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ABSTRACT

Real options valuation (ROV) considers the managerial fle
ibility to make ongoing decisions regarding implementatio
of investment projects and deployment of real assets. T
paper introduces a simulation-optimizationapproach to va
ing real investment options based on a model contain
several decision variables and realistic stochastic inputs.
ing this approach, the value of a portfolio of real investme
projects is determined by maximizing the mean discoun
cash flows calculated by the model over many combinatio
of the decision variables. This yields an optimal decisio
rule that significantly increases the value extracted fro
the investment projects in comparison to arbitrary decisi
rules.

1 INTRODUCTION

Discounted cash flow approaches, such as net present v
(NPV), have traditionally been the preferred methods f
evaluating investments in real assets. Recently, real opti
valuation (ROV) emerged as an alternative to simplis
discounted cash flow methods. ROV values the manage
flexibility to make ongoing decisions regarding impleme
tation of investment projects and deployment of real asse

ROV extends valuation models used to price financ
options and applies them to investments in real assets. Bl
and Scholes (1973) developed a model to value financ
options that focuses on factors affecting the value of t
underlying financial asset over time, which is assumed
follow a geometric Brownian motion stochastic proces
Several ROV methods have been implemented that r
on similar assumptions to those made in the Black-Scho
model. These include lattice models and dynamic progra
ming methods, both of which are are based on a sim
representation of the evolution of the value of the underlyi
asset.
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Previous ROV approaches using simulation have mai
tained the requirement of market replication assumed b
other real options valuation methods. These approaches
sume that the risk of the project underlying the real optio
can be duplicated by assets in financial markets. Add
tionally, an implicit assumption of financial options pricing
methods is that the value of the underlying asset is know
at the time the exercise decision is made. For instance
European put option on a traded stock should always
exercised if the market price is less than the exercise pric
As a result, financial option pricing methods are most con
cerned with providing a value for the option so an investo
can determine whether to invest in the option. In contras
the optimal decision rule for exercising real options is no
always as apparent as for financial options.

Real asset investment decisions also differ from fina
cial option exercise decisions because the optimal decisi
rule is not based on the observable market price of an u
derlying asset. The decision rule for a real asset investme
may be based on observation of project performance ind
cators in the periods leading up to the exercise date; f
instance, a decision to expand a product line may be bas
on the market demand for a similar product during the pa
year. In some instances, the decision rule might be based
an updated forecast of expected future performance. N
ther performance indicators or updated estimates, howev
provide perfect information, so a value placed on a re
option by a method that assumes the underlying asset va
is observable is an upper bound.

Our approach relaxes the assumptions of market rep
cation and perfect knowledge of the project value. W
develop a model containing decision variables and stocha
tic assumptions, then maximize the mean discounted ca
flows calculated by the model over many combinations o
the decision variables. The decision variables are used
determine a decision rule which is stated in terms of ob
servable stochastic variables. Thus, the output of the mod
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Figure 1: Graphical Depiction of the Links Be-
tween the Option Valuation Tool and the NPV
Calculation Engine

is both a value of the real option(s) and an optimal decisio
rule.

The remainder of this paper is organized as follow
Section 2 outlines the simulation-optimization approac
Section 3 describes the problem and the cash flow mod
Section 4 explains the methods used to simulate first-ord
autoregressive, AR(1), processes. Section 5 illustrates
simulation-optimization approach with an example problem
Section 6 provides a summary and conclusions.

2 A SIMULATION-OPTIMIZATION APPROACH

2.1 Overview

The simulation-optimization method proposed relies on a
“NPV Calculation Engine” to determine the value of poten
tial investment projects. The assumptions used in the NP
Calculation Engine are classified as follows:

1. Decision variables — these assumptions are tho
under the control of the decision makers and ca
be adjusted to increase project value as require

2. Stochastic assumptions — these assumptions
random variables with known or estimated proba
bility distributions.

3. Deterministic assumptions — these assumptio
are based on established benchmarks.

The second component of the simulation-optimizatio
model is an “Option Valuation Tool” which interacts with the
NPV Calculation Engine by selecting different combination
of the decision variables and generating random simulati
trials using the stochastic assumptions. The Option Valu
tion Tool tracks the mean net present value of investme
projects for each combination of the decision variables
determine the optimal decision rule. Figure 1 provides
graphical depiction of the simulation-optimization model.
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2.2 Notation

This section defines variables that will be used througho
the remainder of the paper.

The K potential investment projects are denoted b
subscripts on variables,k = 1, . . . , K . Subscriptst =
1, . . . , T are used to denote the value of variables in
specific time period. Two sets of decision variables ar
required:

αk = Intercept parameter of the linear cash flow thresh
old for projectk

βk = Slope parameter of the linear cash flow thresho
for projectk.

Two stochastic time series assumptions are used:
Bt = Customer base in periodt
Rt = Unit revenue in periodt .

Deterministic assumptions are defined as follows:
Ct = Unit variable cost in periodt
Ikt = Indicator variable representing availability of

projectk in period t
Nkj = Indicator variable representing availability of

projectk on project j
Fk = Investment required to initiate projectk
ckt = Unit variable cost decrease provided by projec

k (if active) in periodt (stated as a percentage o
Ct )

rkt = Unit revenue increase provided by projectk (if
active) in periodt (stated as a percentage ofRt ).

The remaining variables are deterministic, given a sp
cific instantiation of the decision variables and stochast
assumptions:

Ykt = Linear cash flow decision threshold for projec
k in period t

Dkt = Indicator variable representing comparison o
baseline cash flows in periodt − 1 to a specified
linear threshold for projectk

Akt = Indicator variable representing activation of
projectk in period t

Gkt = Indicator variable representing timing of fixed
investment cost made for projectk in period t .

3 PROBLEM DESCRIPTION

This paper addresses the general problem of making inve
ment decisions to facilitate ongoing operations of a busines
An embedded base of assets provides service to an es
lished base of customers at a given level of unit revenu
per period. The number of customers in this base,Bt , and
the amount of the unit revenue per period,Rt , both follow
stochastic processes. In this paper, we assume both foll
AR(1) processes. Additionally, the customer base and u
revenue processes are cross-correlated. The unit varia
cost,Ct , is deterministic.
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The ROV methodology proposed here is not limite
to use with AR(1) processes. Indeed, one of our method
advantages is that it can be used with virtually any stochas
inputs or processes selected by the analyst. We have cho
to use cross-correlated AR(1) processes in this paper
that we can study the behavior of the investment valu
due to systematic changes in the autocorrelation and cro
correlation parameters.

The company must make decisions on potential e
hancements and upgrades to the embedded base of as
each considered as a separate investment project. Altho
the projects are separate, there are logical interdependen
between the potential investment projects.

The embedded base of assets and the investm
projects—if pursued—provide cash flows for a specifie
time horizon ofT periods. The project availability vari-
able, Ikt , equals 1 if projectk is available in periodt and
0 otherwise. The project interdependency variable,Nkj ,
equals 1 if projectk is logically dependent on projectj (or
if k = j ), and 0 otherwise.

Projectk is said to be logically dependent on projectj if
some functional aspect of projectk is necessary for success-
ful implementation of projectj . For instance, a telecom-
munications company that installs a voice-over-packet c
server (projectk) has the future option to install a multi-
media call server (projectj ) that provides videophone service
only if project k is undertaken. Thus, the installation o
the voice-over-packet call server provides the telecomm
nications company with the right, but not the obligation
to provide videophone service later. This is an examp
of a real option that can be valued with simulation an
optimization.

Decisions on whether to invest in projects are mad
based on observations of baseline cash flows. The value
the linear cash flow decision threshold parameter for proje
k in period t is

Ykt = αk Ikt + βk

((
t∑

i=1

Iki

)
− 1

)
.

Values of Dk1 = 0, for k = 1, . . . , K . When t 6= 1,
values ofDkt equal 1 whenBt−1(Rt−1 − Ct−1) ≥ Ykt and
0 otherwise.

For projectk at period t = 1, the project activation
variable Ak1 = Dk1 Ik1. For t > 1: if Ak,t−1 6= 1, then

Akt =
∏

j
Nkj 6= 0

(I j t D j t );

else if Ak,t−1 = 1, then Akt = 1. The project activation
variable represents the assumption that for projectk to be
active, all projects on which projectk is logically dependent
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must be activated, which requires one of two conditions
be met:

1. Cash flows in periodt − 1 exceed the linear cash
flow threshold for projectk and each project on
which projectk is dependent, or

2. The project was activated in an earlier period.
In this model, projects are assumed to remain active on
they are initiated. However, the option to abandon activ
projects can also be valued readily with our approach.

If indicator variableGkt is assigned a value of 1,Fk

is expended in periodt . Values of Gkt are assigned as
follows:

Gkt =
{

1 if
∑t

i=1 Aki = 1
0 otherwise.

Let IC Ft be the incremental cash flows from the inves
ment projects. Incremental cash flows include variable co
savings and/or additional unit revenue and are calculated

IC Ft =
K∑

k=1

(Bt Akt(cktCt + rkt Rt ) − Gkt Fk),

for t = 1, . . . , T . These incremental cash flows are dis
counted to determine the net present value of the portfo
of projects using the formula

NPV =
T∑

t=1

(IC Ft )e
−rt ,

wherer is the appropriate discount rate.

4 SIMULATING CROSS-CORRELATED
AR(1) PROCESSES

To study the behavior of the investment value due to sy
tematic changes in the autocorrelation and cross-correlat
parameters, we assume thatBt and Rt follow AR(1) pro-
cesses.

Define ZRt as the AR(1) process for the deviation o
unit revenue,Rt , from its long-run average ofµR in yeart ,
andZBt as the AR(1) process for the deviation of custome
base,Bt , from its long-run average ofµB in yeart . These
processes evolve as

ZRt = φRZR,t−1 + aRt

and

ZBt = φBZB,t−1 + aBt,

where aRt and aBt are defined as Gaussian white nois
terms, each having mean zero and having variances eq
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B, respectively. Unit revenue and customer base
for year t can be represented as follows:

Rt = µR + ZRt

Bt = µB + ZBt.

An AR(1) process can also be represented as an infinit
series in terms of all past white noise terms as

ZRt = aRt + φRaR,t−1 + φ2
RaR,t−2 + . . .

and

ZBt = aBt + φBaB,t−1 + φ2
BaB,t−2 + . . . .

From these representations, it is easy to observe that th
E[ZRt]=E[ZBt] = 0. The variance of the unit revenue
process is calculated as

Var[ZRt] = Var[aRt + φRaR,t−1 + φ2
RaR,t−2 + . . . ].

Since the white noise terms are independent and ident
cally distributed, the covariance terms all equal zero. Thus
the variance of the unit revenue process can be rewritten a

Var[ZRt] = Var[aRt] + φ2
RVar[aR,t−1]

+φ4
RVar[aR,t−2] + . . .

Var[ZRt] = σ 2
R + φ2

Rσ 2
R + φ4

Rσ 2
R + . . .

Var[ZRt] = Var[aRt] + φ2
RVar[aR,t−1]

+φ4
RVar[aR,t−2] + . . .

Var[ZRt] = σ 2
R + φ2

Rσ 2
R + φ4

Rσ 2
R + . . .

Var[ZRt] = σ 2
R/(1 − φ2

R).

The variance in the deviation from the long-run average for
customer base can be calculated similarly as

Var[ZBt] = σ 2
B/(1 − φ2

B).

Note the covariance between two terms in the time
series for deviation from long-run unit revenue average`

years apart asγR`. The covariance for the unit revenue
process can be calculated as

γR`=E[ZRtZR,t−`]
γR`=E[ZR,t−`(φRZR,t−1 + aRt)]−E[ZRt]E[ZR,t−`]
γR`=E[ZR,t−`φRZR,t−1 + ZR,t−`aRt]
γR`=E[ZR,t−`φRZR,t−1] + E[ZR,t−`aRt].

The last term on the right hand side is zero, because thi
term can be re-written as a sumproduct of the independen
t

-

s

and uncorrelated white noise terms. Thus, the express
for the covariance of the unit revenue process for term
with lag ` can be written as

γR` = φRγR,`−1.

For ` = 0, γR0 = σ 2
R. The general covariance term for the

customer base process can be found similarly.
The correlation between two terms with lag` is defined

as

ρR` = γR`

γR0
= γR`

σ 2
R

= φ`
R.

Thus, the termφR in the AR(1) process is equal toρR1. The
correlation terms in the customer base deviation process
defined similarly.

To simulate the AR(1) processes for unit revenue an
customer base, initial terms are generated randomly as

ZR0 ∼ N[0, σ 2
R/(1 − φ2

R)]

and

ZB0 ∼ N[0, σ 2
B/(1 − φ2

B)].
Standard normal random variables,XR1, . . . , XRT and

XB1, . . . , XBT are drawn for each period in the time horizon
These standard normal random variables are transform
into cross-correlated random variables,YRt and YBt, each
with a standard deviation equal to the underlying whit
noise variable, as

YRt = XRtσR

and

YBt =
(

XBtρC +
√

1 − ρ2
C

)
σB

where ρC is the cross-correlation between the price an
demand processes.

When the AR(1) processes are cross-correlated, t
equations used to calculate the values of the processes
the remaining time horizon are

ZRt = φRZR,t−1 + YRt,

ZBt = φBZB,t−1 + YBt.

The values for price and demand are then calculated
adding theµR andµB to ZRt and ZBt.
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5 EXAMPLE PROBLEM AND RESULTS

5.1 Problem Inputs and Deterministic Approximation

For this problem, the time horizon is five annual perio
(t = 1, . . . , 5) and there are three available enhancem
projects (K = 3). Other parameters are listed in Table 1

The total expected value of cash flows from all thr
projects in this example—assuming all projects are exerci
as soon as available—is calculated (in millions) as follow

IC F1 = $0

IC F2 = B2c12C2 − F1

= (3.0)(50%)($175) − $975

= −$712.50

IC F3 = B3(c13C3 + r23R3) − F2

= (3.0)(50%)($175)

+(3.0)(25%)($450) − $925

= −$325

IC F4 = B4((c14 + c34)C4 + r24R4) − F3

= (3.0)((50%+ 25%)($175)

+(25%)($450)) − $245

= $486.25

IC F5 = B5((c15 + c35)C5 + r25R5)

= (3.0)((50%+ 25%)($175)

+(25%)($450))

= $731.25.

A single discount rate,r = 7%, is used in this problem
The calculation of expected incremental cash flows assu
that the customer base and unit revenue processes are
to their long-run averages ofµB andµR in each year.

The following formula is used to determine the n
present value of the expected incremental cash flows
the required investment cash flows,

NPV =
5∑

t=1

(IC Ft )e
−rt = −$0.05 million.

Incremental cash flows for Projects 1, 2, and 3 (
millions) are −$23.27, $16.69, and $6.52, respectively.
While Projects 2 and 3 have positive net present valu
only Projects 1 and 2 can be exercised individually,
Project 3 is dependent on Projects 1 and 2.

5.2 Simulation Results

To better understand the results of the deterministic appr
imation, 50,000 different sample paths of the customer b
and unit revenue processes were simulated. Increme
t
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Table 1: Parameters for the Example Problem

Parameter Value(s)

Project
availability

I12 = · · · = I15 = I23 =
· · · = I25 = I34 = I35 = 1; all
other valuesIkt = 0

Revenue
increases

r1t = r3t = 0% andr2t = 25%
for t = 1, . . . , 5

Variable cost
decreases

c1t = 50%, c2t = 0%, and
c3t = 25% for t = 1, . . . , 5

Unit variable cost Ct = $175 for t = 1, . . . , 5

Long-run average
unit revenue

µR = $450

Long-run average
customer base

µB = 3 million

Variance of unit
revenue process

σ 2
R = $900

Variance of
customer base
process

σ 2
B = 0.06 million

Required
investment costs

F1 = $975, F2 = $925, and
F3 = $245

cash flows were calculated based on these sample pa
using the assumption that all projects are exercised as s
as available. Given the general formulation from Section
this assumption is implemented by setting arbitrarily low
values ofαk andβk for all projects. Correlation assumptions
are set atφR = φB = 0.45 andρC = −0.45. Figure 2
shows a frequency distribution of the total net present val
of incremental cash flows for the 50,000 trials.

The mean of the frequency distribution is−$2.22 mil-
lion and a 95% confidence interval for the mean is from
−$3.18 million to−$1.28 million. In this distribution, 95%
of the observations of total net present value of incremen
cash flows are between−$212.59 million to $207.91 million.
Since cross-correlation exists in the AR(1) processes, t
mean of the frequency distribution does not equal the me
net present value from the deterministic approximation.

The solution above is based on an arbitrary decision ru
to invest in all projects regardless of prior cash flows. Oth
arbitrary decision rules could be used to produce differe
solutions; for instance, we could establish a decision ru
that dictates investing in a project if cash flows in the prio
year are greater than or equal to the expected value of $8
This decision rule is implemented in the model by settin
αk = $825 andβk = $0 for k = 1, 2, 3. Figure 3 shows
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Figure 2: Frequency Distribution of Simulation Results fo
the Example Problem with all Projects Exercised as So
as Available

Figure 3: Frequency Distribution of Simulation Results fo
the Example Problem Where all Projects are Exercised wh
Prior Year Cash Flows are Greater than the Expected Va

the frequency distribution for 50,000 simulation trials usin
this decision rule and the same correlation assumptions
the prior example.

The mean of the frequency distribution is−$194.71
million and a 95% confidence interval for the mean is fro
−$197.38 million to −$192.04 million. In this distribu-
tion, 95% of the observations of total net present value
incremental cash flows are between−$1007.31 million to
$167.94 million.

Given the correlation assumptions for the customer ba
and unit revenue processes, it is difficult to determine a de
sion rule for exercising the enhancement projects arbitrar
as illustrated by this example. The next section discus
the selection of an approximately optimal decision rule f
exercising investment projects based on the information
vealed by the realizations of the customer base and u
revenue processes.
if
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5.3 Simulation-Optimization Results

The solutions from the previous section use arbitrary dec
sion rules to make investment decisions regarding the thr
projects. To improve the effectiveness of the investment d
cisions, a method that analyzes multiple potential decisio
rules is required. The decision rules are based on obse
able information, namely the realizations of the custome
base and unit revenue processes. To simplify the proce
of determining an optimal decision rule, we will consider a
rule based on cash flows from the embedded base of ass
since this variable depends on both the customer base a
unit revenue processes.

Using the same simulation model, the optimal decisio
rule is determined by considering many possible comb
nations of the decision variables (the intercept and slop
parameters,αk andβk) for the three projects. Using Crystal
Ball along with OptQuest software, which employs a sca
ter search algorithm to select decision variable scenario
an approximately optimal solution can be obtained withou
testing a complete enumeration of the possible combin
tions of the decision variables (for more information on th
scatter search algorithm, see Gloveret al. (1996)).

For this example, possible values of the slope param
ters,β1, β2, andβ3, ranging from−$2000 million to $2000
million in increments of $250 million, and possible values
of the intercept parametersα1, α2, andα3 from $0 to $1000
million in increments of $250 million are considered. Using
smaller increments for the decision variables might provid
a more precise decision rule, but will require more time
to obtain a solution. Since the decision rule is in term
of estimated, future cash flows, an approximately optima
decision rule in $250 million increments is satisfactory fo
demonstration purposes.

Using the scatter search algorithm, 50,000 (out of
possible 3,581,577) distinct combinations of decision var
able values are considered, with 500 trials used on ea
simulation run. The combination that produces the large
mean net present value of incremental cash flows is co
sidered the approximately optimal decision rule. Using th
assumptions thatφB = φR = 0.45 andρC = −0.45, the
approximately optimal decision rule includes the following
values of the decision variables (in millions),

α1 = $1250, α2 = $750, α3 = $0,
β1 = $0, β2 = $250, β3 = $1250.

Given the values in this example forIkt , the decision
rule can be interpreted as follows. Project 1 will be exercise
in year 2, 3, or 4 if cash flows in the prior year are $1250
million or greater. Project 2 will be exercised in year 3 if
year 2 cash flows are $750 million or greater, in year 4
year 3 cash flows are $1000 million or greater, or in year
if year 4 cash flows are $1250 million or greater. Projec
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Figure 4: Frequency Distribution of Simulation Results fo
the Example Problem Using the Optimal Solution from th
Optimization Routine

3 will be exercised in year 4 if year 3 cash flows are $0
greater, or in year 5 if year 4 cash flows are $1250 millio
or greater.

The largest mean net present value of incremental ca
flows was obtained on the 409th distinct combination
decision variable values selected by the optimization routin
The mean net present value of incremental cash flows for
500 trials in the simulation-optimization routine is $16.83
million. To analyze the risk associated with following
this strategy, a longer simulation run of 50,000 trials
performed with the approximately optimal decision value
The mean net present value of incremental cash flows
this simulation run is $15.88 million (see Figure 4), with a
95% confidence interval for the mean running from $15.47
million to $16.29 million. In this simulation, 95% of
the 50,000 observations fell between−$72.48 million and
$118.38 million. Approximately 25% of the simulation
trials produced $0 in incremental net present value beca
the decision rules for exercising Projects 1 and 2 are n
satisfied.

The optimal decision rule changes significantly if th
correlation inputs to the model are adjusted. To test t
effect of changing these inputs, combinations of inpu
were tested for two levels of each parameter. Custom
base autocorrelation (φB) and unit revenue autocorrelation
(φR) values of 0.45 and 0.90, along with cross-correlatio
between customer base and unit revenue (ρC) values of
−0.90 and −0.45. This created an experiment with 8
different combinations of inputs.

In this extended experiment, the optimization routine
allowed to run for 180 minutes using 500 simulation tria
for each combination. This is adequate time to test appro
imately 10,000 distinct combinations of decision variable
values when running the routine on a workstation with a 1
GHz Pentium III processer. On average, the scatter sea
algorithm identified the largest mean net present value
the 219th distinct combination of decision variable value
after an average run time of 4.75 minutes. After using th
h
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optimization routine to obtain an optimal decision rule fo
each of the eight scenarios, this rule was used in a long
simulation run of 50,000 trials for each scenario. Table
lists the correlation assumptions for each scenario and t
mean net present value for 50,000 simulation trials, Table
lists the optimal values of the decision variables for eac
correlation scenario, and Table 4 lists standard errors a
risk analysis statistics.

Table 2: Simulation-Optimization NPV Results
for Various Correlation Scenarios (Mean NPV in
Millions of $)

Scenario ρC φB φR Mean NPV
1 −0.90 0.45 0.45 $12.07
2 −0.90 0.45 0.90 $39.19
3 −0.90 0.90 0.45 $63.01
4 −0.90 0.90 0.90 $65.10
5 −0.45 0.45 0.45 $15.88
6 −0.45 0.45 0.90 $43.47
7 −0.45 0.90 0.45 $69.11
8 −0.45 0.90 0.90 $76.53

Table 3: Simulation-Optimization Optimal Decision
Rules for Various Correlation Scenarios (Billions of $)

Scen. α1 β1 α2 β2 α3 β3

1 2.00 1.25 0.50 −2.00 0.00 1.25
2 2.00 2.00 0.75 2.00 2.00 2.00
3 0.75 0.25 0.75 0.50 1.25 0.50
4 1.00 0.50 0.75 0.25 1.00 0.00
5 1.25 0.00 0.75 0.25 0.00 1.25
6 1.50 1.00 0.75 0.50 1.25 0.50
7 0.75 0.25 0.75 0.75 0.50 0.00
8 1.00 0.25 0.75 0.50 1.00 0.00

The highest mean net present value occurs in Scenari
when the customer base and unit revenue processes are hi
autocorrelated (φB = φR = 0.90) and have lower cross-
correlation (ρC = −0.45), with a maximum mean NPV of
$76.53. When the stochastic processes are simulated w
these correlation assumptions, the approximately optim
decision rule is determined by the following values of th
decision variables (in millions),

α1 = $1000, α2 = $750, α3 = $1000,
β1 = $250, β2 = $500, β3 = $0.

Note that the assumptions used to simulate the stochas
processes can significantly change the mix of projects th
are most likely to be implemented. For instance, given th
φR = 0.45 andρC = −0.45, Project 3 is more likely to



Cobb and Charnes

t
r
n
c

t
e

n

o

is
re
e

m-
ot
ect-
ly
a-
ed

k
r

,

,
d
d

s

-

s
ir
be implemented whenφB = 0.90 in Scenario 5, than when
φB = 0.45 in Scenario 7.

Table 4: Statistics for 50,000 Simulation Trials for Each
Correlation Scenario with Optimal Decision Variable
Values Listed in Table 3 (Millions of $, Except %> $0)

95% 95% %
Confidence Certainty Trials

Interval Interval > $0
Scen. S.E. Min. Max. Min. Max. NPV
1 0.11 11.9 12.3 −39 61 69 %
2 0.27 38.7 39.7 −39 188 89 %
3 0.82 61.4 64.6 −260 499 73 %
4 0.62 63.9 66.3 −82 479 45 %
5 0.21 15.5 16.3 −73 118 74 %
6 0.34 42.8 44.1 −72 233 86 %
7 0.85 67.4 70.8 −246 535 47 %
8 0.73 75.1 78.0 −114 545 86 %

6 SUMMARY AND CONCLUSIONS

This paper introduced a simulation-optimization approach
valuing a portfolio of real investment projects when unce
tainty is characterized by stochastic time series assumptio
The net present values of the potential investment proje
are functions of decision variables and stochastic assum
tions. By calculating the net present value over man
combinations of decision variables, an approximately op
mal decision rule based on observable criteria is establish
We demonstrated that selecting an approximately optim
decision rule using the simulation-optimization approac
provides significant improvement over arbitrary decisio
rules. Also, we established that the correlation assumptio
in the underlying stochastic assumptions affect the decisi
rules and net present value of the portfolio of projects.

Extensive future research will be required to adapt th
approach to a broader range of investment problems. Mo
complicated net present value functions and stochastic tim
series assumptions may be required to model more co
plex portfolios of investment projects. This paper has n
addressed the issue of assigning discount rates on a proj
by-project basis. Our conjecture is that the approximate
optimal decision rules are largely insensitive to perturb
tions in the discount rate, but this remains to be determin
by additional research.
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