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ABSTRACT

Given uncertainty in the input model and parameters
a simulation study, the goal of the simulation study ofte
becomes the estimation of a conditional expectation. T
conditional expectation is expected performance condition
on the selected model and parameters. The distribution
this conditional expectation describes precisely, and co
cisely, the impact of input uncertainty on performance pr
diction. In this paper we estimate the density of a condition
expectation using ideas from the field of kernel density e
timation. We present a result on asymptotically optim
rates of convergence and examine a number of numeri
examples.

1 INTRODUCTION

Let X be a real-valued random variable with E|X| < ∞.
Let Z be some other random variable. The condition
expectation E(X|Z) is a random variable that represent
one’s best guess (in a certain sense) as to the value oX
given only the value of the random variableZ. In this paper
we assume that the random variable E(X|Z) has a density
with respect to Lebesgue measure and develop a met
for estimating it. Our main assumptions are that

1. we can generate i.i.d. replicates of the rando
variableZ, and

2. we can generate i.i.d. observations from the co
ditional distributionP(X ∈ · |Z = z) for any z in
the range ofZ.

In this paper we confine our attention to the case whe
Z is a real-valued random variable, but we are working o
establishing analogous results whenZ is a more complicated
random object.

Such a generalization is important, because our prima
motivation for studying this problem stems from the issu
of input model uncertainty. This form of uncertainty arise
when one is not completely certain what input distribution
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and associated parameters should be used in a simula
model. There are many methods for dealing with su
uncertainty; see Henderson (2003) for a review. Many
these methods impose a probability distribution on the inp
distributions and parameters. For example, this is the cas
the papers Cheng (1994), Cheng and Holland (1997), Ch
and Holland (1998), Cheng and Holland (2003), Chic
(2001), Zouaoui and Wilson (2001b), Zouaoui and Wilso
(2001a). See Henderson (2003) for further discussion.

The input model uncertainty problem maps to the setti
in this paper as follows. The random objectZ corresponds
to a selection of input distributions and associated para
eters for a simulation experiment. The random variableX
represents an estimate of a performance measure from
simulation model. Its distribution is dependent on the cho
Z of input distributions and parameters. The condition
expectation E(X|Z) represents the expected value of the pe
formance measure as a function of the input distributio
and parameters. It is essentially what one would comp
from the simulation if the simulation were allowed to run fo
an infinite amount of time. Notice that it is still a random
variable owing to the uncertainty in the input distribution
and parameters. A density of E(X|Z) gives a sense of the
uncertainty in the estimate of the performance measure
to the uncertainty in the values of the input distribution
and parameters. Example 3 of Henderson (2003) discus
this density in the setting of a queueing simulation, a
describes how it may be interpreted.

Very little work has been done on the estimation
the distribution of a conditional expectation. The mo
closely related work to ours involves the estimation of th
distribution functionof the conditional expectation E(X|Z).
Lee and Glynn (1999) considered the case whereZ is a
discrete random variable. This work was an outgrow
of Chapter 2 of Lee (1998), where the case whereZ is
continuous is also considered. We prefer to directly estim
the density because we believe that the density is more ea
interpreted (visually) than a distribution function. We us
kernel density estimation methods to estimate the requi
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density. The analysis of our estimator draws from method
that are used in variable-bandwidthkernel density estimatio
methods (Hall 1990).

Andradóttir and Glynn (2003) discuss a certain estima
tion problem that, in our setting, is essentially the estimatio
of E X. Their problem is complicated by the fact that they
explicitly allow for bias in the estimator. Such bias can
arise in steady-state simulation experiments, for example

This paper is organized as follows. In §2 we describe o
estimation methodology, and show that under fairly gener
conditions the error in our density estimator converges
ratec−2/7, wherec is the overall computational budget. We
then present some numerical examples in §3. Some br
conclusions and directions for future research appear in §

2 ESTIMATION METHODOLOGY

Our problem is very similar in structure to that of Lee
and Glynn (1999). Accordingly, we adopt much of thei
problem structure and assumptions in what follows. W
assume the ability to

1. draw samples from the distributionP(Z ∈ ·), and
2. for anyz in the range ofZ, to draw samples from

the conditional distributionP(X ∈ · |Z = z).

Let f denote the (target) density of E(X|Z), which we
assume exists. Let(Zi : 1 ≤ i ≤ n) be a sequence of
independent, identically distributed (i.i.d.) copies of the
random variableZ. Conditional on(Zi : 1 ≤ i ≤ n), the
sample(X j (Zi ) : 1 ≤ i ≤ n, 1 ≤ j ≤ m) consists of
independent random variables in whichX j (Zi ) follows the
distributionP(X ∈ · |Z = Zi ). For ease of notation define
µ(·) ≡ E(X|Z = ·) andσ 2(·) ≡ Var(X|Z = ·).

Suppose Y is a random variable with an unknown densi
g and(Yi : 1 ≤ i ≤ n) is a sequence of i.i.d. copies of the
random variableY. The standard kernel density estimato
at the value x is of the form

ĝ(x; h) = 1

n

n∑
i=1

1

h
K

(
x − Yi

h

)
,

where K is typically chosen to be a unimodal probability
density function (p.d.f.) that is symmetric about zero and th
smoothing parameterh, often referred to as the bandwidth,
is a positive number (Wand and Jones 1995, p. 11). Th
estimator can be crudely described as the sum of equa
weighted kernels centered at each realizationYi . If the
kernel is a p.d.f., the kernel spreads out the mass of 1/n
symmetrically about the neighborhood ofYi . In the case
that K is the p.d.f. of a standard normal random variable
h is the standard deviation and thus gives the spread of t
kernels.
s
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This estimator immediately suggests that we can es
mate f (x), the density of E(X|Z) evaluated at x, by

f̂ (x; m, n, h) = 1

n

n∑
i=1

1

h
K

(
x − X̄m(Zi )

h

)
,

where

X̄m(Zi ) = 1

m

m∑
j =1

X j (Zi ) for i = 1, . . . , n.

Note that the values̄Xm(Zi ) at which the kernels are centered
are not realizations of the random variable E(X|Z) as in the
standard kernel density estimation setting described abo
but rather estimates.

We wish to analyze the asymptotics of the estimato
For a given computer budgetc, let m = m(c) andn = n(c)
be chosen so that the total computational effort requir
to generate f̂ (x; m, n, h) is approximatelyc. Following
Lee and Glynn (1999), the computational effort required
compute f̂ (x; m, n, h) is

α1n(c) + α2n(c)m(c)

whereα1 andα2 are the average computational effort used
generateZi andX j (Zi ), respectively. We needm(c) → ∞
asc → ∞ to ensure thatX̄m(c)(Zi ) → E(X|Z = Zi ) and
we can assumeα2 = 1 without loss of generality. It follows
thatm(c) andn(c) must be chosen to satisfy the asymptoti
relationshipm(c)n(c)/c → 1 asc → ∞.

The bandwidthh = h(c) is also a function ofc. To
keep the notation less cumbersome, the dependence ofm,
n, andh on c will be suppressed in the calculations.

The error criterion that we choose to use in analyzin
the convergence is mean integrated squared error(mise),
defined as

mise( f̂ (·; m, n, h)) = E
∫ (

f̂ (x; m, n, h) − f (x)
)2 dx.

This error criterion is not without its drawbacks (see De
vroye and Györfi 1985) but its mathematical simplicity i
appealing. Switching the order of integration yields

mise( f̂ (·; m, n, h)) =
∫

E
[
( f̂ (x; m, n, h) − f (x))2

]
dx.

Note that the integrand is mean squared error(MSE) which
decomposes into squared bias and variance. We thus h

mise( f̂ (·; m, n, h)) =
∫

bias2( f̂ (x; m, n, h)) dx

+
∫

Var( f̂ (x; m, n, h)) dx.
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In order to simplify the bias and variance calculations w
make the following additional assumptions. LetN(a1, a2)

denote a normally distributed random variable with mea
a1 and variancea2.

A1. Conditional on(Zi : 1 ≤ i ≤ n), X̄m(Zi ) ∼
N(µ(Zi ), m−1σ 2(Zi )) for i = 1, . . . , n and are
(conditionally) independent;

A2. The kernelK is the density of aN(0, 1) random
variable;

A3. The functionµ(·) is strictly monotonic on its do-
main;

A4. The bandwidthh is defined bym = ah−δ where
δ > 0 anda > 0 are constants independent ofc.

If the central limit theorem holds, then for largem
assumption A1 is approximately true. This assumption w
be further examined in §3. In A2, we specify the kernel
to be normal. Together, the normality of A1 and A2 allow
us to derive compact expressions for bias and variance
the estimatorf̂ (x; m, n, h). This will be illustrated in the
proof presented in §2.1.

Assumption A3 is a simplifying assumption that ensure
that a change of variable that we employ later is vali
Since we havem → ∞ as c → ∞, A4 ensures that
h → 0 as c → ∞ which is necessary for convergenc
in the standard kernel density estimation setting. Als
note that given A4,h is completely determined bym and
δ. Now the density estimator is a function ofx, m, n,
andδ so f̂ (x; m, n, h) and mise( f̂ (·; m, n, h)) can now be
written, with an abuse of notation, aŝf (x; m, n, δ) and
mise( f̂ (·; m, n, δ)) respectively.

In §2.1 the case in which the variance functionσ 2(·) is
constant is examined. In §2.2, the general case is conside

2.1 Constant Variance Functionσ 2(·)

The analysis for the case in which the variance functio
σ 2(·) is constant is similar to that in the standard kern
density estimation setting. Hence the following assum
tions, together with A2 and A4, are similar to those foun
in Prakasa Rao (1983), p. 44:

A5. f ′′ is a bounded, continuous, square-integrab
function;

A6. nh → ∞ andm → ∞ asc → ∞.

Finally, the constant variance assumption is noted:
A7. σ 2(·) ≡ σ 2 > 0.
In Propositions 1 and 2 we make use ofo (“small oh")

notation. For sequences of real numbersan andbn, we say
that

an = o(bn) as n → ∞ iff lim
n→∞ an/bn = 0.
r

.

d.

l
-

Taylor’s Theorem with integral remainder is useful in the
proof of Proposition 1. We state it here as a lemma. A
proof can be found on p. 278 of Apostol (1967).

Lemma 1 Assume f is twice continuously differ-
entiable. Then

f (x + h) = f (x) + h f ′(x) + h2
∫ 1

0
(1 − t) f ′′(x + th)dt .

Proposition 1 Assume A1-A7. Then

mise( f̂ (·; m, n, δ)) =
(

h2 + σ 2

m

)2

b1 + b2

nh

+o

(
(h2 + 1

m
)2 + 1

nh

)
, (1)

where

b1 = 1

4

∫
f ′′(x)2 dx

and

b2 = 1

2
√

π
.

Sinceh = (a/m)1/δ, (1) is equivalent to the following: for
0 < δ ≤ 2,

mise( f̂ (·; m, n, δ)) = bc
1

m2 + b2

nh
+ o

(
1

m2 + 1

nh

)
,

and forδ > 2,

mise( f̂ (·; m, n, δ)) =
( a

m

)4/δ

b1+ b2

nh
+o

(
1

m4/δ
+ 1

nh

)
,

where

bc
1 = 1

4
(a I (δ = 2) + σ 2)2

∫
f ′′(x)2 dx.

Proof:

E( f̂ (x; m, n, δ))

= E

(
1

h
K

(
x − X̄m(Z1)

h

))

= E

(
E

[
1

h
K

(
x − X̄m(Z1)

h

) ∣∣∣∣ Z1

])
. (2)

Conditional onZ1,

X̄m(Z1) ∼ N(µ(Z1),
σ 2

m
).
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Since K is the density of aN(0, 1) random variable,
h−1K (·/h) is the density of aN(0, h2) random variable.
Then the conditional expectation above is a convolution
the densities of two normal random variables and so

E( f̂ (x; m, n, δ)) = E


 1√

h2 + σ2

m

K


x − µ(Z1)√

h2 + σ2

m




 .

Define

η =
√

h2 + σ 2

m
,

so thatE f̂ (x; m, n, h) can be expressed as

E

(
1

η
K

(
x − µ(Z1)

η

))
. (3)

A change of variable using A3 shows that (3) is given b

∫
1

η
K

(
x − y

η

)
f (y) dy, (4)

and another change of variable gives

∫
f (x − uη)K (u) du.

Since f is twice continuously differentiable, we have by
Lemma 1 that

E f̂ (x; m, n, h)

= f (x)

∫
K (u) du − η f ′(x)

∫
uK(u) du

+ η2
∫∫ 1

0
(1 − t) f ′′(x − tuη)u2K (u) dtdu

= f (x) + η2
∫∫ 1

0
(1 − t) f ′′(x − tuη)u2K (u) dtdu.

Then we have∫
bias2( f̂ (x; m, n, δ)) dx

= η4
∫ [ ∫∫ 1

0
(1 − t) f ′′(x − tuη)u2K (u) dtdu

]2

dx.

A rather involved argument that uses Lebesgue’s dominat
convergence theorem (see, e.g., p. 45 of Prakasa Rao 19
establishes that

∫ [ ∫∫ 1

0
(1 − t) f ′′(x − tuη)u2K (u) dtdu

]2

dx → b1
f

d
83)

asc → ∞. It follows that∫
bias2( f̂ (x; m, n, δ)) dx

=
(

h2 + σ 2

m

)2

b1 + o

((
h2 + 1

m

)2
)

. (5)

Similarly,

Var( f̂ (x; m, n, δ))

= 1

n

[
var

(
1

h
K

(
x − X̄m(Z1)

h

))]

= 1

n

[
E

((
1

h
K

(
x − X̄m(Z1)

h

))2)

−
(

E

(
1

h
K

(
x − X̄m(Z1)

h

)))2 ]
(6)

= 1

nh

1

2
√

π
E

(
E

[
1

h/
√

2
K

(
x − X̄m(Z1)

h/
√

2

) ∣∣∣∣ Z1

])

+o

(
1

nh

)
. (7)

To obtain (7) we have used the fact that the second term in (6
is f 2(x) plus error terms, as shown in the bias calculations
above. Therefore, the second term in (6) is of ordern−1

and thereforeo((nh)−1). We then use the fact that when
K ( · ; h2) is the density of a normal random variable with
mean 0 and varianceh2,

K 2( · ; h2) = K ( · ; h2/2)√
2π

to obtain (7).
Applying the same steps to

E

(
E

[
1

h/
√

2
K

(
x − X̄m(Z1)

h/
√

2

) ∣∣∣∣ Z1

])
(8)

as were applied to

E

(
E

[
1

h
K

(
x − X̄m(Z1)

h

) ∣∣∣∣ Z1

])

gives

var( f̂ (x; m, n, δ)) = 1

nh

1

2
√

π
f (x) + o

(
1

nh

)
.

Then∫
var( f̂ (x; m, n, δ)) dx = 1

nh

1

2
√

π
+ o

(
1

nh

)
, (9)

and (1) follows from (5) and (9).
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The normality given by A1 and A2 assures that the
convolutions in (2) and (8) have well defined forms. Specifi-
cally, for each convolution we get a normal density evaluate
at x with expectation and variance resulting from the sum
of the convolved distributions’ expectations and variances
respectively. Consider (4) which is immediate from the
convolution performed on the expectation. This shows tha
we are effectively doing standard kernel density estimatio
using kernels that have squared bandwidthη2 = h2+m−1σ 2

rather than justh2. Note that the extra componentm−1σ 2

is the variance of the error of the estimateX̄m(Z1) about
E(X|Z1) conditional onZ1. So under the the stated assump-
tions, the effect of using estimates̄Xm(Z) of realizations
of E(X|Z) rather than actual realizations of E(X|Z) is an
effective bandwidth whose square is wider thanh2 by the
variance of the error of the estimate.

Compare (1) to the mise in standard kernel densit
estimation (Wand and Jones 1995),

mise(ĝ(·; h)) = h4b1

∫
u2K (u) du + 1

nh

∫
K (u)2 du

+ o(h4 + 1

nh
). (10)

Note that whenK is the density of aN(0, 1) random
variable, ∫

u2K (u) du = 1

and ∫
K (u)2 du = 1

2
√

π
,

in which case (10) is precisely the same as (1) except for th
order of the leading term on the

∫
bias2 dx term. For (10)

it is h4 whereas for (1) it is(h2 + m−1σ 2)2. Recalling that
h = (a/m)1/δ, we see the order on the

∫
bias2 dx term in

(1) is actually larger for 0< δ < 2 as compared to (10). For
δ ≥ 2, the order is the same. So the wider bandwidth arisin
from using estimates rather than realizations of E(X|Z)

translates into diminished convergence on the
∫

bias2 dx
term in mise for 0< δ < 2.

We wish to choosen, m, andδ to optimize the rate of
convergence of mise( f̂ (·; m, n, δ)) in terms of the computer
budgetc and compare it to the optimal rate of convergence
for standard kernel density estimation. To do this, we
drop the low order terms and consider the large samp
approximation of mise( f̂ (·; m, n, δ)):

amise( f̂ (·; m, n, δ)) =
{

bc
1

m2 + b2
nh if 0 < δ ≤ 2( a

m

)4/δ
b1 + b2

nh if δ > 2.

Here, amise stands for asymptotic mean integrated squar
error. We now solve for then∗, m∗, and δ∗ that give
the optimal rate of convergence of amise( f̂ (·; m, n, δ)),
d

,

t

e

g

e

ed

which in turn give the optimal rate of convergence o
mise( f̂ (·; m, n, δ)).

As mentioned above, we must satisfy the asymptot
relationshipm(c)n(c)/c → 1 as c → ∞. For the large
sample approximation, taken = c/m. It turns out that for
any givenδ, we can solve form∗ and thusn∗ = c/m∗:

m∗(δ) =
{

d1(δ)cδ/(3δ+1) if 0 < δ ≤ 2
d2(δ)cδ/(δ+5) if δ > 2,

where

d1(δ) = a1/(3δ+1)

(
2bc

1δ

b2(δ + 1)

)δ/(3δ+1)

,

and

d2(δ) = a5/(δ+5)

(
4b1

b2(δ + 1)

)δ/(δ+5)

.

We note thatm∗ and n∗ are such that assumption A6
holds for any δ. Substituting into our expressions for
amise( f̂ (·; m, n, δ)) gives

amise( f̂ (·; m∗; n∗; δ)) =
{

d̄1(δ)c−2δ/(3δ+1) if 0 < δ ≤ 2
d̄2(δ)c−4/(δ+5) if δ > 2,

where

d̄1(δ) = a−2/(3δ+1)b2δ/(3δ+1)
2

×
(

3δ + 1

2δ

)(
2bc

1δ

(δ + 1)

)(δ+1)/(3δ+1)

,

and

d̄2(δ) = (ab2)
4/(δ+5)

(
5 + δ

4

)(
4b1

δ + 1

)(δ+1)/(δ+5)

.

Thus the best rate of convergence is attained atδ∗ = 2.
Then the optimal choice of m is

m∗ = dc2/7,

where

d = a1/7
(

4bc
1

3b2

)2/7

,

and the optimal amise is

amise( f̂ (·; m∗; n∗; δ∗)) = d̄c−4/7,

where

d̄ = a−2/7b4/7
2

(
7

4

)(
4bc

1

3

)3/7

.
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The optimal rate of convergence of mise is thusc−4/7.
Although m∗ given above is the optimal choice of m for
this rate of convergence, it is possible to achieve the ra
c−4/7 so long as asymptotically

m(c) = d3c
2
7

for any positive constantd3 and of coursen = cm−1.
In standard kernel density estimation, the optimal rat

of convergence isc−4/5 (Wand and Jones 1995, p. 23). The
decrease in rate of convergence is expected in that for ea
of then observations̄Xm(Zi ), m units of computer time are
required andm → ∞ asc → ∞, whereas in the standard
kernel density estimation setting, each observation requir
only one unit of computer time. In addition, as we noted
above, for 0< δ < 2 the convergence of

∫
bias2 dx in the

expression for mise is slower in this setting as compared
standard kernel density estimation. The slower convergen
for 0 < δ < 2 induces choosingδ∗ = 2 so that it does play
a role in determining the optimal rate of convergence.

2.2 General Variance Functionσ 2(·)

In this section, assumption A7 is relaxed. Define the functio
ρ(·) ≡ σ 2(µ−1(·)). We make the following additional
assumptions:

A8. The functionρ(·) is bounded above and also away
from zero, is twice differentiable and its derivatives
are continuous and bounded;

A9. f , f ′, and f ′′ are square integrable.

Proposition 2 Assume A1-A6, A8 and A9. Then
for 0 < δ ≤ 2,

mise( f̂ (·; m, n, δ)) = bv
1

m2 + b2

nh
+ o

(
1

m2 + 1

nh

)
,

and forδ > 2

mise( f̂ (·; m, n, δ)) =
( a

m

)4/δ

b1 + b2

nh
+ o

(
1

m
4
δ

+ 1

nh

)
,

where

bv
1 = 1

4

∫
[ f ′′(x)(a I (δ = 2) + ρ(x))

+2 f ′(x)ρ′(x) + f (x)ρ′′(x)]2dx,

andb1 andb2 are the same as above.
The proof of Proposition 2, which uses technique

from the variable bandwidth literature (Hall 1990) but is
otherwise similar to the proof of Proposition 1, will be given
elsewhere.
e

h

s

e

We remark that the condition thatρ(·) be bounded away
from zero is used only for the caseδ ∈ (0, 2).

The only difference in mise in the constant variance
function case and the general variance function case is in th
coefficient of the

∫
bias2 dx term when 0< δ ≤ 2. In the

general case, we havebv
1 whereas in the constant variance

function case we havebc
1. We first note that when we have

a constant variance function (σ 2(·) ≡ σ 2), ρ(·) ≡ σ 2 and
ρ′ and ρ′′ are zero so thatbv

1 simplifies tobc
1. Secondly

we note that in the general case,σ 2(·) plays a significant
role in the constantbv

1 through the functionsρ, ρ′, and
ρ′′. And finally we note that if we define the function
β(·) ≡ f (·)ρ(·), bv

1 is very similar to

1

4

∫
(β ′′(x))2 dx.

So we expectbv
1 to be large when the functionβ ′′(·) tends

to be large in magnitude.
Following the same line of reasoning as in the constan

variance case, the best rate of convergence is attained
δ∗ = 2 and

m∗ = dvc2/7,

where

dv = a1/7
(

4bv
1

3b2

)2/7

.

The optimal amise is

amise( f̂ (·; m∗; n∗; δ∗)) = d̄vc−4/7,

where

d̄v = a−2/7b4/7
2

(
7

4

)(
4bv

1

3

)3/7

.

So the same rate is achieved as in the constant varian
case but the coefficient is different. We again note that the
optimal ratec−4/7 is attainable provided that asymptotically

m = d4c2/7

for any positive constantd4 andn = cm−1.

3 EXAMPLES

In this section we examine the convergence of a few basi
examples and compare to the theoretical results present
in §2. Specifically, for each example we look at mise as
a function of the computer budgetc. For clarity, we no
longer suppress the dependence of our functions onc. For
example, we now write mise(c), m(c), andn(c).
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To estimate mise(c), we first replicate the density es-
timator 50 independent times:

{ f̂k(·; m(c), n(c), δ) : k = 1, . . . , 50}.

We define integrated squared error (ise) as follows:

ise(c) =
∫

[ f̂ (x; m(c), n(c), δ) − f (x)]2 dx.

For each k=1,…, 50, we use numerical integration to a
proximately compute

isek(c) =
∫

[ f̂k(x; m(c), n(c), δ) − f (x)]2 dx.

Our estimate for mise(c) is then

1

50

50∑
k=1

isek(c).

In calculatingf̂k(·; m(c), n(c), δ) we takeδ = 2, andm(c) =
brc2/7c as suggested in §2, where the constantr was chosen
in brief preliminary experiments to be 30 for Example 1
and 1 for the other examples. We tookh = m−1/δ (so that
a = 1). We estimate mise(c) for the following values ofc:

{c = 1024× 2l : l = 1, . . . , 8}.

Example 1: In the first example we letZ ∼ Beta(4, 4)

(a Beta(a1, a2) random variable has density on(0, 1) pro-
portional toxa1−1(1 − x)a2−1) and conditional onZ = z,
X ∼ N(z, 0.5). Then the true density of the conditional ex
pectationf is just the density of the Beta(4, 4) distribution.
In Figure 1, we plot log(mise(c)) vs. log(c).

The linearity of the plot suggests that asymptotically

mise(c) = V cγ .

for some constantsV and γ . Theoretically we expect
γ = −4/7 ≈ −0.57. Note thatγ is the slope of the
(log(c), log(mise(c))) plot and the estimated slope of the
plot in Figure 1 is -0.54. This is very close to the expecte
rate of convergence.

Example 2: In this example we consider a non-constan
variance functionσ 2(·). Once again, letZ ∼ Beta(4, 4).
Conditional onZ = z, we takeX ∼ N(z, z2). The target
density f is again the density of the Beta(4, 4) distribution.
We present the log(mise(c)) vs. log(c) plot in Figure 2.
The plot is linear and the slope is estimated to be -0.4
indicating poorer convergence as compared to Example
This is likely the result of the variance functionσ 2(z) = z2

on the interval(0, 1) and zero elsewhere. We will further
discuss the impact of this variance function in Example
,
.
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M
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E
)

log(MISE) vs. log(c)

Figure 1: Mean Integrated Squared Error
as a Function of Computational Budget for
Example 1

but we note here that this variance function does not satis
the smoothness assumption A8 atz = 1.
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)

log(MISE) vs. log(c)

Figure 2: Mean Integrated Squared Error
as a Function of Computational Budget for
Example 2

Example 3: In this example we study the impact
of violating the assumption A1 in which we assume tha
conditional on(Zi : 1 ≤ i ≤ n), X̄m(Zi ) is normally
distributed fori = 1, . . . , n. We takeZ to have a Beta(4, 4)

distribution shifted to the right by one unit so the support ofZ
is the interval(1, 2). Conditional onZ = z, we now suppose
X ∼ exp(1/z), i.e., conditional onZ = z, X is exponentially
distributed with mean 1/z. Note that conditional on(Zi :
1 ≤ i ≤ n), X̄m(Zi ) ∼ Gamma(m, Zi /m) for i = 1, . . . , n
(a Gamma(a1, a2) random variable has density on(0,∞)

proportional to xa1−1e−x/a2), so that assumption A1 is
violated. The target densityf is the Beta(4, 4) density
shifted to the right by one unit.
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In Figure 3, we give the log(mise(c)) vs. log(c) plot.
The slope is estimated to be -0.44. The rates of converge
in Examples 2 and 3 are quite similar, suggesting th
the normality of X̄m(Zi ), i = 1, . . . , n, is not crucial to
the rate of convergence. This is to be expected sin
the central limit theorem (CLT) tells us that, conditiona
on (Zi : 1 ≤ i ≤ n), for large m, X̄m(Zi ) behaves
approximately like a random variable with aN(Zi , Z2

i /m)

distribution as in Example 2.
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log(MISE) vs. log(c)

Figure 3: Mean Integrated Squared Error
as a Function of Computational Budget for
Example 3
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Figure 4: The True Density and Two Esti-
mators for Example 3

The rate−0.44 is not as good as that seen in Example
We suspect that this reduction in rate, and that seen
Example 2, is due to the functionρ(·) being discontinuous
at z = 1, 2. This “boundary effect” is perhaps evident in
Figure 4 where the performance of the density estimat
deteriorates near the boundaries of the plot. The dens
estimate forc = 2048 is quite poor, but improves when
e

y

c = 262144. Forc = 262144, the density estimate is
slightly skewed to the left. This same skewness was evide
in other independent replications of the experiment. W
believe that the skewness is a natural result of the form o
the variance function –σ 2(z) = z2 on the interval(1, 2) and
zero elsewhere. Recall that to generate the estimated dens
our observationsX̄m(Zi ), i = 1, . . . , n, are smoothed by
normal kernels with bandwidth(h2 + σ 2(Zi )/m)1/2. For
large m, X̄m(Zi ) ≈ Zi . Then the observations̄Xm(Zi ),
i = 1, . . . , n that are larger in value are smoothed more
than the observations with smaller value resulting in th
skewness seen in the plot.

This “nonuniform smoothing” will probably be typical
in examples with nonconstant variance, but the theory pre
sented in this paper shows that the convergence rate will n
be affected. Of course, while therate may not be affected,
the magnitude of the error may be significantly affected
through multiplicative constants.

4 CONCLUSIONS AND FUTURE RESEARCH

We have shown how to share a computational budget betwe
external sampling ofZ and internal sampling conditional
on values ofZ so as to minimize the amise of the density
estimator. The amise can converge to 0 at ratec−4/7,
wherec is the computational budget. This is slower than
the c−4/5 rate exhibited in the standard density estimation
context, and both of these rates are slower than the standa
Monte Carlo ratec−1 when one is estimating an expectation.
Nevertheless, we believe that the insight one obtains from th
estimated density justifies the additional computational effo
involved. Furthermore, one does not need an especial
accurate estimate of the density in order to get some ide
of the extent of the effect of input uncertainty.

Clearly much remains to be done.
• We need to generalize our results beyond the cas

where Z is real-valued, so as to capture multiple
input parameters and/or distributions.

• The rate of convergence of the estimator seems t
strongly depend on the smoothness ofρ and, as
observed in experiments not reported here, smooth
ness of the target density. We need to understan
this better.

• In view of the relatively slow convergence of our
estimators, confidence intervals for estimates o
f (x), or more generally, confidence bands for the
entire densityf would be of great value.

• A key assumption is that̄Xm(z) is exactly nor-
mally distributed. This assumption often holds
approximately due to the central limit theorem,
since we requirem to grow with the computa-
tional budget. The results for Example 3 sugges
that non-normalitymay not severely impact the
rate of convergence, but we need to better unde
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stand this impact. It is also of interest to conside
problems that do not fit the framework here, such
as steady-state simulation and quantile estimatio

• We have shown how to choose the bandwidth onl
up to a multiplicative constant. This constant can
have a strong impact on the performance of th
estimator, even though it doesn’t change the asymp
totic rateof convergence. So just as in the standar
kernel-density estimation case, bandwidth selectio
remains an issue.

• In view of the popularity of histogram estimators,
it would be interesting to explore their asymptotic
performance in our setting. They are known to
converge at a slower rate than kernel-based es
mators in the i.i.d. setting (Freedman and Diaconi
1981).

We are pursuing, or plan to pursue, all of these topics
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