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ABSTRACT

The National Airspace System (NAS) is a large and compl
cated system. Detailed simulation models of the NAS ar
generally quite slow, so it can be difficult to obtain statisti-
cally valid samples from such models. This paper presen
two methods for reducing the complexity of such network
to improve simulation time. One method is removal o
low-utilization queues – that is, replacing a queueing nod
with a delay node, so that airplanes experience a servi
time at the node but no queueing time. The other is remov
of nodes by clustering – that is, where groups of nodes a
collapsed into a single node. We employ the methods o
simple networks and show that the reductions yield ver
little loss in modeling accuracy. We provide some estimate
for the potential speedup in simulation time when using th
methods on large networks.

1 INTRODUCTION

The National Airspace System (NAS) is a large and compl
cated system. The NAS contains about 30 large hubs (lik
Atlanta) about 30 medium hubs (like Cleveland), about 5
small hubs (like Colorado Springs), about 600 more airpor
with scheduled flights, and thousands of other public-us
airports. For example, Figure 1 shows all public-use air
ports within 1,000 nautical miles (Nm) of Virginia that have
runways over 3,000 feet. Operations at the hub airports ca
be quite complex, since airplanes must traverse throug
arrival sectors, to the runway, through a series of taxi-way
to a gate, and then back out.

The NAS also contains about 500 airspace sectors
varying altitude levels. On a given day, there can be abo
5,000 commercial flights in the air at one time (not including
general aviation planes, military planes, etc). The interactio
between these airplanes can be complex, as controlle
employ a range of tactics to safely separate and sequen
the airplanes.
t
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Figure 1: Airports within 1,000 Nm of Virginia

Thus, highly detailed simulation models of the NAS
tend to be quite slow. This makes it difficult to obtain
statistically valid samples from such models. One examp
is the Total Airspace and Airport Modeler (TAAM). The
model simulates the physical positions of individual air
planes throughout the network. The model has been wide
used to study traffic at single, large airports, but it can als
be used to simulate the whole NAS. For example, Youse
(2003) created an implementation of TAAM to simulate a
flights – including general aviation flights – in the northeas
corridor. The model took about 8 hours of real time to
generate 24 hours of simulated time. Since this is on
one replication, obtaining a statistically valid sample vi
multiple replications would be very time consuming.

On the other end of the spectrum are much simplifie
models. One example is LMINET (Gaier and Kostiuk
1998) which uses analytical queueing models to reduce t
simulation time of the whole network. This model is fast, bu
relies on some questionable assumptions, such as Pois
arrivals to each node of the network. Another example
DPAT (MacReynolds and Sinnot 1998) which also uses
simplified queueing network representation, but has a ve
limited Monte Carlo simulation capability.
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The purpose of this paper is to investigate ways o
creating a simulation model which is both fast and reasonab
accurate. Naturally, there is an inherent trade-off betwee
speed and accuracy, so we seek a model that is in-betwe
LMINET and TAAM, but hopefully closer to LMINET in
speed and closer to TAAM in accuracy.

Much recent work on large-network simulations has
been motivated by Internet applications. Here, network siz
is even more problematic than for the NAS. For example
Riley and Ammar (2002) conservatively estimate that it
would takea year of CPU time to simulate100 seconds
of activity on the Internet. Techniques for simulating large
Internet networks generally fall into two categories: Fluid
simulations (e.g., Y. Liu et al. 2003, B. Liu et al. 1999)
and parallel simulations (e.g., Cowie et al. 1999, Rao an
Wilsey 1999). For a survey, see Riley and Ammar (2002)

Since fluid models would not provide enough fidelity
to model airplane conflicts and interactions, this paper fo
cuses on other techniques for improving simulation speed
Specifically, we examine two types ofnetwork reductions
as a means of improving simulation time: Elimination of
the queueing time at low-utilization nodes (Section 3) and
clustering of multiple nodes into a single node (Section 4)
We also estimate the potential benefit in applying these
methods to a full NAS simulation.

2 MODELING FRAMEWORK

In general, when simulating the NAS, we are not intereste
in the performance of the network atevery node. Rather,
we tend to be interested in performance metrics at specifi
subsetsof nodes. For example, if we want to know the effect
of adding a runway at Washington Dulles Airport (IAD), we
primarily care about delays at IAD and nearby airports. We
also may be interested in delays at other major airports i
the NAS, particularly those with many direct flights to and
from IAD. Our approach is to divide the entire network into
two sub-networks:C and R. The subnetworkC contains
the core nodes of interest, and the subnetworkR contains
the remaining nodes.

As an example, consider a network consisting of the
12 airports in Table 1. In this sample network,C consists
of 4 large, congested airports, andR consists of 8 medium
airports. Suppose we are directly interested in the perfor
mance of the large airports. We are notdirectly interested
in the nodes inR, except that they might have an impact
on the nodes inC. (The table also gives the average num-
ber of daily commercial flights leaving each airport during
August, 2001, before 9/11/01. Although we have applied
real names to the nodes in the network, it is only a simple
example and not intended to represent a real network.)

Now, the goal is to create a new network that is more
efficient to simulate than the original network, but still gives
accurate estimates for the performance metrics ofC. In
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Table 1: Example Network of 12 Nodes
Airport Code Daily Flights

C Atlanta ATL 1,157
Chicago ORD 1,245
Newark EWR 583
San Francisco SFO 467

R Albuquerque ABQ 140
Cleveland CLE 364
Indianapolis IND 270
Kansas City MCI 280
Memphis MEM 438
New Orleans MSY 179
Raleigh-Durham RDU 288
San Jose SJC 246

particular, we seek a smaller, surrogate subnetworkR∗ to
replaceR, such that simulatingC with R∗ gives essentially
the same performance metrics forC as simulatingC with
R.

In this paper, we use two techniques to reduceR to a
smaller networkR∗, discussed in the next two sections:

1. Removal of low-utilization queues. By this, we
mean replacing a queueing node with a delay node
so that an arriving airplane has a service time at
the node but no queueing time.

2. Node clustering.

3 LOW-UTILIZATION NODES

In this section, we discuss simplifyingR by removing low-
utilization queues (that is, by removing the queueing time
at a node, but retaining the service time). We motivate this
technique with the following example. Figure 2 shows the
theoretical waiting time of an M/M/1 queue with service
rateµ = 10. For arrival ratesλ below about 6, the expected
waiting time curve is nearly flat. For example, if this queue
represents an airport andλ = 3 on a “typical" day while
λ = 5 on a “bad" day (due to re-routing from other airports),
the queueing is essentially the same for either case. In fac
we could probably eliminate the queueing time (that is, by
replacing the M/M/1 queue with an M/M/∞ queue, or in
simulation, by replacing the queueing node with a delay
node) without impacting the rest of the network too much.

3.1 Jackson Networks

We test the plausibility of this approach with a Jackson
network, since we can solve such networks analytically. Our
test network contains the 12 airports in Table 1. Figure 3
shows the basic network structure using only 3 airports (the
full 12-airport network is similar). Each airport consists
of 2 nodes: an arrival node and a gate node. The arriva
node models the sequencing and queueing of airplanes a
they approach the runway (for simplicity, we do not include
an analogousdeparturenode, but the example could easily
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Figure 2: Waiting Time of M/M/1 Queue (µ = 10)

Table 2: Jackson Network Parameters
Arrival Gate
Node Node

i Airport µA,i SA,i µG,i SG,i
C 1 ATL 30 1 1 99

2 ORD 35 1 1 99
3 EWR 30 1 1 99
4 SFO 40 1 1 99

R 5 ABQ 20 1 1 99
6 CLE 20 1 1 99
7 IND 20 1 1 99
8 MCI 20 1 1 99
9 MEM 20 1 1 99
10 MSY 20 1 1 99
11 RDU 20 1 1 99
12 SJC 20 1 1 99

be generalized in this way). There is one server (i.e.,
runway) with a service rate between 20 and 40 landi
per hour (Table 2). The gate node models the turnaro
times for the airplanes. We assume a large number of g
(here 99) so there is little or no queueing. For notati
µA,i andµG,i are the service rates for the arrival and g
nodes of airporti (service times are i.i.d. exponential), an
SA,i and SG,i are the number of servers at the respec
nodes. Once an airplane leaves nodei , it goes to nodej
with probability pi j . No airplanes enter or exit the system
We choose the transition probabilitiespi j (not shown in
Table 2) to be proportional to observed flights between
airports during the month of August, 2001.

Arrival Queue

(~/M/1)

Gate Delay

(~/M/c)

ORD

ATL

EWR

Figure 3: Basic Network Structure
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s
d
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We can solve this network analytically (e.g., using the
QTS package in Gross and Harris 1998). Table 3 shows th
results, using 150 airplanes in the closed network.E(Wq)

is the average time an airplane spendsin the queueat a
given node;E(W) is the averagetotal time an airplane
spends at a node (queue time plus service time). We only
show statistics for the arrival nodes, since the gate node
have essentially zero queueing. (The congestion levels d
not represent actual congestion levels at these airports.)

Table 3: Baseline Jackson Network
Node ρ E(W) E(Wq)

C ATL 0.800 0.1519 0.1185
ORD 0.797 0.1289 0.1004
EWR 0.583 0.0785 0.0452
SFO 0.200 0.0312 0.0062

R ABQ 0.075 0.0540 0.0040
CLE 0.477 0.0947 0.0447
IND 0.441 0.0887 0.0387
MCI 0.408 0.0839 0.0339
MEM 0.635 0.1335 0.0835
MSY 0.287 0.0699 0.0199
RDU 0.408 0.0839 0.0339
SJC 0.184 0.0612 0.0112

Now, we take the sub-networkR and replace it with
a simpler networkR∗ to see how the performance metrics
for C change. We do this by eliminating queues inR
which have utilizations below a given level. For analytical
solutions of Jackson networks, we effectively eliminate a
queue by changing the number of servers at a given node t
some large value, say 99. For simulation (next subsection)
we replace the queueing node with a delay node. We tes
the following cases:

0. Baseline (no change:R∗ = R).
1. Eliminateall queuesin R. (For i = 5, · · · , 12, set

SA,i = 99 in R∗.)
2. Eliminate all queues inR with ρ < 0.45. (For

i = 5, 7, 8, 10, 11, 12, setSA,i = 99 in R∗.)
3. Eliminate all queues inR with ρ < 0.4. (For

i = 5, 10, 12, setSA,i = 99 in R∗.)
4. Eliminate all queues inR with ρ < 0.01. (Only the

gate nodes have utilizations less than 0.01. Since
these nodes already have 99 servers, this yields no
change to theanalyticalJackson-network solution.
However, it does make a difference in speed for
thesimulatedsolution, since this involves changing
queueing nodes to delay nodes.)

5. Repeat cases 1-4 using anadjustedservice rate
for all queues that have been eliminated. To show
how this works, consider the Albuquerque airport
(ABQ). In the baseline case, the averagequeue
time Wq at the arrival node is 0.0040 (Table 3).
The averagetotal time W at the node is 0.0540. If
we lump the queue and the service times together
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and suppose this is all part of the service time
then the adjusted service rate for this queue i
µ′ = 1/E(W) = 18.519. For case 3b, for example,
we make the following changes toR to get R∗:
SA,5 = SA,10 = SA,12 = 99; µ5 = 18.519, µ10 =
14.306, µ12 = 16.340. Cases 1b and 2b are similar.

Table 4 shows the performance of these simplifie
networks, compared to the baseline. The table shows t
percent difference in the expected queue waiting timeE(Wq)

at the 4 arrival nodes inC (all values are rounded to the
nearest 0.01%). In most cases, there is little change
E(Wq) from the original network to the simplified network.
Only in case 1, where we eliminatedevery queue inR,
does E(Wq) change by more than 3%. Naturally, as we
eliminate fewer queues (going from case 1 to 4), the accura
improves; conversely, the time to simulate these network
increases.

Table 4: Performance of Simplified Networks
Case ATL ORD EWR SFO

Baseline – – – –
1 6.30% 6.24% 3.40% 1.82%
2 2.51% 2.49% 1.37% 0.74%
3 0.38% 0.37% 0.21% 0.11%
4 0.00% 0.00% 0.00% 0.00%
1b -0.26% -0.25% -0.07% -0.01%
2b -0.08% -0.08% -0.02% 0.00%
3b -0.01% -0.01% 0.00% 0.00%
4b 0.00% 0.00% 0.00% 0.00%

Using theadjustedservice times (cases 1b-4b) greatly
increases the accuracy of the reduced network (for examp
compare cases 1b-4b with cases 1-4). However, to get the
values, we must solve the original network, thus defeatin
the purpose of using the simpler network. Nevertheles
this approach may still be useful. In collecting data to
populate a model, it is often easier to estimate the tot
time at a node (which is precisely the adjusted service tim
used here), rather than to estimate the component “servic
and “queueing" times. This is particularly true for airspace
sectors. So, for low-utilization queues, it may be possibl
to estimate these values from actual data.

The performance of the simplified networks are quite
good. One explanation comes from considering theopen
version of the corresponding Jackson network. In an ope
network, we can determine the performance metrics at ea
node by solving (e.g., Gross and Harris 1998)

Eλ = Eγ + PEλ

for Eλ, whereEλ is the vector oftotal arrival rates to each
node, Eγ is the vector of arrival rates to each nodefrom the
outsideandP is the routing matrix. This equation does not
depend on the number of serversSi or the service rateµi
e
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at any node. Therefore, changes toSi or µi do not change
the solution forEλ.

In particular, the previous reductions ofR toR∗ involved
changing the number of serversSi at some nodes from a
finite value to an infinite value, but kept the routing matrix
P fixed. In anopennetwork, such changes would not affect
the solutionEλ. Since the performance metrics of nodei
depend onλi , µi , andSi , changingSj or µ j at adifferent
node j does not changeλi and therefore hasno effect on
the metrics at nodei ( j 6= i ). In other words, in an open
network, the previous reductions ofR to R∗ haveno affect
on the performance metrics observed inC. Thus, it is not
surprising that the effects of analogous reductions in close
networks are small.

3.2 Simulation

We now investigate the potential simulation benefit in re-
moving low-utilization queues. That is, we investigate how
much simulation time is saved by changing a queueing
node to a delay node. To do this, we simulate the 24-nod
(12-airport) closed Jackson network described previously in
the Arena simulation package (version 5). We compare th
baseline network to the 4 network reductions. Previously
to remove a queue at nodei , we changed the number of
servers to a large value. In simulation, we remove the
queue by replacing the queueing node with adelaynode.
For example, in case 3, we changearrival nodes 5, 10, and
12 to delay nodes and we change all twelvegatenodes to
delay nodes. In case 4, we change the twelve gate nod
to delay nodes.

Table 5: Simulation Speedup

Time Wq Error
Case Reduction ATL ORD EWR SFO

Baseline – -1.1% 0.2% 1.0% -0.4%
1b 31% -0.9% -0.2% 0.9% -0.6%
2b 27% -0.6% 0.7% 0.1% 0.5%
3b 21% -0.2% 0.4% 0.7% 0.5%
4b 19% -1.1% 0.2% 1.0% -0.4%

Table 5 shows the improvements in speed for case
1b-4b (the simulation times for cases 1-4 and cases 1b-4
respectively, are essentially the same.) Case 1b, which is th
smallest network, has the greatest time reduction (31%). Th
table also shows the percent errors of the queue waiting time
compared to theoretical values. In general, the simulatio
randomness dominates the network-reduction errors.

We now establish an approximate upper bound for the
reduction in simulation time. In an “ideal" case,C and
R are two independent networks. Then, we can simulat
C by itself and ignoreR. Now, in our baseline 12-airport
network, about 29% of all operations occurred inC and
about 71% occurred inR. Thus, at best, lettingR∗ be the
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empty set gives a reduction in simulation time of 71%. I
Table 5, by eliminating low-utilization queues (for example
Case 2), we were able to achieve almost 40% of this “idea
reduction.

4 NODE CLUSTERING

In this section, we investigatenode clusteringas a way of
reducing the subnetworkR to a simpler subnetworkR∗.
The basic idea is to group sets of nodes inR into clusters
and then to represent each cluster as a single node, ther
obtainingR∗. Two critical questions are:

1. Which nodes should be grouped into clusters?
2. How can a cluster be replaced by a single nod

without sacrificing modeling accuracy?
Norton’s theorem (Chandy et al. 1975) provides precis
answers to these questionsfor Jackson networks. Specifi-
cally, the theorem specifies conditions under which a set
nodes can be clustered together as a single node such
the resulting network is equivalent to the original network

In this section, we review Norton’s theorem and its
extensions. Then, we apply Norton-type reductions to a
traffic networks, and we estimate the potential benefit i
simulation speed.

4.1 Norton’s Theorem

Consider a closed Jackson network withM nodes andN
customers (or airplanes). Suppose we are interested o
in the queueing behavior at nodeM. That is,C = {M} and
R = {1, · · · , M − 1}.

Norton’s theorem states that we can replaceR with a
single nodeReq having a state-dependent service rateµ(n)

as follows: Letλ∗
M (n) be the throughput at nodeM in

a modified network obtained by setting the service rate
nodeM to infinity (effectively removing nodeM) and setting
the network population ton. Then, we can reduce theM-
node network to an equivalent two-node network consistin
of nodeM and a new nodeReq with state-dependent service
rateµ(·) satisfying:

µ(n) = λM (n).

(That is, when there aren customers at the new node, the
service rate at this node isµ(n).)

A more general form of Norton’s theorem (Boucherie
and van Dijk 1993) applies whenC consists of more than
one node. In this case, we can reduce a cluster of nodes inR
to a single node provided the cluster contains a single no
of entry (or ingress) and a single node of exit (oregress).
We call such clustersNorton-typeclusters. A cluster of
one node is trivially a Norton-type cluster. Thus, we ca
partitionR into l Norton-type clustersR1, · · · , Rl , each of
which satisfies this property (where some “clusters" may b
by
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only single nodes). Applying the Norton procedure (below)
we can reduce each clusterRi to an equivalent nodeReq,i ,
so the surrogate network isR∗ = {Req,1, · · · , Req,l }.

The basic steps for replacing a Norton-type clusterRi

with an equivalent nodeReq,i are:
1. Consider the clusterRi as a network in isolation

with a “short-circuit” path directed from the egress
of the cluster to the ingress. We call the resulting
network theshort-circuitedrepresentation of the
cluster.

2. For the short-circuited network, find the state-
dependent throughputλ(n) along the short-circuit
path from ingress to egress, wheren is the num-
ber of customers in the short-circuited network,
n = 1, · · · , N. For Jackson networks, this can
be done by applying the state-dependent Buze
algorithm (Gross and Harris 1998 give the state
independentBuzen algorithm, which can easily be
generalized to the state-dependent case).

3. Replace the clusterRi with a single nodeReq,i

with state-dependent service rateµ(n) = λ(n).

4.2 Example

Figure 4 shows an example network containing three airport
The airports at Newark and Atlanta are modeled as sing
nodes, while the airport at Chicago is modeled as a fou
node subnetwork. The Chicago subnetwork consists of tw
arrival nodes (1 and 2), representing the delays that occ
when planes wait to land and taxi, and two departure node
(3 and 4), representing the delays that occur when plan
wait for departure. The numbers associated with the arc
represent the routing probabilities for the network. The
two dark circles within the Chicago subnetwork represen
the ingress and egress of the cluster, and we assume t
the service times at these two nodes are instantaneo
Effectively, the total number of nodes in the network is
M = 6 and the routing matrix is

Q =




0 0 0.9 0.1 0 0
0 0 0.2 0.8 0 0
0 0 0 0 0.4 0.6
0 0 0 0 0.4 0.6

0.56 0.24 0 0 0 0.2
0.49 0.21 0 0 0.3 0




.

To make this example concrete, we further assume th
the nodes have constant service rates:

µ1 = 30, µ2 = 35, µ3 = 40,

µ4 = 45, µ5 = 30, µ6 = 30, (1)

and that the number of planes (i.e., customers) isN = 70.
The core set of nodes isC = {5, 6} and the remaining set
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Figure 4: Example Air Traffic Network
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Figure 5: Short-Circuited Representation of
Chicago Airport

of nodes isR = {1, 2, 3, 4} (the Chicago cluster). Our
objective is to reduceR to a single nodeReq via a Norton-
type reduction.

First, we create a short-circuited representation of the
Chicago cluster as shown in Figure 5. The routing matrix
for this network is

Qch =




0 0 0.9 0.1
0 0 0.2 0.8

0.7 0.3 0 0
0.7 0.3 0 0


 .

The service rates for this network are (same as (1))

µ1 = 30, µ2 = 35, µ3 = 40, µ4 = 45.

Applying the state-dependent Buzen algorithm to the
network of Figure 5 yields the throughputs at all nodes of the
network. In particular, the state-dependent throughputλ(n)

on the short-circuit path equals the sum of the throughput
at nodes 3 and 4 (i.e.,λ(n) = λ3(n) + λ4(n)). Table 6
gives λ(n) up to n = 5 (the complete table goes up to
n = N = 70).
Table 6: State-Dependent Service Rates (ORD)

n λ(n)

1 17.84
2 27.32
3 32.78
4 36.13
5 38.25
...

...

2

3

Chicago

(ORD)

0.4
0.3 0.2

0.6

0.7

1

0.8

n)

Atlanta

(ATL)

Newark

(EWR)

Figure 6: Reduced Air Traffic Network

Figure 6 shows the reduced network. Here, we represen
the Chicago airport as a single node with state-depende
service rateµ1(n), where

µ1(n) = λ(n).

The routing matrix of the reduced network is

Qred =



0 0.4 0.6
0.8 0 0.2
0.7 0.3 0


 .

By Norton’s theorem, the reduced network of Figure 6 is
equivalent to the original network of Figure 4 with respect
to the airports at Newark and Atlanta. We have simulated
both Figure 4 and Figure 6 using Arena and have found
that the time to simulate the reduced network is about 25%
less than the original.

4.3 Application to Air-Traffic Networks

Intuitively, the basic criterion for Norton’s theorem to work
is that the cluster of nodes must effectively have a single
point of entry and a single point of exit. One place where
this occurs is at an airport. If an airport has only one
runway, then that runway is a single point of entry and exit
for the airport. This is true even if the airport model is
quite complicated, consisting of many nodes for the runway
taxi-ways, gates, and so forth.
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Airports with multiple runways are also potential candi
dates, though this is an area for further research. There
two basic cases. First, if there are twodependentrunways
(meaning that arrivals to one runway impact the flow o
arrivals to the other runway), then the arrivalairspaceis
a single node of entry, since permission to land on eith
runway depends on the utilization of the common arriva
airspace. Second, if the runways areindependent, then it
may be possible to model the airport as two separate halv
where a Norton-type reduction is applied to each half. F
example, at Atlanta, the arrival runways are on opposi
sides of a large terminal, essentially splitting the airport int
two. An open question is how well Norton-type reduction
can be applied to such airports.

…

n nodes

Figure 7: Reduction of Multi-Nodes to
Single Node

To estimate the potential benefit of clustering in sim
ulation, we consider an airport modeled withn nodes in
series (Figure 7), and its corresponding reduction to a sing
node. The series model could represent, for example,
sequence of flying through the arrival airspace, landing o
the runway, taxiing in, arriving at the gate, taxiing out
taking off, and finally leaving the departure airspace. I
our simulations, we let the arrival rate beλ = 0.5n and the
service rate at each node beµ = n. Thus, the utilization
at each node isρ = 0.5, and the expectedtotal time at the
airport is 1, regardless ofn. The equivalent 1-node network
is found using the Norton-type reduction, described prev
ously. Simulating the 1-node network requires simulatin
a state-dependent service rateµ1(·), whereas in then-node
network, the service ratesµ are all constant.

Figure 8 shows the time savings as a function ofn.
That is, letT(n) be the time to simulate then-node network,
and letT1(n) be the time to simulate the equivalent single
node network (using Norton’s theorem and state-depend
service). They-axis in Figure 8 is

% Reduction in Simulation Time= T(n) − T1(n)

T(n)
.

As expected,T(n) ≈ an + b, wherea is a per-node
run-time andb is a fixed cost. Also,T1(n) ≈ T(1). Thus,
the percent reduction is approximately

T(n) − T1(n)

T(n)
= an+ b − (a + b))

an+ b
.
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Figure 8: Reduction of Simulation Time by
Clustering

For largen, this is approximately(n − 1)/n. For example,
reducing an 100-node network to a single-node network
gives a percent reduction of about 99%. In Figure 8, th
percent reduction whenn = 10 is about 80%, which is
lower than(n − 1)/n = 90% due to the start-up cost.

5 CONCLUSIONS

In this paper, we investigated two approximation technique
for reducing large air transportation networks to improve
simulation speed: (a) Removal of low-utilization queues
and (b) Removal of nodes via clustering. We tested thes
techniques on some simple, Jackson networks. For the
examples, we found little loss in accuracy when employin
the two methods. The first method appears to be qui
accurate and the second method (clustering via Norton
theorem) isexact, provided the conditions of the theorem
are satisfied.

To estimate the potential benefit in applying these idea
to a large-scale NAS model, we consider the following: The
NAS consists of about 60 medium-to-large hubs, about 60
more airports with scheduled service, and about 5,000 oth
public-use airports. Suppose we model the low-utilization
airports as single nodes (yielding, say, 5,600 nodes). The 6
medium and large hubs have more complex operations a
thus require more complicated sub-models. Suppose the
sub-models are 10 nodes each (for a total of 600 nodes)

Suppose the hubs carry about 75% of the operation
(arrivals + departures) of the entire NAS. LetN be the
total number of arrivals and departures simulated across t
whole network. Since each operation to a low-utilization
airport goes through a single node, and each operation to
hub goes through 10 nodes, an estimate for the simulatio
time of the whole network is 0.25N+(0.75N) ·10 = 7.75N
If we apply the low-utilization reduction (Section 3), the
second term reduces by about 40% to(0.25N) · 0.6. If
we apply the Norton reduction technique (Section 4) to th
hub airports, we reduce the simulation time of the hubs b
about 80% to(0.75N) ·10·0.2. Thus, the entire simulation
time goes from 7.75N to 1.65N, for a reduction of 79%
(equivalently, a speedup by a factor of 5).
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Of course, in this paper, we have mademanysimplify-
ing assumptions. The real air transportation network is not
Jackson network, so many more issues need to be address
For example, transitions from one node to another are go
erned by schedules, not random probabilities. Furthe
these schedules may dynamically change due to weath
crew delays, airplane maintenance, and other factors. Als
service times are not exponential. Thus, Norton-type reduc
tions under these conditions are not guaranteed to be exa
However, we conjecture that such reductions may still b
reasonably accurate under such conditions. We are curren
investigating these extensions. We are also looking at way
of applying these ideas to sub-models which track weathe
simulate ground delay programs, cancel flights, and resolv
airplane en-route conflicts.
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