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ABSTRACT

The National Airspace System (NAS) is a large and compli-
cated system. Detailed simulation models of the NAS are
generally quite slow, so it can be difficult to obtain statisti-
cally valid samples from such models. This paper presents
two methods for reducing the complexity of such networks
to improve simulation time. One method is removal of
low-utilization queues — that is, replacing a queueing node
with a delay node, so that airplanes experience a service
time at the node but no queueing time. The other is removal
of nodes by clustering — that is, where groups of nodes are
collapsed into a single node. We employ the methods on
simple networks and show that the reductions yield very
little loss in modeling accuracy. We provide some estimates
for the potential speedup in simulation time when using the
methods on large networks.

1 INTRODUCTION

The National Airspace System (NAS) is a large and compli-
cated system. The NAS contains about 30 large hubs (like
Atlanta) about 30 medium hubs (like Cleveland), about 50
small hubs (like Colorado Springs), about 600 more airports
with scheduled flights, and thousands of other public-use
airports. For example, Figure 1 shows all public-use air-
ports within 1,000 nautical miles (Nm) of Virginia that have
runways over 3,000 feet. Operations at the hub airports can
be quite complex, since airplanes must traverse through
arrival sectors, to the runway, through a series of taxi-ways,
to a gate, and then back out.

The NAS also contains about 500 airspace sectors at
varying altitude levels. On a given day, there can be about
5,000 commercial flights in the air at one time (notincluding
general aviation planes, military planes, etc). The interaction
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Figure 1: Airports within 1,000 Nm of Virginia

Thus, highly detailed simulation models of the NAS
tend to be quite slow. This makes it difficult to obtain
statistically valid samples from such models. One example
is the Total Airspace and Airport Modeler (TAAM). The
model simulates the physical positions of individual air-
planes throughout the network. The model has been widely
used to study traffic at single, large airports, but it can also
be used to simulate the whole NAS. For example, Yousefi
(2003) created an implementation of TAAM to simulate all
flights — including general aviation flights — in the northeast
corridor. The model took about 8 hours of real time to
generate 24 hours of simulated time. Since this is only
one replication, obtaining a statistically valid sample via
multiple replications would be very time consuming.

On the other end of the spectrum are much simplified
models. One example is LMINET (Gaier and Kostiuk
1998) which uses analytical queueing models to reduce the
simulation time of the whole network. This modelis fast, but
relies on some questionable assumptions, such as Poisson
arrivals to each node of the network. Another example is

between these airplangs can be complex, as controllers jpat (MacReynolds and Sinnot 1998) which also uses a
employ a range of tactics to safely separate and sequenceg;miified queueing network representation, but has a very

the airplanes.
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limited Monte Carlo simulation capability.
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The purpose of this paper is to investigate ways of
creating a simulation model which is both fast and reasonably
accurate. Naturally, there is an inherent trade-off between

speed and accuracy, so we seek a model that is in-between

LMINET and TAAM, but hopefully closer to LMINET in
speed and closer to TAAM in accuracy.

Much recent work on large-network simulations has
been motivated by Internet applications. Here, network size
is even more problematic than for the NAS. For example,
Riley and Ammar (2002) conservatively estimate that it
would takea year of CPU time to simulatel00 seconds
of activity on the Internet. Techniques for simulating large
Internet networks generally fall into two categories: Fluid
simulations (e.g., Y. Liu et al. 2003, B. Liu et al. 1999)
and parallel simulations (e.g., Cowie et al. 1999, Rao and
Wilsey 1999). For a survey, see Riley and Ammar (2002).

Since fluid models would not provide enough fidelity
to model airplane conflicts and interactions, this paper fo-
cuses on other techniques for improving simulation speed.
Specifically, we examine two types aktwork reductions
as a means of improving simulation time: Elimination of
the queueing time at low-utilization nodes (Section 3) and
clustering of multiple nodes into a single node (Section 4).
We also estimate the potential benefit in applying these
methods to a full NAS simulation.

2 MODELING FRAMEWORK

In general, when simulating the NAS, we are not interested
in the performance of the network atvery node Rather,

we tend to be interested in performance metrics at specific
subset®f nodes. For example, if we want to know the effect
of adding a runway at Washington Dulles Airport (IAD), we
primarily care about delays at IAD and nearby airports. We
also may be interested in delays at other major airports in
the NAS, particularly those with many direct flights to and
from IAD. Our approach is to divide the entire network into
two sub-networks:C andR. The subnetworlC contains
the core nodes of interest, and the subnetw®r&ontains
the remaining nodes.

As an example, consider a network consisting of the
12 airports in Table 1. In this sample netwofk,consists
of 4 large, congested airports, aRdconsists of 8 medium
airports. Suppose we are directly interested in the perfor-
mance of the large airports. We are mlitectly interested
in the nodes inR, except that they might have an impact
on the nodes irC. (The table also gives the average num-
ber of daily commercial flights leaving each airport during
August, 2001, before 9/11/01. Although we have applied
real names to the nodes in the network, it is only a simple
example and not intended to represent a real network.)

Now, the goal is to create a new network that is more
efficient to simulate than the original network, but still gives
accurate estimates for the performance metric€ofin
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Table 1: Example Network of 12 Nodes

Airport Code Daily Flights
C Atlanta ATL 1,157
Chicago ORD 1,245
Newark EWR 583
San Francisco SFO 467
R Albuquerque ABQ 140
Cleveland CLE 364
Indianapolis IND 270
Kansas City MCI 280
Memphis MEM 438
New Orleans MSY 179
Raleigh-Durham RDU 288
San Jose SJC 246

particular, we seek a smaller, surrogate subnetWiirko
replaceR, such that simulatin@ with R* gives essentially
the same performance metrics fBras simulatingC with
R.

In this paper, we use two techniques to redRcto a
smaller networkR*, discussed in the next two sections:

1. Removal of low-utilization queues. By this, we
mean replacing a queueing node with a delay node,
so that an arriving airplane has a service time at
the node but no queueing time.

2. Node clustering.

3 LOW-UTILIZATION NODES

In this section, we discuss simplifyirig by removing low-
utilization queues (that is, by removing the queueing time
at a node, but retaining the service time). We motivate this
technique with the following example. Figure 2 shows the
theoretical waiting time of an M/M/1 queue with service
raten = 10. For arrival ratea below about 6, the expected
waiting time curve is nearly flat. For example, if this queue
represents an airport artd= 3 on a “typical" day while

A = 5o0n a*“bad" day (due to re-routing from other airports),
the queueing is essentially the same for either case. In fact,
we could probably eliminate the queueing time (that is, by
replacing the M/M/1 queue with an M/Mé queue, or in
simulation, by replacing the queueing node with a delay
node) without impacting the rest of the network too much.

3.1 Jackson Networks

We test the plausibility of this approach with a Jackson
network, since we can solve such networks analytically. Our
test network contains the 12 airports in Table 1. Figure 3
shows the basic network structure using only 3 airports (the
full 12-airport network is similar). Each airport consists
of 2 nodes: an arrival node and a gate node. The arrival
node models the sequencing and queueing of airplanes as
they approach the runway (for simplicity, we do not include
an analogouseparturenode, but the example could easily
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10 We can solve this network analytically (e.g., using the

. 8] QTS package in Gross and Harris 1998). Table 3 shows the

= results, using 150 airplanes in the closed netwdfkWy)

93 &1 is the average time an airplane sperfnighe queueat a

£ 4] Low Utilization given node; E(W) is the averagdotal time an airplane

§ spends at a node (queue time plus service time). We only

H show statistics for the arrival nodes, since the gate nodes
have essentially zero queueing. (The congestion levels do

not represent actual congestion levels at these airports.)

Arrival Rate (planes / hour)

Figure 2: Waiting Time of M/M/1 Queueu(= 10)

Table 3: Baseline Jackson Network
Node p E(W) EWy)
C ATL 0.800 0.1519 0.1185
ORD 0.797 0.1289 0.1004

Table 2: Jackson Network Parameters

Arrival Gate EWR 0.583 0.0785 0.0452
o Node Node SFO  0.200 0.0312 0.0062
I Airport| pai Sai 1Gi Se.i R ABQ 0.075 0.0540 0.0040
C 1 ATL 30 1 1 99 CLE 0.477 0.0947 0.0447
2 ORD 3B 1 1 99 IND 0.441 0.0887 0.0387
3 EWR 30 1 1 99 MCI 0.408 0.0839 0.0339
4 SFO 40 1 1 99 MEM 0.635 0.1335 0.0835
R 5 ABQ 20 1 1 99 MSY 0.287 0.0699 0.0199
6 CLE 20 1 1 99 RDU 0.408 0.0839 0.0339
7 IND 20 1 1 99 SJC  0.184 0.0612 0.0112
8 MCI 20 1 1 99
io mg\(ﬂ 58 1 i gg Now, we take the sub-networR and replace it with
11 RDU 20 1 1 99 a simpler networkR* to see how the performance metrics
12 sJC 20 1 1 99 for C change. We do this by eliminating queuesRn

which have utilizations below a given level. For analytical
be generalized in this way). There is one server (i.e., the solutions of Jaqkson networks, we effectively gliminate a
runway) with a service rate between 20 and 40 landings dueue by changing the number of servers at a given node to
per hour (Table 2). The gate node models the turnaround SO™Me large value, say_99. For smulatlon (next subsection),
times for the airplanes. We assume a large number of gates W€ replace the queueing node with a delay node. We test
(here 99) so there is little or no queueing. For notation, the following cases:
uai andug, are the service rates for the arrival and gate 0. Baseline (no chang&®®* = R).

nodes of airport (service times are i.i.d. exponential), and 1. Eliminateall queuesn R. (Fori =5, ---, 12, set
Sai and S are the number of servers at the respective Sai =99 inR*)
nodes. Once an airplane leaves nodé goes to nodej 2. Eliminate all queues iR with p < 0.45. (For
with probability pij. No airplanes enter or exit the system. i =5,7,8,10,11 12, setSaj = 99 inR*.)
We choose the transition probabilitigs (not shown in 3. Eliminate all queues iR with p < 0.4. (For
Table 2) to be proportional to observed flights between the I =5,10,12, setSai = 99 inR*.)
airports during the month of August, 2001. 4, Eliminate all queues iR with p < 0.01. (Only the
gate nodes have utilizations less than 0.01. Since
. ___D these nodes already have 99 servers, this yields no
Arrival Queue  Gate Delay L O0— @ change to thanalyticalJackson-network solution.
(~/M/1) ~Mey T e However, it does make a difference in speed for
// thesimulatedsolution, since this involves changing

gqueueing nodes to delay nodes.)

5. Repeat cases 1-4 using adjustedservice rate
for all queues that have been eliminated. To show
how this works, consider the Albuquerque airport
(ABQ). In the baseline case, the averamgeue

Figure 3: Basic Network Structure time Wy at the arrival node is 0.0040 (Table 3).

The averagéotal time W at the node is 0.0540. If

we lump the queue and the service times together
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and suppose this is all part of the service time,

then the adjusted service rate for this queue is

uw = 1/E(W) = 18519. Forcase 3b, forexample,

we make the following changes ® to getR*:

Sas = Sa10 = Sa12 = 99; us = 18519 p10 =

14.306, ;112 = 16.340. Cases 1b and 2b are similar.

Table 4 shows the performance of these simplified

networks, compared to the baseline. The table shows the
percentdifference in the expected queue waiting Eié/;)
at the 4 arrival nodes i€ (all values are rounded to the
nearest 0.01%). In most cases, there is little change in
E(Wy) from the original network to the simplified network.
Only in case 1, where we eliminatezlery queue inR,
doesE(Wy) change by more than 3%. Naturally, as we
eliminate fewer queues (going from case 1 to 4), the accuracy
improves; conversely, the time to simulate these networks
increases.

Table 4: Performance of Simplified Networks

Case ATL ORD EWR SFO

Baseline - - - -
1 6.30% 6.24% 3.40% 1.82%
2 251% 2.49% 1.37% 0.74%
3 0.38% 0.37% 0.21% 0.11%
4 0.00% 0.00% 0.00% 0.00%
1b -0.26% -0.25% -0.07% -0.01%
2b -0.08% -0.08% -0.02% 0.00%
3b -0.01% -0.01% 0.00% 0.00%
4b 0.00% 0.00% 0.00% 0.00%

Using theadjustedservice times (cases 1b-4b) greatly
increases the accuracy of the reduced network (for example,
compare cases 1b-4b with cases 1-4). However, to get these
values, we must solve the original network, thus defeating
the purpose of using the simpler network. Nevertheless,
this approach may still be useful. In collecting data to
populate a model, it is often easier to estimate the total
time at a node (which is precisely the adjusted service time
used here), rather than to estimate the component “service"
and “queueing" times. This is particularly true for airspace
sectors. So, for low-utilization queues, it may be possible
to estimate these values from actual data.

The performance of the simplified networks are quite
good. One explanation comes from considering dpen
version of the corresponding Jackson network. In an open
network, we can determine the performance metrics at each
node by solving (e.g., Gross and Harris 1998)

A=7+Pi

for %, where’ is the vector oftotal arrival rates to each
node,y is the vector of arrival rates to each nddem the
outsideandP is the routing matrix. This equation does not
depend on the number of servedsor the service rate;
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at any node. Therefore, changesSoor i do not change
the solution fora.

In particular, the previous reductionsi®fo R* involved
changing the number of serve8 at some nodes from a
finite value to an infinite value, but kept the routing matrix
P fixed. In anopennetwork, such changes would not affect
the solutioni. Since the performance metrics of node
depend orki, ui, andS§, changingS; or uj at adifferent
node j does not changg; and therefore hamo effect on
the metrics at node (j #1). In other words, in an open
network, the previous reductions Bfto R* haveno affect
on the performance metrics observeddn Thus, it is not
surprising that the effects of analogous reductions in closed
networks are small.

3.2 Simulation

We now investigate the potential simulation benefit in re-
moving low-utilization queues. That is, we investigate how
much simulation time is saved by changing a queueing
node to a delay node. To do this, we simulate the 24-node
(12-airport) closed Jackson network described previously in
the Arena simulation package (version 5). We compare the
baseline network to the 4 network reductions. Previously,
to remove a queue at nodewe changed the number of
servers to a large value. In simulation, we remove the
queue by replacing the queueing node witdeday node.

For example, in case 3, we chargeival nodes 5, 10, and

12 to delay nodes and we change all twedate nodes to
delay nodes. In case 4, we change the twelve gate nodes
to delay nodes.

Table 5: Simulation Speedup

Time Wy Error
Case | Reduction ATL ORD EWR SFO
Baseling| - -1.1% 0.2% 1.0% -0.4%
1b 31% |-0.9% -0.2% 0.9% -0.6%
2b 27% |-0.6% 0.7% 0.1% 0.5%
3b 21% |-0.2% 0.4% 0.7% 0.5%
4b 19% |[-1.1% 0.2% 1.0% -0.4%

Table 5 shows the improvements in speed for cases
1b-4b (the simulation times for cases 1-4 and cases 1b-4b,
respectively, are essentially the same.) Case 1b, whichis the
smallest network, has the greatesttime reduction (31%). The
table also shows the percenterrors of the queue waiting times
compared to theoretical values. In general, the simulation
randomness dominates the network-reduction errors.

We now establish an approximate upper bound for the
reduction in simulation time. In an “ideal" cas€, and
R are two independent networks. Then, we can simulate
C by itself and ignoreR. Now, in our baseline 12-airport
network, about 29% of all operations occurredGnand
about 71% occurred iR. Thus, at best, lettinR* be the
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empty set gives a reduction in simulation time of 71%. In

Table 5, by eliminating low-utilization queues (for example,

Case 2), we were able to achieve almost 40% of this “ideal”
reduction.

4 NODE CLUSTERING
In this section, we investigateode clusteringas a way of

reducing the subnetworkR to a simpler subnetworlR*.
The basic idea is to group sets of nodesRininto clusters

and then to represent each cluster as a single node, thereby 2.

obtainingR*. Two critical questions are:
1. Which nodes should be grouped into clusters?
2. How can a cluster be replaced by a single node
without sacrificing modeling accuracy?
Norton's theorem (Chandy et al. 1975) provides precise
answers to these questiofts Jackson networksSpecifi-
cally, the theorem specifies conditions under which a set of

nodes can be clustered together as a single node such that

the resulting network is equivalent to the original network.

In this section, we review Norton’s theorem and its
extensions. Then, we apply Norton-type reductions to air
traffic networks, and we estimate the potential benefit in
simulation speed.

4.1 Norton’s Theorem

Consider a closed Jackson network with nodes and\N

only single nodes). Applying the Norton procedure (below),
we can reduce each clust@r to an equivalent Nnod&eq,
so the surrogate network B* = {Req1, - - , Reql}.

The basic steps for replacing a Norton-type clufer
with an equivalent noddeq,i are:

1. Consider the clustaRr; as a network in isolation
with a “short-circuit” path directed from the egress
of the cluster to the ingress. We call the resulting
network theshort-circuitedrepresentation of the
cluster.

For the short-circuited network, find the state-
dependent throughpuin) along the short-circuit
path from ingress to egress, whards the num-
ber of customers in the short-circuited network,
n=1,.--,N. For Jackson networks, this can
be done by applying the state-dependent Buzen
algorithm (Gross and Harris 1998 give the state-
independenBuzen algorithm, which can easily be
generalized to the state-dependent case).
3. Replace the clusteR; with a single nodeReg;
with state-dependent service ratgén) = A(n).

4.2 Example

Figure 4 shows an example network containing three airports.
The airports at Newark and Atlanta are modeled as single
nodes, while the airport at Chicago is modeled as a four-
node subnetwork. The Chicago subnetwork consists of two

customers (or airplanes). Suppose we are interested only arrival nodes (1 and 2), representing the delays that occur

in the queueing behavior at note. That is,C = {M} and
R={1,---,M—1}.

Norton’s theorem states that we can repl&wvith a
single nodeReq having a state-dependent service rate)
as follows: Leti},(n) be the throughput at nod®l in
a modified network obtained by setting the service rate at
nodeM to infinity (effectively removing nod&1) and setting
the network population te. Then, we can reduce thd-
node network to an equivalent two-node network consisting
of nodeM and a new nod&eq with state-dependent service
rate u(-) satisfying:

w(n) = im ().

(That is, when there ane customers at the new node, the
service rate at this node js(n).)

A more general form of Norton’s theorem (Boucherie
and van Dijk 1993) applies whe@ consists of more than
one node. In this case, we can reduce a cluster of nodes in

to a single node provided the cluster contains a single node

of entry (oringresd and a single node of exit (agress.

We call such clusterdNorton-typeclusters. A cluster of
one node is trivially a Norton-type cluster. Thus, we can
partitionR into | Norton-type clusterfy, - - - , R, each of
which satisfies this property (where some “clusters" may be
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when planes wait to land and taxi, and two departure nodes
(8 and 4), representing the delays that occur when planes
wait for departure. The numbers associated with the arcs
represent the routing probabilities for the network. The
two dark circles within the Chicago subnetwork represent
the ingress and egress of the cluster, and we assume that
the service times at these two nodes are instantaneous.
Effectively, the total number of nodes in the network is
M = 6 and the routing matrix is

0 0 09 01 0 O

0 0O 02 08 0 O
_ 0 0 0O O 04 06
Q= 0 0 0O O 04 06
056 024 0 O 0 02

049 021 0 O Q03 O

To make this example concrete, we further assume that
the nodes have constant service rates:

u1 =30, uz =35 uz=40,

ua =45 us =30, ug= 30, ()

and that the number of planes (i.e., customers is- 70.
The core set of nodes 8 = {5, 6} and the remaining set
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Newark (EWR)

Atlanta
(ATL)

Figure 5: Short-Circuited Representation of
Chicago Airport

of nodes isR = {1, 2, 3,4} (the Chicago cluster). Our
objective is to reduc® to a single noddreq via a Norton-
type reduction.

First, we create a short-circuited representation of the
Chicago cluster as shown in Figure 5. The routing matrix
for this network is

0
0
0.7 03
0.7 03

0 09 01
0 02 08
0 O
0 O

Qch =

The service rates for this network are (same as (1))
w1 =30, u2 =35 wu3z =40, uq =45

Applying the state-dependent Buzen algorithm to the
network of Figure 5 yields the throughputs at all nodes of the
network. In particular, the state-dependent throughjoit
on the short-circuit path equals the sum of the throughputs
at nodes 3 and 4 (i.eA(n) = A3(n) + A4(n)). Table 6
gives A(n) up ton = 5 (the complete table goes up to
n= N = 70).
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Table 6: State-Dependent Service Rates (ORD)

A ()
17.84
27.32
32.78
36.13
38.25

U'I-bwl\.)ld|3

Newark
(EWR)

0.2

Chicago

(ORD) Atlanta

(ATL)

n)

0.7

Figure 6: Reduced Air Traffic Network

Figure 6 shows the reduced network. Here, we represent
the Chicago airport as a single node with state-dependent
service rateu1(n), where

pa(n) = a(n).
The routing matrix of the reduced network is
0 04 06

08 0 02
07 03 O

Qred =

By Norton’s theorem, the reduced network of Figure 6 is

equivalent to the original network of Figure 4 with respect

to the airports at Newark and Atlanta. We have simulated
both Figure 4 and Figure 6 using Arena and have found
that the time to simulate the reduced network is about 25%
less than the original.

4.3 Application to Air-Traffic Networks

Intuitively, the basic criterion for Norton’s theorem to work
is that the cluster of nodes must effectively have a single
point of entry and a single point of exit. One place where
this occurs is at an airport. If an airport has only one
runway, then that runway is a single point of entry and exit
for the airport. This is true even if the airport model is
quite complicated, consisting of many nodes for the runway,
taxi-ways, gates, and so forth.
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Airports with multiple runways are also potential candi- 80
dates, though this is an area for further research. There are
two basic cases. First, if there are t@ependentunways 60 1
(meaning that arrivals to one runway impact the flow of
arrivals to the other runway), then the arriatspaceis
a single node of entry, since permission to land on either
runway depends on the utilization of the common arrival 201
airspace. Second, if the runways amelependentthen it
may be possible to model the airport as two separate halves, 0
where a Norton-type reduction is applied to each half. For
example, at Atlanta, the arrival runways are on opposite ) _ _ _ _
sides of a large terminal, essentially splitting the airport into Figure 8: Reduction of Simulation Time by
two. An open question is how well Norton-type reductions Clustering
can be applied to such airports.

40

% Reduction

No. Nodes (n)

For largen, this is approximatelyn — 1)/n. For example,

nnodes - c-mmmmee_ reducing an 100-node network to a single-node network,
e e O gives a percent reduction of about 99%. In Figure 8, the
\Q_____CE _________ - percent reduction when = 10 is about 80%, which is
ﬁ lower than(n — 1)/n = 90% due to the start-up cost.
------------ 5 CONCLUSIONS

—————————————— In this paper, we investigated two approximation techniques
for reducing large air transportation networks to improve
simulation speed: (a) Removal of low-utilization queues
and (b) Removal of nodes via clustering. We tested these

To estimate the potential benefit of clustering in sim- te€chniques on some simple, Jackson networks. For these
ulation, we consider an airport modeled withnodes in ~ €xamples, we found little loss in accuracy when employing
series (Figure 7), and its corresponding reduction to a single the two methods. The first method appears to be quite
node. The series model could represent, for example, the accurate and the second method (clustering via Norton’s
sequence of flying through the arrival airspace, landing on theorem) isexact provided the conditions of the theorem
the runway, taxiing in, arriving at the gate, taxiing out, —are satisfied.

Figure 7: Reduction of Multi-Nodes to
Single Node

taking off, and finally leaving the departure airspace. In To estimate the potential benefit in applying these ideas
our simulations, we let the arrival rate he= 0.5n and the 0 alarge-scale NAS model, we consider the following: The

service rate at each node jpe= n. Thus, the utilization NAS consists of about 60 medium-to-large hubs, about 600
at each node i% = 0.5, and the expectetal time at the more airports with scheduled service, and about 5,000 other

airport s 1, regardless of The equivalent 1-node network  Public-use airports. Suppose we model the low-utilization
is found using the Norton-type reduction, described previ- arports as single nodes (yielding, say, 5,600 nodes). The 60
ously. Simulating the 1-node network requires simulating Medium and large hubs have more complex operations and

a state-dependent service ratg(-), whereas in the-node thus require more complicated sub-models. Suppose these
Thatis, letT (n) be the time to simulate thenode network, (arrivals + departures) of the entire NAS. Lbt be the

and letTy(n) be the time to simulate the equivalent single- total number of arrivals and departures simulated across the
service). They-axis in Figure 8 is airport goes through a single node, and each operation to a
hub goes through 10 nodes, an estimate for the simulation

9% Reduction in Simulation Time: w time of the whole network is.@5N + (0.75N)-10 = 7.75N
T(n) If we apply the low-utilization reduction (Section 3), the
As expected,‘r(n) ~ an+ b, wherea is a per-node second term reduces by about 40% (25N) - 0.6. If
run-time andb is a fixed cost. AlsoT1(n) ~ T(1). Thus, we apply the Norton reduction technique (Section 4) to the
the percent reduction is approximate|y hub ail’portS, we reduce the simulation time of the hubs by
about 80% ta0.75N) - 10-0.2. Thus, the entire simulation
T -Tm _ant+b-@+b) time goes from 775N to 1.65N, for a reduction of 79%
T(n) an+b ' (equivalently, a speedup by a factor of 5).

447



Shortle, Gross,

Of course, in this paper, we have madanysimplify-
ing assumptions. The real air transportation network is not a

Jackson network, so many more issues need to be addressed.

For example, transitions from one node to another are gov-
erned by schedules, not random probabilities. Further,
these schedules may dynamically change due to weather,
crew delays, airplane maintenance, and other factors. Also,
service times are not exponential. Thus, Norton-type reduc-

tions under these conditions are not guaranteed to be exact.

However, we conjecture that such reductions may still be
reasonably accurate under such conditions. We are currently
investigating these extensions. We are also looking at ways
of applying these ideas to sub-models which track weather,
simulate ground delay programs, cancel flights, and resolve
airplane en-route conflicts.
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