)) = ρ/(1 − ρ) and variance
Var(N(t)) = ρ/(1 − ρ)2. Therefore, the point estimator
λ̃N is not asymptotically normal for this important special
case.

If Algorithm AB had been defined using̃λN, j rather
than λ̂N, j , asymptotic normality could have been achieved
by using independent replications (rather than batching) t
unlink the λ̃N, j values. The cost, however, would be that
each replication would incur the initial transient, a severe
disadvantage in an algorithm whose purpose is to chec
stability.

Criterion 5 is also an issue. In fact, no confidence
statement is provided. Thepvalue easily could be computed,
but for stable networks with all assumptions holding the
distribution of p values is uniform over[0, 1], so a better
confidence statement is needed. The confidence interval

0 ≤ λ̂N ≤ t1−α,b−2
√

2s

has nominal confidence 1− α, but is only a restatement
of the hypothesis-testing andp-value computations. Better
would be a confidence statement that is directly about th
algorithm’s PCC.

7 CONCLUSIONS AND EXTENSIONS
FOR FUTURE RESEARCH

Developing an excellent algorithm for checking stability
might be quite difficult. Although many given models are
quickly seen to be either stable or unstable, stable mode
that are close to unstable are difficult to simulate becaus
of high autocorrelation in the output data. Furthermore
the discontinuity in the probability of correct classification
at the stable-unstable boundary almost guarantees that a
algorithm based on hypothesis testing will be wrong more
than half the time for some models.

We have focused on seasonal models, with time
homogeneous models as a special case. Even if the mode
time homogeneous, simulation experiments estimate stead
state performance measures using time averages. Once ti
averages are used, a stability-checking algorithm can nat
rally be extended to seasonal models.

We prefer a Bayesian framework, especially if the
prior distribution meaningfully can reflect the practitioner’s
belief. Additionally, a Bayesian posterior distribution allows
a meaningful confidence statement about the algorithm
PCC.

Wieland, Pasupathy, and Schmeiser

e

),
r
e

n

l

e

!.

ir

a

d

n

ns

ic
ts
Another research problem related to stability checking
is that of estimating the stable-unstable boundary for a
class of network models and one model parameter. Her
the algorithm would have the ability to simulate whatever
networks it chooses, possibly extrapolating to obtain its
estimate. In the continuousversion, the problem is much like
stochastic root finding (e.g., Chen and Schmeiser (2001)
except that the problem is to find the model paramete
where some performance measure becomes infinite, rath
than a specified finite value. In a discrete version, such
an algorithm would help the practitioner to determine the
minimum numbers of servers required to serve a fixed load
or determine the maximum release rate in a production
network. (See, for example, Schruben (1997).)

ACKNOWLEDGMENTS

The first author’s research was supported by an Eastma
Kodak Fellowship from the Center for Collaborative Man-
ufacturing at Purdue University.

REFERENCES

Banks, J., and Dai, J.G. 1997. Simulation studies of multi-
class queueing networks.IEEE Transactions29: 213–
219.

Bramson, M. 1994a. Instability of FIFO queueing networks.
The Annals of Applied Probability4, 2: 414–431.

Bramson, M. 1994b. Instability of FIFO queueing net-
works with quick service times.The Annals of Applied
Probability 4, 3: 693–718.

Chen H. and Schmeiser, B. 2001. Stochastic root finding via
retrospective approximation.IIE Transactions33: 259–
275 (special issue ofOperations Engineeringhonoring
Alan Pritsker).

Dai, J.G. 1996. A fluid limit model criterion for instability
of multiclass queueing networks.The Annals of Applied
Probability 6, 3: 751–757.

Dai, J.G., and O.B. Jennings. 2003. Stability of genera
processing networks. Chapter 7 inStochastic Mod-
els and Optimization, 193–243: Springer Series, New
York.

Dai, J.G., and Meyn, S.P. 1995. Stability and convergenc
of moments for multiclass queueing networks via fluid
limit models. IEEE Transactions on Automatic Control
40, 11: 1889–1903.

Kumar, P.R., and Seidman, T.I. 1990. Dynamic instabili-
ties and stabilization methods in distributed real-time
scheduling of manufacturing systems.IEEE Transac-
tions on Automatic Control35, 3: 289–298.

Law, A.M. 1975. Efficient estimators for simulated queueing
systems.Management Science22, 1: 30–41.

Rybko, A.N., and Stolyar, A.L. 1993. On the ergodic-
ity of random processes that describe the functioning
r

of open queueing networks.Problems of Information
Transmission28: 199–220.

Schruben, L.W. 1997. Simulation optimization using si-
multaneous replications and event time dilation.Pro-
ceedings of the Winter Simulation Conference, ed. S.
Andradóttir, K.J. Healy, D.H. Withers, and B.L. Nelson,
177–180.

Seidman, T.I. 1994. First come, first served can be unstable
IEEE Transactions on Automatic Control39, 10: 2166–
2171.

Sharifnia, A. 1997. Instability of the join-the-shortest-
queue and FCFS policies in queueing systems and the
stabilization.Operations Research45, 2: 309–314.

AUTHOR BIOGRAPHIES

JAMIE R. WIELAND is a Master’s student in the School of
Industrial Engineering at Purdue University. She received
B.S. in Industrial Engineering from Northwestern University
in 2001. Her primary research interests are in applie
stochastic modeling. Her e-mail address is<jwieland@
purdue.edu> .

RAGHU PASUPATHY is a Ph.D. student in the School of
Industrial Engineeringat Purdue University. His dissertation
has focused on designing efficient algorithms for the solutio
of general stochastic root-finding problems. His broad
research interests are in the area of stochastic operatio
research. His email address is<pasupath@purdue.
edu> .

BRUCE W. SCHMEISER is a professor in the School of
Industrial Engineering at Purdue University. His interests lie
in applied operations research, with emphasis in stochast
models, especially the probabilistic and statistical aspec
of stochastic simulation. He is an active participant in the
Winter Simulation Conference, including being Program
Chair in 1983 and chairing the Board of Directors from 1988-
1990. His email address is<bruce@purdue.edu> .

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 520
	02: 521
	03: 522
	04: 523
	05: 524
	06: 525
	07: 526
	08: 527

