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ABSTRACT 

Collateralized Debt Obligations (CDOs) are sophisticated 
financial products that offer a range of investments, known 
as tranches, at varying risk levels backed by a collateral 
pool typically consisting of corporate debt (bonds, loans, 
default swaps, etc.).  The analysis of the risk-return proper-
ties of CDO tranches is complicated by the highly non-
linear and time dependent relationship between the cash 
flows to the tranche and the underlying collateral perform-
ance.  This paper describes a multiple time step simulation 
approach that tracks cash flows over the life of a CDO deal 
to determine the risk characteristics of CDO tranches. 

1 INTRODUCTION 

The term Collateralized Debt Obligation (CDO) covers a 
broad range of structured finance products.  They may be 
supported by a variety of underlying collateral, from 
bonds, loans, credit default swaps, asset-backed securities, 
and sovereign debt, to more exotic securities such as equity 
default swaps or  CDO tranches from other deals.  The 
CDO structures, which describe the size and number of 
tranches and the rules for how to distribute the collateral 
proceeds to the tranches, also vary widely.  The structures 
may be simple pass-throughs, whereby interest payments 
are made in order of tranche seniority.  However, there 
may also be complicated rules to redirect cash flows to the 
senior tranches based on the quality and performance of 
the underlying collateral.  Each deal has a unique structure 
determined by market conditions, collateral properties and 
investor demand, among other factors, at the time of issu-
ance.  Many features of a structure are intended to insure 
that the most senior tranche will be rated at the highest 
credit quality level by the debt rating agencies (usually 
Moody’s, S&P, and Fitch).  See Goodman and Fabozzi 
(2002) for a detailed discussion of the CDO market; Duffie 
and Singleton (2003) includes a chapter on credit modeling 
  
methods applied to CDOs.  A further discussion of credit 
modeling can be found in Arvanitis and Gregory (2001). 

From a legal perspective, a CDO deal is generally set 
up as a Special Purpose Entity (SPE) that functions as an 
independent company, often incorporated in Bermuda.  
The capital structure of this company is very simple:  the 
assets owned by the SPE are the collateral (e.g., 100 corpo-
rate bonds), while the liabilities are the tranches issued by 
the SPE.  Investors purchase the tranches, and the SPE uses 
the proceeds from the sale of the tranches to purchase the 
collateral assets.  Periodically (typically quarterly or semi-
annually), the interest and principal cash flows generated 
by the collateral assets over the period are collected to-
gether into accounts that are then used to make interest and 
principal payments to the tranches.  The set of rules for 
how the funds are distributed at a given payment date is 
known as the cash flow waterfall for the CDO. 

In a typical waterfall, taxes and management fees are 
paid first, followed by the interest due to the senior tranche.  
This senior tranche generally accounts for the largest per-
centage of invested principal (75% - 90%) but gets paid the 
smallest coupon.  This is consistent with the senior tranche 
being the least risky due to its position of getting paid first.   
The tranches are paid in order of seniority with coupons and 
risk increasing  as payments move down the structure.  The 
most junior tranche at the bottom of the waterfall is known 
as the equity tranche.  The equity of a CDO deal usually 
does not receive a predetermined interest payment on its ini-
tial investment; instead the equity receives all the remaining 
collateral interest payments that were not required to make 
the interest payments on the more senior tranches.  In deals 
with substantial “excess spread” (the amount of interest gen-
erated by the collateral portfolio beyond what is due to the 
CDO tranches), the equity tranche performs well.  As de-
faults occur in the collateral portfolio, the amount of excess 
spread decreases and the equity tranche suffers the first 
losses.  Many deals have collateral quality triggers that di-
vert all cash flows away from the equity if the collateral 
quality deteriorates too much.  
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The collateral manager of a CDO deal is responsible 
for managing the collateral assets as their credit quality 
changes.  This involves buying and selling assets, as well 
as reinvesting fund that have been recovered from default-
ing or maturing names.  The manager’s skill and strategy 
around managing the collateral portfolio can have a large 
effect on the performance of the CDO deal. 

From a risk management  perspective,  the most im-
portant factor affecting the performance of a CDO deal is 
the total loss in collateral portfolio value over the life of 
the deal due to correlated defaults among the collateral.  
Each tranche can withstand a characteristic level of loss on 
the collateral pool before it does not receive its promised 
interest and principal payments.   Performance is also 
greatly affected by the timing of the defaults, particularly 
for the equity tranche.   Other risk factors are interest rates, 
maturing and prepayment rates of collateral, and recovery 
rates on defaulted collateral.  There is also price risk, i.e. 
the change in value of the collateral due to changes in 
credit quality or interest rates, and the related issue of rein-
vestment risk. 

2 MODELING DEFAULT PROBABILITIES 

A key component of accurately capturing the risks associ-
ated with correlated collateral defaults is the determination 
of current default probabilities over the life of the deal.  
There are many methods currently in use, and frequently 
components of various approaches are used together.  
Broadly, there are four distinct approaches. The first is 
qualitative analyst review of a companies financials, man-
agement, business plan, etc. to determine credit worthiness.  
This approach is used internally by banks making decisions 
to lend as well as by rating agencies, which provide the 
market with an independent qualitative review.  The second 
approach is statistical, in which multi-dimensional regres-
sions are carried out on large data sets of company financial 
information to determine default indicators and associated 
probabilities of default.  This is particularly effective when 
market data on prices of the corporate debt or equity are not 
available, as is often the case with private firms; see Fal-
kenstein (2000) for a discussion of the implementation of 
this method.  A third method uses an approach first put 
forth by Merton (1974) that derives from the idea that the 
equity of a firm is actually a kind of call option on the un-
derlying asset value of the firm, and that the firm is in de-
fault when that asset value drops below liabilities owed by 
the firm.  Merton models takes as input the observable stock 
price for publicly traded firms to back out the unobservable 
firm asset value, which when combined with firm liability 
information, leads to default probabilities for public com-
panies.  Finally, default probabilities may be inferred from 
prices of corporate debt (bonds, loans, default swaps) since 
price is strongly influenced by the markets perception of 
default probability.  However, accurate pricing information 
is only available on a relatively small number of names.  
Also, there are numerous factors other than default prob-
ability that determine the price of debt, and these factors, 
such as liquidity, may be difficult to quantify.  Prices are 
often used to calibrate parameters for stochastic models for 
the evolution  of default intensities. 

The models used at Moody’s KMV are based on the 
largest database of corporate defaults in the world, which is 
important for accurate parameter and model estimation.  
For publicly traded companies, MKMV uses the Vasicek-
Kealhofer model, described in Kealhofer (2003), which is 
an extension of the Merton approach that incorporates ex-
tensive asset volatility modeling and historical default data, 
to produce the Expect Default Frequency™, or EDF™, 
credit measure.  Most of the largest 100 financial institu-
tions in the world use the EDF credit measure to monitor 
the credit quality of their loans and investments.  The Va-
sicek-Kealhofer model is an example of a structural model, 
named so because there are explicit economic drivers that 
are quantified in the model and that determine the default 
probability of the company.  These drivers are firm asset 
value, firm asset volatility and firm liability structure.   

There are two important further benefits of using this 
structural model.  First, based on the model, MKMV has 
produced weekly time series of asset returns and asset volatil-
ities for over 28,000 publicly traded companies world-wide.  
From these time series, a factor model for asset returns has 
been derived that provides the most accurate means available 
for describing the correlated behavior of corporate asset val-
ues.  When combined with default probabilities, the correla-
tion model of asset returns provides an estimate of joint de-
fault probabilities necessary to describe the correlated default 
behavior of a portfolio of CDO collateral. 

The second important consequence of the structural 
model is the concept of the Distance to Default ( ).  
This is essentially the number of standard deviations that 
the asset value is above the default level  (a function of the 
liability structure); it is a scalar measure that captures the 
key relationship among the three structural drivers (Dis-
tance to Default also depends on the time horizon of inter-
est; for the purposes here we will consider one year ).  
It has been shown empirically to be a stable measure of 
credit quality over time and economic conditions (credit cy-
cles) as well as over geographic regions.  MKMV has an 
extensive database of time series of Distance to Default for 
public companies.  From this database, empirical transition 
probability distributions have been determined that provide 
the probability of a firm with at time T migrating to 

 at time .  These empirical transition densities pro-
vide a much more realistic description of credit quality mi-
gration than the standard approach of assuming geometric 
Brownian motion for the asset value process.  Although this 
model for asset value is reasonable, in order to adequately 
capture changes in DD (and the corresponding EDF), it 
would be necessary to also model a correlated process for 
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how firms change their liability structure.  From the data it 
is clear this is not a continuous stochastic process; while a 
jump process would be a possible model, the calibration of 
the parameters would be difficult because the decision to 
add liabilities is driven by the firm’s management style and 
the economic opportunities available.  The empirical DD 
distributions capture these effects as well as changes in as-
set volatility without requiring explicit modeling. 

The factor model for asset returns and the empirical 
DD distributions, both derived from the structural model 
for public firms, can also be used with the statistical mod-
els for private firms or any other default probability model, 
as long as an estimate for the R-squared for the firm in 
question’s asset return regressed against the factors (i.e., 
the percentage of variance of the asset return explained by 
the factors) is available, together with industry and country 
information about the firm. 

3 MODELING DEFAULT TIMES 

This section describes the methodology most commonly 
employed today for simulating correlated defaults.  It is 
known as the default time or copula approach and is de-
scribed by Li (2000) and Schmidt & Ward (2002).   
 For an exposure in a  CDO collateral pool, the default 
probability to maturity (either of the CDO deal or the ex-
posure, which ever is sooner) gives the probability of that 
name defaulting as some point during the life of a CDO 
deal.   The timing of the default, however, can also play an 
crucial role in determining the performance of the deal.  
Default timing is determined from a default probability 
“term structure” which may be represented as a vector of 
cumulative default probabilities  

( 1 2, , , NCEDF CEDF CEDF" )

)

 
 

 
specified at times 

 
  ( )1 2, , , .NT T T"
 

The quantity CE is interpreted to mean the probability 
of default in the interval (   Thus the are in-
creasing.  This may be generalized to a time continuous de-
fault probability function CEDF ; however, default 
probabilities are usually reported at discrete times , and a 
continuous function is obtained from interpolation. 

iDF
0, .iT CEDF

( )t

The default time/copula method of randomly sampling 
default times works as follows.  The first step is to ran-
domly sample a uniform (0,1) variate u   Assuming that 

 is the maturity, if  then the exposure does 
not default.  If i  then the exposure de-
faults in period   This procedure is closely related to 

.
NT Nu CEDF>

1i u CED− < ≤CEDF F
.i
)

sampling a stopping time for a random process crossing a 
default boundary. 

A key feature of this approach is the process for de-
termining correlated default times.  This requires sampling 
a set of correlated uniform variates , where ( 1, , Mu u"
M is the number of exposures in the portfolio.  This is 
done by specifying a copula function , which 
is a probability distribution function defined on the 

( 1 , MC u u" )
M -

dimensional unit cube.  The copula function is often related 
to the asset return distribution function at time T , N

( 1, , M )F R R" , by the formula 
 
  ( ) ( ) (( )1 1

1 1 1, , , ,M MC u u F F u F u− −=" " )M

)

 
where  is the inverse of the marginal probability 

distribution for the exposure.  However, any copula 
function may be used for this purpose.  The most com-
monly used are Gaussian and T-copulas, although a variety 
of other methods, including Archimedean copulas, have 
been considered. 

( )1
jF − i

thj

For the Gaussian copula, the sampling procedure is 
particularly simple.  Based on the correlation matrix for the 
asset returns,  a correlated sample of standard Normal vari-
ates is sampled, either from a Cholesky de-
composition of the correlation matrix or from a factor 
model decomposition.  The uniform variates are then ob-
tained from the formula  

( 1, , Mε ε"

 
  ( ).j ju ε= Φ
 

Here is the one dimensional standard cumulative Nor-
mal  distribution function. 

Φ

 If the factor model underlying the correlation structure 
has more than a few dimensions, it is necessary to use 
Monte Carlo simulation to sample correlated defaults and 
default times that are then used to evaluate expectation in-
tegrals such as the probability of having more than de-
faults or the expected value of the cash flows to a tranche. 
Under more restrictive assumptions on the correlation 
structure, semi-analytical solutions can be derived.  For ex-
ample,  the latent variable approach, proposed by Vasicek 
(1987) for credit portfolio risk problems, has been ex-
tended to CDOs by Gregory and Laurent (2003).  The idea 
is that there exists a low dimensional underlying latent 
variable 

k

x such that conditional on x the default probabili-
ties and times for the exposures are independent.  The law 
of conditional expectations then allows the portfolio prop-
erties of interest to be expressed as an expectation over 
x of the portfolio properties of an independent portfolio.  
Often x is taken to be one dimensional, so the problem re-
duces to a one dimensional quadrature. 
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4 MULTI-STEP SIMULATION 

An alternative to the default time approach based on simu-
lating the firm asset value as a stochastic random variable 
has been described by Hull and White (2001), Arvanitis 
and Gregory (2001) and Finger (2000).  In this section we 
describe an implementation of this approach and describe a 
new multi-step approach based on the empirically derived 
Distance to Default distributions.   
 While the default time approach captures the mar-
ginal default probabilities of each individual exposure 
correctly over the life of the simulation, substantial error 
may be introduced into the correlated default structure, 
depending on how the correlation structure and the under-
lying stochastic default process are viewed.  Time series 
of asset, equity or debt price returns are usually based on 
daily or weekly time intervals.  Given the relatively high 
default probability of most assets over time horizons of 
five years or longer, using a correlation structure based 
on weekly returns as a proxy for multi-year horizon cor-
relations can lead to skewed results.  In particular, the 
single step approach may not adequately capture the ab-
sorbing nature of the default state (i.e., the stochastic 
process has an absorbing boundary).   Thus it is better to 
consider a simulation based on a sequence of shorter time 
steps that one single step to maturity. 

It is possible to model the credit migration of a single 
asset as a continuous time stochastic process, such as 
geometric Brownian motion or an Ohrnstein-Uhlenbeck 
process, with an absorbing boundary implied by the cu-
mulative default probability function .  In this 
formulation a free boundary problem PDE can be derived 
as described by Avellaneda and Zhu (2001).  However, 
the existence of  as a  time continuous function 
usually arises from imposed model or interpolation as-
sumptions; there is generally not enough market data or 
financial information available to imply forward default 
probabilities over short time windows.  Thus the continu-
ous approach does not add accuracy relative to a discrete 
approach as long as the correlated behavior of asset over 
the time step is consistent with the correlation modeling.  
In any case, unless a low-dimensional latent variable ap-
proach is applied, computation of the properties of a port-
folio of many exposures will require a Monte Carlo simu-
lation based on discrete time steps. 

( )CEDF t

( )CEDF t

For analyzing a single CDO deal, it is most convenient 
to use simulation time steps based on the CDO payment 
dates.  For one simulation step, the names defaulting dur-
ing that period are identified, recoveries on defaulted 
names are determined, interest cash flows from non-
defaulted collateral are aggregated, scheduled and un-
scheduled principal payments from the collateral are col-
lected, etc.  The resulting pools of interest and principal 
cash flows are then passed to the cash flow waterfall en-
gine to be distributed to the CDO tranches.  If desired, the 
exact default time of an exposure can be sampled using the 
default time methodology described above within one 
simulation period;  in practice, however,  the default on a  
particular exposure will occur on a coupon date, not at a 
random time.  The key question for the simulation is thus 
whether the default occurs in a given period.  

There are numerous approaches that can lead to multi-
step simulations for correlated defaults depending on how 
the default process is modeled.  We focus here on two 
methods related to structural models for which correlated 
default behavior is derived from the underlying firm asset 
value correlations.  Both methods take as input the cumula-
tive default function specified at discrete 

times (  for each obligor in the collateral portfo-
lio, indexed by .  In addition, the firm asset value corre-
lation matrix for all obligors must be specified. 

( )jCEDT t

)1, , NT T"
j

The first approach assumes that the asset value process 
for each obligor follows correlated geometric Brownian 
motion.   The associated asset value (log) return process 
therefore follows a standard Brownian motion process.  An 
obligor defaults during a period (j ]1,i iT T−  if the asset re-

turn  i
jR  at time T  is less than some threshold level i

i
jα , 

while k k
j jαR

)

>  for all  (i.e., there was no previous de-
fault).   In a continuous time formulation, the function 

 is the default boundary such that the default time is 
the stopping time of the Brownian motion process associ-
ated with crossing the boundary.   Obviously the default 
thresholds must be related to the default probability.  Spe-
cifically the relationship is 

k < i

.

(j tα

 
( )1 11 ( , , )i i

j j j j j iP R R CEDF Tα α− > > ="  
 
As this equation suggests, the determination of the de-

fault thresholds requires a non trivial calculation as it re-
lates to inverting an variate cumulative Normal distri-
bution (in the continuous case, the default boundary is the 
solution to a free boundary PDE).  One approach that gets 
around the need to invert a multi-dimensional distribution 
is to determine the distribution of 

i −

1i
jR − , conditional on no 

defaults up to time T .  Assuming we know this distribu-
tion and using the fact that 

1i−

 
1i i i

j j jR R ϕ−= +  
 

where i
jϕ  is an increment independent of 1i

jR −  (since the 
return process is Brownian motion) with a Normal distribu-
tion, we can obtain by convolution the distribution of i

jR , 
conditional on no defaults up to T ,  from the conditional 1i−
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distribution for 1i
jR −  and i

jϕ .  We can then solve for the 

default threshold i
jα

 no de

C= −

 from the equation 

( 1

ts up

i iT −

i

 
( ) ( )(

( ) )
1| faul  to 1

.

i i
j j i iP R T CEDF T

CEDF T EDF

α −≤ −i
 

)1−

 
Once i

jα  has been determined, the distribution of i
jR  condi-

tional on no defaults up to T  can be determined by truncat-
ing the distribution of i

jR  conditional on no defaults up to 
time .  By repeated application of this procedure, the en-
tire set of default thresholds can be determined.  The main 
computational cost is associated with the convolution.  This 
can be handled easily with the fast Fourier transform algo-
rithm, which is effective since the conditional distribution is 
always convolved with a Normal distribution. 

1iT −

Once the default thresholds are determined, the simu-
lation proceeds by sampling correlated Brownian motion 
paths for the asset returns at the specified times.  Default 
occurs for a given obligor during the first period for which 
its return falls below the associated threshold.   For names 
that don’t default, conditional default probabilities at each 
time step can be used as input in valuation algorithms to 
provide consistent, correlated mark-to-model pricing for 
the collateral. 

As mentioned above, the assumption of geometric 
Brownian motion for the asset value process often does not 
adequately capture how a firm’s credit quality changes 
over  time because it does not take into account the associ-
ated changes in  liability structure.  It is known that as 
firms do well (e.g. as the asset value of the firm increases), 
they tend to take on more debt, thereby keeping their credit 
quality more stable over time.  For example, a Baa rated 
firm will tend to maintain that rating by borrowing more 
when opportunities arise.  It would be unusual for such a 
firm to grow without adding leverage to become a Aaa 
rated.  However, this tends to be the consequence of the 
geometric Brownian motion model:  over longer time hori-
zons, firms that do not default undergo systematic im-
provement in their credit quality. 

To capture the effects of changes to both asset value 
and liability structure on credit quality in long horizon 
multi-step simulations, at MKMV we have developed a 
multi-step simulation based on the Distance to Default 
transition densities.  We now consider the implementation 
of this second, empirically-based method. 

A key point to consider when working with historically 
observed data is the need to bucket the data in order to build 
a suitable sample size.  For example,  the first step in deter-
mining the probability of transitioning from a value of 3 
over a one year horizon to a value of 4 is to identify all 
names in the historical sample that have at some time point a 

value of 3.  However, since is determined as a con-

DD
DD

DD DD
tinuous variable, it is unlikely that any of the sample will 
have a value of exactly 3.  Thus it is necessary to repose 
the question as to the probability of transition from a bucket, 
or interval, containing the value 3 to a value less 
than 4.  The distribution of arrival ‘s after one year does 
not necessarily have to be bucketed – a parametric distribu-
tion for the cumulative transition probability distribution can 
be selected and the actual data used to estimate the distribu-
tion’s parameters.  However, for use in a multi-step simula-
tion, it is convenient to work with the transition probabilities 
from one bucket to another bucket in the form of a transition 
matrix.  The multi-step simulation is then carried out as a 
discrete Markov chain by repeated application of the transi-
tion matrix  to an initial state vector.  The size of the transi-
tion matrix, which is determined by the size of the 

buckets, is chosen to balance the desire for high resolu-
tion in space with the need to minimize the statistical 
errors arising from small sample sizes.  Ultimately this is a 
question of the size of the original data set.  The MKMV 
simulation is based on 9 years of monthly data on over 
12000 firms. 

DD

DD

DD

0

DD

( )

DD

DD =

DD

1
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i

F T

−

( )F T
CED−

i

)
CED
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There are a number of important observations to be 
made about the transition matrix.  First, the default 
state, conveniently labeled as , is an absorbing 
state.  The total probability of transitioning to this default 
state over a given time period is the forward EDF.  This 
EDF is different for each firm; however, the transition ma-
trix was determined by pooling data on many firms.  Thus 
the transition matrix must be viewed as firm aggregate be-
havior.  In order to capture the firm-specific behavior dic-
tated by the input EDF term structure for each firm, it is 
necessary to make a firm-specific calibration of the transi-
tion matrix.  The calibration consists of satisfying the con-
straint that over a given time period, the probability of 
transitioning from a non-default state to the default state 
must be the unconditional (or more precisely, conditional 
only on data specified at T ) forward default probability: 

DD
0

 
( )1

1( ,
1i i

CED
EDF T T

F T
−

−

−
 

 
There are numerous ways this constraint could be en-
forced.  One simple approach is to rescale all the original, 
firm aggregate transition probabilities to default by a single 
factor such that their sum, weighted by the unconditional 
probabilities of being in each non-default state at time T , 
matches the forward EDF.  Once the transition probabili-
ties are adjusted by this scaling, the unconditional prob-
abilities for each state at time T  can be determined, 
thereby allowing the calibration for the next time step.  
This is equivalent to the convolution and truncation steps 
employed  for the geometric Brownian motion model. 

1i−

A second consideration for the transition matrix is 
whether the underlying data supports the model of a 
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Markov process.  Not surprisingly, the firm-aggregate tran-
sition matrices for time horizons of 6 months, 1 year, 2 
years, 5 years, etc., derived from the data do not fit per-
fectly in a Markov framework.  In other words, the one 
year matrix is not exactly the convolution of the 6 month 
matrix with itself; nor is the five year transition matrix ex-
actly the five-fold convolution of the one year transition 
matrix.  The agreement of these transition matrices is how-
ever sufficient, particularly given the complexity of the 
underlying factors which drive credit migration of firms as 
well as the firm-aggregate nature of the transitions them-
selves, to warrant the approximation by  a single, Markov 
transition matrix, which is determined by optimally fitting, 
in a least-squares sense, one matrix (and its convolutions) 
to the empirical transition matrices.  This avoids the excep-
tionally difficult task of specifying and calibrating a non-
Markov process for the credit migration. 

Once the transition matrix is specified for each obligor 
at each time step, the simulation proceeds by sampling 
from , the probability distribution of 

states at time T  determined from the appropriate 
probability distribution (as given by the transition matrix) 
conditional on the state at time T .   By interpolation 
from the cumulative probabilities for the discrete transition 
matrix states,  can be assumed to be a 

continuous, non-decreasing function with inverse 

( 1|iF DD DD −

i

DD

DD F D

)i

DD

1i−

)i( 1|i D DD −

( )1
iF u−

u
 

defined on the unit interval [0 .  For values of in the 
interval  (i.e., between 0 and the condi-
tional probability of defaulting), it follows that 

. We introduce correlations among obligors by 
assuming multi-variate Brownian motion for the asset re-
turn process and sampling the correlated asset return in-
crements according to the specified asset return correlation 
matrix.  The cumulative Normal distribution function is 
then used to map the sampled asset return increments to the 
unit interval; this value is then used as the argument for  

,1]
0)]1[0, ( iP DD − →

( ) 0=

)

1
iF u−

1
i (F u− .  More precisely, the sample for obligor  at 

time i  is given by  
DD j

 

( )( )1
i jDD F ε−= Φ  

 
where the jε  are the normalized, correlated Normal sam-
ples of asset returns. 

If the random asset return sample falls below the de-
fault threshold (determined by the  state at the previ-
ous time step and the original EDF term structure)  , the 
default state of  is sampled.  In this case, a random 
recovery may be drawn  from an appropriate distribution of 
recovery rates.  If the obligor does not default, the sampled 

state at  can be used to determine a conditional EDF 

DD

0DD =

DD iT
 
term structure looking forward that can be used to discount 
future cash flows according to their credit risk in order to 
obtain a  price for the exposure at time T . (Note that a dis-
cussion of the modeling of a stochastic interest rate proc-
ess, important for determine both price and cash flow char-
acteristics of debt instruments, has not been included here). 

i

5 COMPARISON OF MODELS 

In this section we use simulation experiments to compare the 
two model choices discussed above.  The first concerns the 
differences between the single step default time model and 
the multi-step simulation, while the second concerns the dif-
ference between modeling the asset value process as geomet-
ric Brownian motion and modeling credit migration through 
the Distance to Default empirical transition distributions. 

For the default time/multi-step comparison, we con-
sider a portfolio of 120 high yield bonds of maturity 
greater than five years issued by 120 correlated firms.  A 
histogram of the cumulative five year EDFs are shown in 
Figure 1.  This shows the portfolio to have a substantial 
component of distressed names, with a portfolio mean 5 
year EDF of around 18.7% (corresponding to annualized 
default rate of  4%).  The expected number of defaults, 
computed as the average EDF times the number of bonds, 
is 22.4.  However, based on the multi-step simulation there 
is a 5.4% chance of having more than 41 defaults. Figure 2 
plots the cumulative probability distribution for the total 
number of defaults over the five year period for each 
method.  This shows that the default time model overesti-
mates the probabilities of the extreme events (very few de-
faults, say under 10, or very many defaults, say over 40) 
relative to the multi-step model.  For example, the default 
time model puts the probability of having more than 60 de-
faults at around ten times greater than the multi-step model 
(2.6% versus 0.26%).  This difference may be put into the 
CDO context if we assume all exposures are of equal size 
 

 
Figure 1: Distribution of 5 Year EDFs for Bond 
Portfolio 
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Figure 2: Comparison of Default Time and Multi-
Step Models for Generating Correlated Defaults 
 

and a recovery of 50%; in this case 60 defaults corresponds 
to a loss of 25%.  For a senior tranche with 25% subordina-
tion,  this gives us sense of the default probability of the 
tranches over the 5 year horizon (not accounting for struc-
tural  effects of the cash flow waterfall).  Under the default 
time model, the tranche would be considered a moderate 
investment grade asset, while under the multi-step model 
this would be a triple A investment.  

For the second question of comparing the Brownian 
motion model with the empirical distribution model, we 
consider a two horizon case and compare the relative role 
of each time step’s asset return draw in determining de-
fault.  For each model the total default probability is the 
same.  However, depending on the credit migration over 
the first step (determined by the first asset return draw), the 
range of asset return draws require for default in the second 
time period can be substantially different.  This is illus-
trated in Figure 3, which plots regions in the two dimen- 
 

 
Figure 3: Comparison of Gaussian Process and 
Empirical Distance to Default Process for Two 
Steps of a Multi-Step Simulation 

 

sional space , where  is the scaled asset return 
for period  ( i ) normalized to be a standard Normal 
variate. In this example the time interval for each period 
are equal and the cumulative default probabilities are 1.8% 
for the first period and 3.57% for the first and second peri-
ods together.   

( 1 2,ε ε
1,2=

) iε
i

This plot shows that under the Gaussian process, the 
conditional default probability following a positive asset 
return on the first step is much lower than for the empirical 
distribution.  By the same token, a negative asset return on 
the first step under the Brownian motion model is much 
more likely to lead to default in the second step.   This 
model behavior differs from the Distance to Default em-
pirical distribution behavior because it fails to capture the 
firms response to good asset returns (adding more debt) 
and bad asset returns (taking measures to avoid default).  

Another striking difference between the models can be 
seen by considering the case for which the firm behaves 
according to expectation in the first period.  This corre-
sponds to .  The example has be chosen such that the 
default probability in each period is 1.8%.  Yet for the 
Gaussian model, if the firm behaves at its expected level 
for the first period, the conditional default probability for 
the second period drops to 0.27%.  For the DD Dynamics 
model, the second period default probability conditional on 
the expected asset return is around 1.4%. Note that the 
Gaussian process default boundary is linear because there 
is a fixed threshold such that if the two period cumulative 
asset return (the sum of the two one period asset returns) 
falls below it, the firm is in default. 

1 0ε =

6 CONCLUSIONS 

The complexity of CDOs and the default behavior of the 
underlying collateral demand sophisticated simulations to 
capture the behavior accurately.  True multi-step simula-
tions have been shown here to yield significantly different 
results from single step default time approximations.  In 
addition, a substantially more realistic credit migration be-
havior can be captured by using empirical distributions in 
place of the standard mathematical modeling approach. 
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