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ABSTRACT and associated parameters should be used in a simulation
model. There are many methods for dealing with such
Given uncertainty in the input model and parameters of uncertainty; see Henderson (2003) for a review. Many of
a simulation study, the goal of the simulation study often these methods impose a probability distribution on the input
becomes the estimation of a conditional expectation. The distributions and parameters. For example, this is the case in
conditional expectation is expected performance conditional the papers Cheng (1994), Cheng and Holland (1997), Cheng
on the selected model and parameters. The distribution of and Holland (1998), Cheng and Holland (2003), Chick
this conditional expectation describes precisely, and con- (2001), Zouaoui and Wilson (2001b), Zouaoui and Wilson
cisely, the impact of input uncertainty on performance pre- (2001a). See Henderson (2003) for further discussion.
diction. Inthis paperwe estimate the density of a conditional The input model uncertainty problem maps to the setting
expectation using ideas from the field of kernel density es- in this paper as follows. The random objettorresponds
timation. We present a result on asymptotically optimal to a selection of input distributions and associated param-
rates of convergence and examine a number of numerical eters for a simulation experiment. The random variable

examples. represents an estimate of a performance measure from the
simulation model. Its distribution is dependent on the choice

1 INTRODUCTION Z of input distributions and parameters. The conditional
expectation [EX| Z) represents the expected value of the per-

Let X be a real-valued random variable withX@ < oo. formance measure as a function of the input distributions

Let Z be some other random variable. The conditional and parameters. It is essentially what one would compute
expectation EX|Z) is a random variable that represents from the simulation if the simulation were allowed to run for
one’s best guess (in a certain sense) as to the valdé of an infinite amount of time. Notice that it is still a random
given only the value of the random varialie In this paper variable owing to the uncertainty in the input distributions
we assume that the random variablegXEZ) has a density and parameters. A density of K|Z) gives a sense of the
with respect to Lebesgue measure and develop a methoduncertainty in the estimate of the performance measure due
for estimating it. Our main assumptions are that to the uncertainty in the values of the input distributions
and parameters. Example 3 of Henderson (2003) discusses
1. we can generate i.i.d. replicates of the random thjs density in the setting of a queueing simulation, and

variableZ, and describes how it may be interpreted.

2. we can generate i.i.d. observations from the con- Very little work has been done on the estimation of
ditional distributionP (X € -|Z = 2) for anyzin the distribution of a conditional expectation. The most
the range ofZ. closely related work to ours involves the estimation of the

distribution functionof the conditional expectation(K|Z2).
Lee and Glynn (1999) considered the case whéris a
discrete random variable. This work was an outgrowth

In this paper we confine our attention to the case where
Z is a real-valued random variable, but we are working on
establishing analogous results wh&is a more complicated of Chapter 2 of Lee (1998), where the case wh&rés

random object. continuous is also considered. We prefer to directly estimate

Such a generalization is important, because our primary e density because we believe that the density is more easily
motivation for studying this problem stems from the issue jnerpreted (visually) than a distribution function. We use

of input model uncertainty. This form of uncertainty arises o rne| density estimation methods to estimate the required
when one is not completely certain what input distributions
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density. The analysis of our estimator draws from methods
that are used in variable-bandwidth kernel density estimation
methods (Hall 1990).

Andradottir and Glynn (2003) discuss a certain estima-
tion problem that, in our setting, is essentially the estimation
of EX. Their problem is complicated by the fact that they
explicitly allow for bias in the estimator. Such bias can
arise in steady-state simulation experiments, for example.

This paper is organized as follows. In 82 we describe our
estimation methodology, and show that under fairly general
conditions the error in our density estimator converges at
ratec~2/7, wherec is the overall computational budget. We

This estimator immediately suggests that we can esti-
mate f (x), the density of EX|Z) evaluated at x, by

. 11 /X —Xm(Z)
f(x;m,n,h):—Z—K <7>
nizlh h

where

} 13
Xm(Zi)za E Xj(Zi) for i =1,...,n
j=1

then present some numerical examples in §3. Some brief Note that the valueXm(Z;) at which the kernels are centered

conclusions and directions for future research appear in 84.

2 ESTIMATION METHODOLOGY

Our problem is very similar in structure to that of Lee
and Glynn (1999). Accordingly, we adopt much of their
problem structure and assumptions in what follows. We
assume the ability to

1. draw samples from the distributid(Z € -), and
2. for anyzin the range ofZ, to draw samples from
the conditional distributioP(X € -|Z = 2).

Let f denote the (target) density of(E|Z), which we
assume exists. LetZj : 1 < i < n) be a sequence of
independent, identically distributed (i.i.d.) copies of the
random variableZ. Conditional on(Z;j : 1 < i < n), the
sample(Xj(Zj):1<i <n, 1< j < m) consists of
independent random variables in whigh(Z;) follows the
distributionP(X € - |Z = Z;). For ease of notation define
w() =E(X|Z =) ando?(-) = Var(X|Z = -).

SupposeY isarandom variable with an unknown density
gand(Y; : 1 < i < n)is asequence of i.i.d. copies of the
random variabley. The standard kernel density estimator
at the value x is of the form

. 1< 1 /x-Y,
g(x,h)—ﬁ;HK< . )

where K is typically chosen to be a unimodal probability
density function (p.d.f.) thatis symmetric about zero and the
smoothing parametdr, often referred to as the bandwidth,

is a positive number (Wand and Jones 1995, p. 11). The misg f(-; m, n, h)) =
estimator can be crudely described as the sum of equally

weighted kernels centered at each realizatipn If the
kernel is a p.d.f., the kernel spreads out the mass/of 1
symmetrically about the neighborhood %f. In the case
that K is the p.d.f. of a standard normal random variable,

his the standard deviation and thus gives the spread of the Mise(f(-; m, n, h))

kernels.

384

are not realizations of the random variable<iEZ) as in the
standard kernel density estimation setting described above,
but rather estimates.

We wish to analyze the asymptotics of the estimator.
For a given computer budget let m = m(c) andn = n(c)
be chosen so that the total computational effort required
to generatef (x; m, n, h) is approximatelyc. Following
Lee and Glynn (1999), the computational effort required to
computef (x; m, n, h) is

a1n(c) 4+ azn(c)m(c)

wherex; anday are the average computational effort used to
generateZj andX; (Z;), respectively. We neeah(c) — oo
asc — oo to ensure thab_(m(c)(zi) — E(X|Z = Zj) and
we can assume, = 1 without loss of generality. It follows
thatm(c) andn(c) must be chosen to satisfy the asymptotic
relationshipm(c)n(c)/c — 1 asc — oo.

The bandwidthh = h(c) is also a function oft. To
keep the notation less cumbersome, the dependencg of
n, andh on c will be suppressed in the calculations.

The error criterion that we choose to use in analyzing
the convergence is mean integrated squared €mise),
defined as

misg f (-; m, n, h)) = E/ (fox; mn,h) — f(x))zdx.

This error criterion is not without its drawbacks (see De-
vroye and Gyorfi 1985) but its mathematical simplicity is
appealing. Switching the order of integration yields

/E[(fA(x; m, n, h) — f(x))z] dx.

Note that the integrand is mean squared etkd5 E) which
decomposes into squared bias and variance. We thus have

= / biag(f (x; m, n, h)) dx

+/Var( f (x; m, n, h)) dx.
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In order to simplify the bias and variance calculations we Taylor’s Theorem with integral remainder is useful in the

make the following additional assumptions. LNéta;, ap) proof of Proposition 1. We state it here as a lemma. A
denote a normally distributed random variable with mean proof can be found on p. 278 of Apostol (1967).
a; and variancey. Lemma 1 Assumef is twice continuously differ-
Al. Conditional on(Z;j : 1 < i < n), Xm(Zi) ~ entiable. Then
N(u(Zi), m162(Z;)) for i =1,...,n and are 1
(conditionally) independent; f(x+h) = f(x) +hf'(x) +h? / (1—1t) f”(x + thydt.
A2. The kernelK is the density of aN(0, 1) random 0
variable; -
A3. The functionu(-) is strictly monotonic on its do- Proposition 1 Assume A1-A7. Then
main; b\ 2
A4. The bandwidtth is defined bym = ah ¢ where mise( f(:m.n.8) = (h2+ U_) by + b2
8 > 0 anda > 0 are constants independent®f m nh

If the central limit theorem holds, then for large
assumption Al is approximately true. This assumption will
be further examined in 8§3. In A2, we specify the kernel K
to be normal. Together, the normality of A1 and A2 allow where
us to derive compact expressions for bias and variance for 1
the estimatorf (x; m, n, h). This will be illustrated in the by = 4_1/ f7(x)? dx
proof presented in 82.1.

Assumption A3 is a simplifying assumption that ensures and
that a change of variable that we employ later is valid. 1
Since we havem — oo asc — oo, A4 ensures that bz = ﬁ
h — 0 asc — oo which is necessary for convergence
in the standard kernel density estimation setting. Also Sinceh = (a/m)¥/?, (1) is equivalent to the following: for
note that given A4h is completely determined by and 0<é6<2,
8. Now tAhe density estimator Ais a function &f m, n, b L L
andé so f(x; m, n, h) and mis€f (-; m, n, h)) can now be N _ by 2
written, with an abuse of notation, aS(x; m,n,s) and miseCf(:m, &) =1+ p o <W + ﬁ) ’
mise( f (-; m, n, §)) respectively.

In §2.1 the case in which the variance functiof(-) is and foré > 2,
constantis examined. In §2.2, the general case is considered.

2 1 2 1
+0<(h +a) +ﬁ)’ 1)

mise(f (- m, n, 8)) (a)%b +b2+o( L 1)
5 m,n,8) == 1+— —+—,
2.1 Constant Variance Functiono?(-) m nh m*% ~ nh

The analysis for the case in which the variance function Where
o2(-) is constant is similar to that in the standard kernel

density estimation setting. Hence the following assump- bf = %(al =2 +02)2/ f7(x)? dx.
tions, together with A2 and A4, are similar to those found
in Prakasa Rao (1983), p. 44: Proof:

A5. f” is a bounded, continuous, square-integrable

function; E(f(x; m,n,s))

A6. nh — oo andm — oo asc — oo. 1 X — Xm(Z1)
Finally, the constant variance assumption is noted: = E (EK (f))

A7.0%()=02>0. -

In Propositions 1 and 2 we make usem{‘small oh") - E (E [ 1 K (M) ’ le ] 2)
notation. For sequences of real numbarendb,, we say h h
that .

Conditional onZ1,
an =o0(by) as n— oo iff r!iLnooan/bnzo. 2

Xm(Z1) ~ N(u(Z1), %y
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Since K is the density of aN(0,1) random variable, asc — oo. It follows that
h=1K (-/h) is the density of aN(0, h?) random variable.

Then the conditional expectation above is a convolution of / biag( f (x; m, n, §)) dx
the densities of two normal random variables and so

2, 0° ’ 2, 1 2
E(fA(X; m, n,(S)):E(\/ K ()i/—/t(zl))) = <h +E) b1+0<<h +a) ) (5)
h2 + h2

Similarly,
Define Var(f (x; m, n, 8))
e _ [ <}K <Mm
m h
so thatE fA(x; m, n, h) can be expressed as — [ ((% <m>> >
2
(Ge(=) o ( (5 =Z=)] e
n n h
A change of variable using A3 shows that (3) is given by _ <E[ 1 (X - )-(m(zl)) } 2 D
. nh 2f h/v/2 h/v/2
X—y 1
/ EK(T> fndy. ) +0(nh) (7)

and another change of variable gives To obtain (7) we have used the fact that the second term in (6)

is f2(x) plus error terms, as shown in the bias calculations
/ f (X —un)K () du. above. Therefore, the second term in (6) is of ondet
and thereforeo((nh)~1). We then use the fact that when

Ch2y i , . ;
Since f is twice continuously differentiable, we have by K(-; h%) is the density of a normal random variable with
Lemma 1 that mean 0 and variande?,

¢ K(-:h?/2)
Ef(x;m,n, h) KZ(.;hZ):T

- f(x)/ K (W) du — nf'(x) / UK (U) du to obtain (7).
1 Applying the same steps to
+ ;72// (1 —1t) f”(x — tun)u?K (u) dtdu
0

1
f(x) + 772// (1 —t) f”(x — tun)u?K (u) dtdu. h/+/2 h/v/2
0

as were applied to

Then we have

1 (x— Xm(Z1)
/biasz(fA(x; m, n, §)) dx E<E[HK <f> ‘ ZlD
! 2 ives
= n“/ [/ (l—t)f”(x—tun)uzK(u)dtdu} dx. gv
0 var(f(xmné))—i—1 f(x)+o0 1
nh2/x nh

A rather involved argument that uses Lebesgue’s dominated
convergence theorem (see, e.g., p. 45 of Prakasa Rao 1983)rpa
establishes that

L 2 /var( f(x;m,n,8))dx = t 1 +o0 (i) . (9)
/[/ (1—t)f”(x—tun)uzK(u)dtdu} dx — b nh2,/7 nh
0

and (1) follows from (5) and (9).
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The normality given by Al and A2 assures that the which in turn give the optimal rate of convergence of
convolutionsin (2) and (8) have well defined forms. Specifi- mise(f(-; m, n, §)).
cally, for each convolution we get a normal density evaluated As mentioned above, we must satisfy the asymptotic
at x with expectation and variance resulting from the sum relationshipm(c)n(c)/c — 1 asc — oo. For the large
of the convolved distributions’ expectations and variances, sample approximation, take= c/m. It turns out that for
respectively. Consider (4) which is immediate from the any givens, we can solve fom* and thusn* = ¢/m*:
convolution performed on the expectation. This shows that
we are effectively doing standard kernel density estimation m*(8) = {
using kernels that have squared bandwigth= h2+m~152
rather than jush2. Note that the extra componemt 152
is the variance of the error of the estimaXg,(Z1) about
E(X]Z1) conditional onZ;. So under the the stated assump- dy(8) = al/@+D < 2b$s
tions, the effect of using estimateé,(Z) of realizations b (8 + 1)
of E(X]|2) rather than actual realizations of X|Z) is an
effective bandwidth whose square is wider thenby the 5/(5.45)
variance of the error of the estimate. dp(8) = a%/(@+9) < 4y )
Compare (1) to the mise in standard kernel density b2(§ + 1)

estimation (Wand and Jones 1995), We note thatm* and n* are such that assumption A6
holds for anys. Substituting into our expressions for
amisé f (-; m, n, §)) gives

di($)c¥/GH+D jfo <5 <2
do(8)c¥/ 6D jf § > 2,

where

)

)5/(35+1)

and

miseg(-; h) = h4b1/u2K(u)du+n—lh/ K (u)2du

di(8)c2/G5+D if0 <5 <2

1
+o(h* + %) (10)
do(§)c Y6+ if § > 2,

amisé f (-; m*; n*; §)) = {
Note that whenK is the density of aN(0,1) random

variable, where
/uZK(u) du=1 i) = a*2/<35+1)b§5/(35+1)
and 35+1 2pgs | CHD/ @D
1 X 9
K(Uu)ldu= ——, < 25 )((5+1))
/ du= 57

in which case (10) is precisely the same as (1) except for the and

order of the leading term on thﬁ-bias?— dx term. For (10)

it is h* whereas for (1) it igh? + m~102)2. Recalling that G(8) = (abp)¥/+5) (ﬂ) (4_bl
h = (a/m)¥%, we see the order on thgbias dx term in 2300 = 4 s+1
(1) is actually larger for O< § < 2 as compared to (10). For

8 > 2, the order is the same. So the wider bandwidth arising Thus the best rate of convergence is attained*at 2.

>(5+1)/(8+5)

from using estimates rather than realizations ¢XE2) Then the optimal choice of m is
translates into diminished convergence on theias’ dx .
term in mise for O< § < 2. m* = dc?/’,

We wish to choose, m, ands to optimize the rate of
convergence of migd (-; m, n, §)) in terms of the computer where

budgetc and compare it to the optimal rate of convergence 4pe\ 2/7
for standard kernel density estimation. To do this, we d=al’ <—1) ,
drop the low order terms and consider the large sample 3b2
approximation of misef (-; m, n, §)): and the optimal amise is

. b b i amisé f (-; m*; n*; §%)) = dc#/’
amise f(;m,n,8)) = m? T nh If0<6=2 &1 (;ms % 80) ’

4/5 .
(%) / b1 + % if § > 2. where

Here, amise stands for asymptotic mean integrated squared ~ ot (7 4b% 3/7
error. We now solve for ther®, m*, and §* that give d=a? b, (Z) (?> .
the optimal rate of convergence of ami$€; m,n,§)),
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The optimal rate of convergence of mise is thus"/”. We remark that the condition that-) be bounded away
Although m* given above is the optimal choice of m for  from zero is used only for the cases (0, 2).
this rate of convergence, it is possible to achieve the rate The only difference in mise in the constant variance

¢ %7 so long as asymptotically function case and the general variance function case is in the
coefficient of the/ biag dx term when 0< § < 2. In the
m(c) = dgc% general case, we hay® whereas in the constant variance
function case we have}. We first note that when we have
for any positive constards and of coursen = cm 1. a constant variance function 3(-) = 0?), p(-) = 0% and

In standard kernel density estimation, the optimal rate 0’ and p” are zero so thabj simplifies tobf. Secondly
of convergence is—#/5 (Wand and Jones 1995, p. 23). The We note that in the general case’(-) plays a significant
decrease in rate of convergence is expected in that for eachrole in the constanbj through the functiong, o', and
of then observationsXm(Zi), m units of computer time are ~ ¢”. And finally we note that if we define the function
required andm — oo asc — oo, whereas in the standard ~ B() = f(-)p(-), b is very similar to
kernel density estimation setting, each observation requires
only one unit of computer time. In addition, as we noted }/(ﬁ“(x))z dx.
above, for 0< 8 < 2 the convergence of biag dx in the 4
expression for mise is slower in this setting as compared to )
standard kernel density estimation. The slower convergence SO We expecbj to be large when the functiof”(-) tends

for 0 < § < 2 induces choosing® = 2 so that it does play {0 be large in magnitude.

a role in determining the optimal rate of convergence. Following the same line of reasoning as in the constant
variance case, the best rate of convergence is attained at
2.2 General Variance Functiono2(-) §*=2and
m* = dvc2/7

Inthis section, assumption A7 is relaxed. Define the function

p() = o?(u~1()). We make the following additional  where

assumptions: 2/7
40 — a1/7(4_bi) / _

A8. The functionp(-) is bounded above and also away 302

from zero, is twice differentiable and its derivatives

- The optimal amise is
are continuous and bounded;

A9. f, f/, and f” are square integrable. amisé f (-; m*; n*; 8%)) = dve=47,
Proposition 2  Assume Al1l-A6, A8 and A9. Then where
forO<é <2, o\ 37
() ()"
mise(fA(»mn5)):ﬁ+g+o(i+i) © \4 3
o m2  nh m2  nh/’

So the same rate is achieved as in the constant variance
and fors > 2 case but the coefficient is different. We again note that the
optimal ratec—%7 is attainable provided that asymptotically

mise(fA(-mné))—(i>4/8b R G .
T T \m 1 hh mi  nh)’ m = dac?
where for any positive constards andn = cm1.
1
by = 2 /[f”(x)(al (3=2) +p(x) 3 EXAMPLES
+2f/ ()" (X) + f (x)p” (X)]2dX, In this section we examine the convergence of a few basic
examples and compare to the theoretical results presented

andb; andb, are the same as above. in 82. Specifically, for each example we look at mise as

The proof of Proposition 2, which uses techniques a function of the computer budget For clarity, we no
from the variable bandwidth literature (Hall 1990) but is longer suppress the dependence of our functions. dfor
otherwise similar to the proof of Proposition 1, will be given ~ €xample, we now write mige), m(c), andn(c).
elsewhere.
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To estimate misg), we first replicate the density es-
timator 50 independent times:

{fi(;m(c), n(c),8) : k=1,...,50.

We define integrated squared error (ise) as follows:

ise(c) :/[f(x; m(c), n(c), §) — f (x)]%dx.

For each k=1,..., 50, we use numerical integration to ap-
proximately compute

isex(c) =/[ﬁ<(x; m(c), n(c), §) — ()% dx.

Our estimate for migg) is then

L 50
— Z ise(C).
50 —

In calculatingfk(-; m(c), n(c), §) we takes = 2, andm(c) =
lrc?/7] as suggested in §2, where the constants chosen
in brief preliminary experiments to be 30 for Example 1
and 1 for the other examples. We tobk= m~/% (so that

a = 1). We estimate mige) for the following values ot:

{c=1024x 2" :1=1,...,8}.

Example 1: In the first example we |eZ ~ Beta4, 4)
(a Betdaz, ap) random variable has density @8, 1) pro-
portional tox®~1(1 — x)2-1) and conditional orZ = z,
X ~ N(z,0.5). Then the true density of the conditional ex-
pectationf is just the density of the Beté, 4) distribution.
In Figure 1, we plot logmisgc)) vs. log(c).

The linearity of the plot suggests that asymptotically,

misgc) = V.

for some constanty/ and y. Theoretically we expect
y = —4/7 =~ —0.57. Note thaty is the slope of the
(log(c), log(mise(c))) plot and the estimated slope of the
plot in Figure 1 is -0.54. This is very close to the expected
rate of convergence.

Example 2: Inthis example we consider a non-constant
variance functiors2(-). Once again, leZ ~ Beta4, 4).
Conditional onZ = z, we takeX ~ N(z, z2). The target
density f is again the density of the Betg 4) distribution.

We present the lagnisgc)) vs. logc) plot in Figure 2.
The plot is linear and the slope is estimated to be -0.45,
indicating poorer convergence as compared to Example 1.
This is likely the result of the variance functierf(z) = z2

on the interval(0, 1) and zero elsewhere. We will further
discuss the impact of this variance function in Example 3
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log(MISE) vs. log(c)
T T T

Iog(MISE)

.5 9 9.5 ID;(UC) 105 11 115 12 125
Figure 1: Mean Integrated Squared Error
as a Function of Computational Budget for
Example 1

but we note here that this variance function does not satisfy
the smoothness assumption A8zat 1.

log(MISE) vs. log(c)
T T T

_25k

log(MISE)

_35

45 L L L L L L I I I
75 8 85 9 95 10 105 1 115 12 125

log(c)

Figure 2: Mean Integrated Squared Error
as a Function of Computational Budget for
Example 2

Example 3: In this example we study the impact
of violating the assumption Al in which we assume that
conditional on(Zj : 1 < i < n), Xm(Zi) is normally
distributed fori =1, ..., n. We takeZ to have a Betél, 4)
distribution shifted to the right by one unit so the suppo& of
isthe intervall, 2). ConditionalonZ = z, we now suppose
X ~ exp(1l/2),i.e., conditional orZ = z, X is exponentially
distributed with mean /z. Note that conditional or§Z; :
1<i < n),Xm(Z)~Gammam, Zi/m)fori =1,...,n
(a Gammaéay, ap) random variable has density @f, co)
proportional tox2~1e */2) so that assumption Al is
violated. The target density is the Bet#4, 4) density
shifted to the right by one unit.
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In Figure 3, we give the lognisgc)) vs. log(c) plot.

C = 262144. Forc = 262144, the density estimate is

The slope is estimated to be -0.44. The rates of convergenceslightly skewed to the left. This same skewness was evident

in Examples 2 and 3 are quite similar, suggesting that
the normality of Xm(Zi), i = 1,...,n, is not crucial to
the rate of convergence. This is to be expected since
the central limit theorem (CLT) tells us that, conditional
on(Zi : 1< i < n) for large m, Xm(Z;) behaves
approximately like a random variable withN(Z;, Ziz/ m)
distribution as in Example 2.

Iog(MISE) vs. log(c)

-

5k

10g(MISE)

0 I
75 8

I I I I I I I
85 9 9.5 10 105 11 115 12 125
log(c)

Figure 3: Mean Integrated Squared Error

as a Function of Computational Budget for
Example 3

T
©c=2048

— - c=262144

—— true density

151

density

0.5 b
N

L L L L L
15 16 17 18 1.9 2
X

L L L L
1 11 12 13 14

Figure 4: The True Density and Two Esti-
mators for Example 3

The rate—0.44 is not as good as that seen in Example 1.
We suspect that this reduction in rate, and that seen in
Example 2, is due to the functign(-) being discontinuous
atz=1,2. This “boundary effect” is perhaps evident in
Figure 4 where the performance of the density estimates
deteriorates near the boundaries of the plot. The density
estimate forc = 2048 is quite poor, but improves when
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in other independent replications of the experiment. We
believe that the skewness is a natural result of the form of
the variance function 2(z) = z2 on the intervall, 2) and
zero elsewhere. Recall that to generate the estimated density
our observationXm(Zi), i = 1,...,n, are smoothed by
normal kernels with bandwidtth? + o2(Z;)/m)¥2. For
large m, Xm(Z;j) ~ Zj. Then the observationXm(Z;),
i = 1,...,n that are larger in value are smoothed more
than the observations with smaller value resulting in the
skewness seen in the plot.

This “nonuniform smoothing” will probably be typical
in examples with nonconstant variance, but the theory pre-
sented in this paper shows that the convergence rate will not
be affected. Of course, while tlrate may not be affected,
the magnitude of the error may be significantly affected
through multiplicative constants.

4 CONCLUSIONS AND FUTURE RESEARCH

We have shown how to share a computational budget between
external sampling ofZ and internal sampling conditional
on values ofZ so as to minimize the amise of the density
estimator. The amise can converge to 0 at raté/’,
wherec is the computational budget. This is slower than
the c=#/° rate exhibited in the standard density estimation
context, and both of these rates are slower than the standard
Monte Carlo rate—1 when one is estimating an expectation.
Nevertheless, we believe that the insight one obtains from the
estimated density justifies the additional computational effort
involved. Furthermore, one does not need an especially
accurate estimate of the density in order to get some idea
of the extent of the effect of input uncertainty.

Clearly much remains to be done.

* We need to generalize our results beyond the case
where Z is real-valued, so as to capture multiple
input parameters and/or distributions.

e The rate of convergence of the estimator seems to
strongly depend on the smoothnesspofind, as
observed in experiments not reported here, smooth-
ness of the target density. We need to understand
this better.

* In view of the relatively slow convergence of our
estimators, confidence intervals for estimates of
f (x), or more generally, confidence bands for the
entire densityf would be of great value.

« A key assumption is thaKm(z) is exactly nor-
mally distributed. This assumption often holds
approximately due to the central limit theorem,
since we requirem to grow with the computa-
tional budget. The results for Example 3 suggest
that non-normalitymay not severely impact the
rate of convergence, but we need to better under-
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stand this impact. It is also of interest to consider Hall, P. 1990. On the bias of variable bandwidth curve

problems that do not fit the framework here, such estimatorsBiometrika77 (3): 529-535.
as steady-state simulation and quantile estimation. Henderson, S. G. 2003. Input model uncertainty: why do we

*  We have shown how to choose the bandwidth only care and what should we do about it? Rroceedings
up to a multiplicative constant. This constant can of the 2003 Winter Simulation Conferenas. S. E.
have a strong impact on the performance of the Chick, P. J. Sanchez, D. J. Morrice, and D. Ferrin, To
estimator, eventhough it doesn’t change the asymp- appear. Piscataway, NJ: IEEE.
totic rate of convergence. So just asin the standard Lee, S. H. 1998Monte Carlo Computation of Conditional
kernel-density estimation case, bandwidth selection Expectation QuantilesPh.D. thesis, Stanford Univer-
remains an issue. sity, Stanford, CA.

» Inview of the popularity of histogram estimators, Lee, S.H., and P. W. Glynn. 1999. Computing the distribution
it would be interesting to explore their asymptotic function of a conditional expectation via Monte Carlo:
performance in our setting. They are known to discrete conditioning spaces.Pnmoceedings of the 1999
converge at a slower rate than kernel-based esti- Winter Simulation Conferenceed. P. A. Farrington,
mators in the i.i.d. setting (Freedman and Diaconis H. Black Nembhard, D. T. Sturrock, and G. W. Evans,
1981). 1654-1663. Piscataway, NJ: IEEE.

We are pursuing, or plan to pursue, all of these topics. Prakasa Rao, B. L. S. 198Bonparametric Functional
Estimation New York: Academic Press.
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