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ABSTRACT 

I examine the role of programming parameters in determin-
ing the accuracy of Genetic Programming for option pric-
ing.  I use Monte Carlo simulations to generate stock and 
option price data needed to develop a Genetic Option Pric-
ing Program.  I simulate data for two different stock price 
processes – a Geometric Brownian process and a Jump-
Diffusion process.  In the jump-diffusion setting, I seed the 
Genetic Program with the Black-Scholes equation as a 
starting approximation.  I find that population size, fitness 
criteria, and the ability to seed the program with known 
analytical equations, are important determinants of the ef-
ficiency of Genetic Programming. 

1 INTRODUCTION 

Genetic Programming has been proposed for determining 
the relationship between the options prices and the parame-
ters that are believed to be important in determining the 
price.  This advantage of a non-parametric approach such 
as Genetic Programming is that it requires minimal as-
sumptions and can easily adapt to changing and uncertain 
economic environments.  The implementation of a Genetic 
Program for option pricing involves various programming 
parameters that determine the efficiency of the genetic 
program.  In this study I explore the effect of these pro-
gramming parameters in determining the efficiency of Ge-
netic Programming. 
 Theoretical option pricing models based on risk-
neutral pricing theory, such as the seminal Black-Scholes 
model, rely on strict assumptions that do not hold in the 
real world.  The Black-Scholes model, for example, has 
been shown to exhibit systematic biases from observed op-
tion prices (Rubinstein 1977, Macbeth and Merville 1979, 
Macbeth and Merville 1980) and researchers have at-
tempted to explain the systematic biases as an artifact of its 
assumptions.  The most often challenged assumption is the 
normality of stock returns.  Merton (1976) and Ball and 
Torous (1985) propose a Poisson jump-diffusion returns 
processes.  French, Schwert and Stambaugh (1987) and 
 
Ballie & DeGennaro (1990) advocate GARCH (Bollerslev 
1986) processes.  While closed-form solutions for the op-
tion price cannot be obtained for all these models, pricing 
formulas can be obtained numerically. 
 The difficulty in finding an analytical closed-form pa-
rametric solution has also led to non-parametric approaches.  
Rubinstein (1997) suggests that we examine option data for 
the implied binomial tree to be used for pricing options.  
Chidambaran and Figlewski (1995) use a quasi-analytic ap-
proximation based on Monte Carlo simulation. Hutchinson, 
Lo and Poggio (1994) build a numerical pricing model using 
neural networks.  Chidambaran, Lee, and Trigueros (1999) 
propose Genetic Programming to develop an adaptive evolu-
tionary model of option pricing that is also data driven and 
non-parametric.  They show that this method offers some 
advantages over learning networks.  In particular, it can op-
erate on small data sets, circumventing the large data re-
quirement of the neural network approach noted by Hutchin-
son, Lo, and Poggio (1994). 
 The philosophy underlying Genetic Programming is to 
replicate the stochastic process by which genetic traits 
evolve in offspring, through a random combination of the 
genes of the parents, in the biological world.  A random 
selection of equations of the option contract terms and ba-
sic statistical properties of the underlying stock price will 
have among them some elements that will ultimately make 
up the true option pricing formula.  By selectively breeding 
the equations, presumably these elements will be passed 
onto future generations of equations that can price options 
more accurately.  The essence of the method is the selec-
tion of equation components, i.e. genetic traits, which par-
ents pass on to the next generation.  Since it is impossible 
to determine which element is the best ex-ante, the focus is 
on choosing parents that seem to be the fittest.  The genes 
to be propagated to the next generation are thus selected on 
the basis of the pricing errors of the equations. 
 There are many factors that determine the efficiency of 
Genetic Programming.  Important specifications include 
the size of the population, the method of selecting equa-
tions with their embedded “genetic traits” to serve as par-
ents, the number of mutations that are allowed, the size of 
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the data set used for training the program.   In this paper, I 
vary these parameters in exploring the efficiency of the 
Genetic Program.  
 An important advantage of the Genetic Programming 
approach over other numerical techniques is its ability to 
incorporate known approximate solution as a starting point 
for the approximation.  That is, we can seed the initial 
population of equations with a particular equation or indi-
vidual.  This has two effects on the efficiency of the pro-
gram.  One, I start with an individual member in the popu-
lation that gives a good fit to the data.  Two, the elements 
of this equation will add to the “gene pool” to be used in 
evolving future generations.  In this paper, I include the 
Black-Scholes model in the initial gene pool. This ap-
proach can reach the true pricing model more efficiently as 
it begins the search from a locally optimum solution. I il-
lustrate how this approach quickly adapts the Black-
Scholes model to a jump-diffusion process, where the 
Black-Scholes assumption of returns normality does not 
hold and for pricing options in the real world. 
 The paper proceeds as follows. In Section 2, I intro-
duce genetic programming and highlight its advantages 
over other non-parametric methods.  In Section 3, I assess 
the ability of Genetic Programming in learning the Black-
Scholes model, given data that are simulated according to 
the assumptions of the Black-Scholes world.  In Section 4, 
I construct a non-Black-Scholes world and show how Ge-
netic Programming can adapt the Black-Scholes model to 
its specifications.   In Section 5, I conclude. 

2 GENETIC PROGRAMMING –  
A BRIEF OVERVIEW 

Genetic Programming is a technique that applies the Dar-
winian theory of evolution to develop efficient computer 
programs.  In this section I describe the mechanics of the 
approach and the various ways to improve its efficiency. 
 
2.1  Basic Approach 
 
Genetic Programming is an offshoot of Genetic Algo-
rithms.  Genetic Algorithms have been used to successfully 
develop technical trading rules by Allen and Karlajainen 
(1999) for the S&P 500 index and by Neely, Weller, and 
Dittmar (1997) for foreign exchange markets.  Genetic 
Programming has also been used in heterogeneous multi-
agent economies by Marimon, McGrattan and Sargent 
(1990), in multi-agent financial markets by Lettau (1997), 
and in multi-agent games by Ho (1996). 
 I use a variant of Genetic Programming called Genetic 
Regression, where the desired program is a function that 
relates a set of inputs such as share price, option exercise 
price, etc. to one output, the option price.  The set of data 
on which the program operates to determine the relation-
ship between input parameters and the options price is 
called the training set.  The set of data on which the result-
ing formula is tested is called the test set.  The procedure 
of the basic approach is described as follows. 

• Given a problem to be solved and a training set of 
matched inputs and outputs, a set of possible for-
mulas is randomly generated.  These formulas are 
functions of some or all of the independent vari-
ables and randomly generated constants.  Each 
formula is an individual and the set of individuals 
is called the population.  The size of the popula-
tion is held constant and is a control variable for 
optimizing the modeling process. 

• Every individual in the population is evaluated to 
test whether it can accurately price options in the 
training data set. I assign a fitness measure to se-
lect the surviving gene. A smaller mispricing for 
the training data set indicates a better fit. 

• Based on a fitness measure, a subset of the popu-
lation is selected to act as the parents for the next 
generation of the population of formulas.   

• A pair of the parents generates a pair of offspring. 
Components of the parent formulas are crossed to 
generate offspring formulas. A random point is 
selected in each parent tree. The sub-trees below 
that random point are switched between the two 
parent formulas.  This operation creates a new 
pair of individuals, the offspring.  It is possible 
that no crossover is performed and the parents 
themselves are placed in the new population (a 
clone).  The process of selection and crossover is 
repeated until the new generation is completely 
populated. 

• The individuals in the new population are tested 
to gauge their performance in pricing options. The 
steps above are repeated for a pre-specified num-
ber of times, or generations.  Evolutionary pres-
sure in the form of fitness-related selection com-
bined with the crossover operation eventually 
produces populations of highly fit individuals.  I 
keep track of the best-fit individual found 
throughout this process and set it as the solution to 
the option pricing problem.  

 
2.2  Parent Selection Criteria  
  
The method of selecting parents for the next generation can 
affect the efficiency of genetic programs.  I examine differ-
ent selection methods: Best, Fitness, Fitness-overselection, 
Random, Tournament with 4 individuals and Tournament 
with 7 individuals.  These methods represent various at-
tempts to preserve a degree of randomness in the evolution-
ary process. 
 In the Best method, individuals are ranked in terms of 
their fitness, ascending in the order of magnitude of their 
errors.  The individuals with the smallest errors are thus 
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picked to serve as parents of the next generation.  In the 
Fitness method, individuals are selected randomly with a 
probability that is proportional to their fitness.  In the Fit-
ness-overselection method, 400 individuals are classified 
into two groups.  Group 1 has 320 best-fit individuals and 
Group 2 has the remainder.  Individuals are selected ran-
domly with an 80% probability from Group 1 and a 20% 
probability from Group 2.   In the Random method, the fit-
ness of the individuals is completely ignored and parents 
are chosen at random from the existing population.  Fi-
nally, in the Tournament method, n individuals are selected 
at random from the population and the best-fit individual is 
chosen to be a parent.  I examine Tournament method with 
n=4 and n=7. 

 
2.3 Advantages of Genetic Programming 
 
An important advantage of Genetic Programming is its ca-
pability of incorporating a known analytical approximation 
to the solution into the program. In this paper, I include the 
Black-Scholes model as an initial parameter, i.e. part of the 
initial gene pool, for the algorithm. Since the method be-
gins with a known approximation, it increases the probabil-
ity of finding the true pricing formula and reduces comput-
ing time. 
 Genetic Programming requires smaller training sets 
than Neural Networks, which is a popular alternative adap-
tive learning algorithm (see Hutchinson, Lo, and Poggio 
(1994) and Koza (1992)).  Since most options, especially 
those that are deep-in-the-money and deep-out-of-the-
money, are thinly traded, Genetic Programming is an ideal 
tool for option pricing, 
 The methodology can also be made robust to changing 
environmental conditions and can operate on data sets gen-
erated over a range of possible conditions.  I make the 
population robust by stochastically changing the training 
sets in the middle of the evolution.  Only individuals with 
the desirable characteristics that are well adapted to chang-
ing environments will survive. The problem of over-fitting, 
in particular, is easily resolved by this approach.  Further, 
new formulas can evolve out of previously optimal solu-
tions when the data set contains structural changes rather 
than requiring retraining from scratch like in learning net-
works.  Since genetic programs are self-learning and self-
improving, they are an ideal tool for practitioners. 
 
2.4 Convergence Characteristics of  

Genetic Algorithms and Programs 
 
Our implementation of the Genetic Programming is effec-
tively a search over the space of functions that can be con-
structed from a user-defined set of base variables and op-
erations.  This space of functions is generally infinite.  
However, the Genetic Programming algorithms are aided 
by the fact that I limit the search space and that the search 
is a parallel search. 
 I control and limit the complexity of the problem by 
setting a maximum depth size of 17 for the trees used to 
represent formulas. A 17 deep tree is a popular number 
used to limit the size of tree sizes Koza (1992).  Practi-
cally, I chose the maximum depth size possible without 
running into excessive computer run times.  Note that the 
Black-Scholes formula is represented by a tree of depth 
size 12.  A depth size of 17, therefore, is large enough to 
accommodate complicated option pricing formulas and 
works in practice. 
 The search space is, however, still very large and it is 
computationally inefficient to examine every possible tree.  
The implicit parallelism of Genetic Programming, how-
ever, ensures that the search is efficient.  The central idea 
behind the parallelism of Genetic Programming is that each 
of the formula elements defines hyperplanes, i.e. sub-
regions of the search space.  In the population of candidate 
formulas, all the elements are present, and the fitness of 
each formula is a function of how many of the elements of 
the true pricing formula is present in the individual being 
evaluated.  All formulas that contain a particular element 
will have similar errors and an evaluation of the formulas 
in the population is a parallel search for the hyperplanes 
containing the elements that make up the true option-
pricing model.  For example, the Black-Scholes formula is: 
 

)2()1( dNXedSNC rτ−−=  
 
where, 
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N (d1) and N (d2) are the cumulative standard normal val-
ues for d1 and d2, S is the current stock price, X is the ex-
ercise price, r is the risk free rate, τ is the option time to 
maturity and σ is the volatility of the underlying stock.   I 
can treat the formula to be the point at which the hyper-
planes containing the term S N (d1) and -X e-rτ N (d2) in-
tersect. Searching over a randomly generated set of formu-
las is, therefore, a parallel search over a set of hyperplanes. 

The true option pricing formula will consist of many 
different elements that form a set of hyperplanes and these 
is called its schemata.  The individual sub-regions formed 
by the hyperplanes are the schema.  If an individual equa-
tion contains elements that represent a superior region of 
the search space, it will generally be reflected as better fit-
ness for the equation.  This will increase the individual’s 
chance to reproduce and pass on its schema to the next 
generation.  When used to solve problems that involves a 
search for the sequence of elements that make up a gene, or 
any problem that involves a search for a sequence of num-
bers, Holland (75) and Koza (92) and show that the sche-
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mata of the Genetic Algorithm search process is extremely 
efficient and the algorithm converges.   In this paper, I im-
plicitly test whether such an approach will also work when 
searching for a closed-form option-pricing model. 

3 GENETIC PROGRAMMING IN A  
BLACK-SCHOLES WORLD 

In this section, I test the capacity of Genetic Programming 
to learn the Black-Scholes model, paralleling the study by 
Hutchinson, Lo, and Poggio (1994).  Data to train the Ge-
netic Programming is generated through Monte-Carlo 
simulation.  For each data set, price paths of the underlying 
stock with initial value S0 =50 are simulated for 504 days 
(24 months * 21 days/month).  Stock returns are assumed 
to follow a diffusion process dS(t)/S(t) = µdt + σdW(t) 
with annual continuously compounded expected return 
µ=0.10, standard deviation σ=0.20 and risk-free rate 
r=0.05. Stock price at time t is calculated as: 

 

S t e
Zt

i

t

( ) =
∑

=1    ;    t = 1,.., 504. 
 

 I next generate a sample of call options for each stock 
price realization.  CBOE rules (Hull (1993)) were used to 
create call options with varying strikes and maturity for 
each day of the simulated price path.  Option prices are de-
rived for each simulated option, using the Black-Scholes 
equation.  I thus have a sample of simulated options data. I 
adopted many of the simplifications suggested by Hutchin-
son, Lo, and Poggio (1994) in generating the data sample, 
for example, I hold the annual volatility σ and riskless rate 
r constant throughout.  Figure 1 shows a stock price path 
generated by Geometric Brownian motion and Figure 2 
shows the distribution of associated option prices.  
 Table 1 describes the specifications of the Genetic 
Programming model. I use the four basic mathematical op-
erations, the log function, the exponential function, the 
 

 
Figure 1: Sample Geometric Brownian Stock 
Price Process Using Monte Carlo Simulation 
 
Figure 2: Distribution Of Option Prices Derived From 
The Stock Price Path In Figure 1 

 
Table 1: Training Variables and Arithmetic Operations 

Name Source Definition 
S Option Contract Stock price 
X Option Contract Exercise price 

S/X Part of Black-Scholes Option moneyness 
σ Option Contract Time to maturity 

(years) 
max(S-

X) Boundary Condition Option intrinsic value 
Max (S-X,0) 

+ Standard arithmetic Addition 
- Standard arithmetic Subtraction 
* Standard arithmetic Multiplication 
% Standard arithmetic Protected Division:  

   x%y = 1     if y = 0 
           = x/y   otherwise 

Exp Black-Scholes com-
ponent 

Exponent: exp(x) = ex  

Plog Black-Scholes com-
ponent 

Protected Natural log:  
plog(x) = ln(|x|) 

Psqrt Black-Scholes com-
ponent 

Protected Square root:  
psqrt(x) = sqrt(|x|) 

Ncdf Black-Scholes com-
ponent 

Normal Cumulative 
Distribution Function 

 
square root function, and the cumulative Normal distribu-
tion.  The basic division operation is protected against divi-
sion by zero and the log and square root functions are pro-
tected against negative arguments.  The current stock price, 
option exercise price, option intrinsic value, and option 
time-to-maturity are input parameters.  The functional rep-
resentation of a formula is assumed to be 17-step deep. 
 I implement ten trial runs, i.e. a Genetic Programming 
option pricing formula.  Table 2 shows the genetic pro-
gramming parameters used in each run.  For each training 
set the price path of a stock with starting value S0=50 was 
simulated through 24 21-day months as described earlier.  
Options were created according to CBOE rules and valued 
using the Black Scholes formula.  Each training set con-
sisted of the daily values of these options.  Formula popu- 
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Table 2: Genetic Programming Parameters 
Fitness Criterion Sum of absolute dollar er-

rors and percentage errors 
Population Size 100 - 50,000 
Sample Size 5% - dynamically sampled 
Number of Generations 100 - 1,000 
Mutations 10%-50% 

 
lations were exposed to dynamically sampled subsets, 
about 5% of the entire sample.  The data set is stochasti-
cally changed in the middle of training run to prevent over-
fitting. I find that evaluating the population formulas on 
such stochastic subsets of the data set resulted in reduced 
training times and better out-of-sample performance. Only 
robust formulas can survive the constantly changing envi-
ronment and pass on their “traits” to the next generation.   
 I varied population size from 100 to 50,000 individual 
formulas and varied the level of mutations between 10% 
and 50%.  Each trial was run up to 1,000 generations.   
 The criterion for selecting the surviving formulas is a 
linear combination of the absolute pricing errors and the 
percentage pricing errors.  I found (Chidambaran 2003) 
that the formulas consistently made relatively small abso-
lute errors when pricing out-of-the-money options and 
relatively large absolute errors when pricing in-the-money 
options.  The pattern in the magnitudes of the percentage 
error is just the opposite. Linear combination of these two 
error measurements leads to a more efficient selection rule. 
 For example, if the true price of an option is $2.00 and 
one of the Genetic Programming formulas gives a price of 
$2.20, then percentage error is small (10%) but dollar error 
is $0.20, which is economically significant.  On the other 
hand, if the true price is $0.10 and our formula gives a 
price of $0.07, dollar error is small ($0.03) but the price is 
off by 30%.  Our error measure is then 30 (10% + $0.20) in 
the first case and 33 (30% + $0.03) in the second case. 
 In the classic Genetic Programming fashion, I define 
the fitness of a formula to be: 
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where εi is the training error for the ith case.  This training 
error is defined as the sum of percentage and dollar errors if 
the Black-Scholes value was greater than $0.01 and just the 
dollar error if the Black-Scholes value was less than $0.01. 
 It should be noted that the restrictions on Genetic Pro-
gramming are far fewer than those required for Neural Net-
works. Only the variables needed for pricing options have to 
be specified. I need not make assumptions on the smooth-
ness or complexity of the formulas beyond the maximum 
allowable depth (tree size) for representing a formula. 
 I measure the performance of Genetic Programming 
on an out-of-sample two-dimensional options grid of op-
tion maturities and strike prices.  Each cell in the table is 
the average pricing errors across ten different Genetic Pro-
gramming formulas.    
 My results indicate a pattern of performance of the 
Genetic Programming model consistent with Chidambaran, 
Lee, and Trigueros (1999).  First, the dollar pricing errors 
are small for short-maturity options as opposed to long-
maturity options.  However, the percentage pricing errors 
are just the opposite.  Obviously this is because the magni-
tude of option prices varies substantially across option ma-
turities.  Second, the errors vary across the option strike.  
Once again this is because option prices are very small for 
out-of-the money options and much higher for in-the-
money options.   The fitness criterion I use balances the 
two effects by minimizing a combination of the absolute 
and percentage pricing errors.  I found that this allows me 
to better control the pricing errors for out-of-the money 
and in-the-money options without adversely affecting the 
errors for at-the-money options. 
 While all the parent selection methods yield similar 
qualitative results, they vary widely in efficiency.  Results 
indicate that the Fitness-overselection method and the 
Tournament method (n=7) providing the best results and 
that Genetic Programming gives a good numerical ap-
proximation to the Black-Scholes model. 

4 PERFORMANCE ANALYSIS IN  
A JUMP-DIFFUSION WORLD 

The Genetic Programming approach can incorporate any 
known analytical approximation into its algorithm. It is 
flexible to adapt to changing and unknown economic envi-
ronments. In this section, I illustrate how the Genetic Pro-
gramming model can adapt and outperform the Black-
Scholes model in a jump-diffusion world described by 
Merton (1976).  Since the closed form solution for the op-
tion prices in a jump-diffusion world is available, I can 
measure the pricing errors from the Genetic Programming 
model and the Black-Scholes model in such a world.  The 
performance analysis highlights the salient features of the 
Genetic Programming approach to option pricing.  
 The jump-diffusion process is a combination of a 
Geometric Brownian diffusion process and a Poisson jump 
process and can be written as: 
 

dS t S t k dt dW t dq( ) / ( ) ( ) ( )= − + +µ λ σ  
 
where dq is the Poisson-lognormal jump process.  The  
Poisson process determines when a jump occurs and jump 
size is lognormally distributed. 
 I simulate the price path of daily stock prices over a 24 
month period with the initial price set at S0 =50.  Each 
month is assumed to have 21 trading days.   The diffusion 
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parameters µ (mean) and σ(standard deviation) were set at 
10% and 20% respectively, and jump parameters k(jump 
size), λ (jump rate), and δ (standard deviation of the log-
jumps), were set at 0.02, 25 and 0.05 respectively. This 
translates into 25 expected jumps per year, each inducing 
an expected percentage change of 2% on the stock price.  
The variance of the log-jumps is 0.05. These values are 
well within the range estimated by stock price data.   Thus, 
504 stock prices, S(t), are simulated using random daily 
returns zt ~ N((µ-σ2/2-k) /252,σ/252) and n(t)~Poisson(λt) 
jumps, each of magnitude Yj (where lnYj ~ N(ln(1+k)-
0.5δ2, δ)),  for each t in {1…504}: 
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 I use CBOE rules to create call options from the simu-
lated stock price path.  This ensures that there is a suffi-
cient sample of at-the-money and near-the-money options 
at all points.  The methodology however can result in only 
a few deep in-the-money and deep out-of-the-money op-
tions in the sample.  I find that the performance of the ge-
netic program is sensitive to the number of options at vari-
ous moneyness levels in the sample. 
 Options are priced using Merton’s (1976) jump diffu-
sion formula given below.  Terms in the sum increase and 
then decrease in magnitude due to the distribution of the 
attached probabilities.  I truncated at the point when the 
marginal contribution of additional terms is negligible - all 
terms in the decreasing segment of the series whose mar-
ginal contribution was less than 0.00001% were dropped, 
as well as all terms beyond the 1000th in the sum.  
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 The set of operations and variables used to develop the 
Genetic Programs in the Jump Diffusion setting is the same 
as that for the Black-Scholes setting shown in Table 1.   

    

 The significant innovation in this step of the study is 
to seed the initial population with the Black-Scholes equa-
tion.  This provides a good starting point for finding a solu-
tion and is a way in which I can adapt known analytical 
approximations to find a better approximation. I, however, 
correct for the volatility estimate that an investor would 
have calculated using a history of observed prices, which is 
a combination of the variances of the diffusion and jump 
processes. This reflects the approach of a naive investor 
who is unaware of the true nature of the underlying stock 
price process when using the Black-Scholes model to price 
option.  The estimated call option value with the modified 
Black-Scholes model is (Merton 1976): 
 
 

).,,,,( 22 τλδσ += rXSBSC 
 
 I use the same population sizes, convergence criteria, 
and sample sizes in the jump-diffusion setting as I used in 
the Black-Scholes setting. 
 I also address an important criticism usually leveled at 
complex numerical methodologies.  Can the method per-
form any better than a simple linear regression model?  
While linear regression of the options price on variables 
such as the options strike and current stock price can result 
in an equation that gives small errors within the sample, it 
is obvious that out-of-the sample option values will be 
priced with larger errors.  It is, however, a useful bench-
mark.  I, therefore, run single-stage and two-stage linear 
regressions with and without Black-Scholes model as an 
independent variable. The two-stage model represents 
separate equations for in-the-money and for out-of-the-
money options. 
 The linear models that have, however, have one major 
draw back -- the partial derivatives of the pricing equation 
are equal to the Black-Scholes partial derivatives with a 
constant adjustment term.  The true test of any option pric-
ing model is its performance in hedging and the constant 
adjustment to the option price sensitivity with respect to 
the stock price, the option delta, will not work in practice.  
Genetic Programming allows general adjustments to the 
option-pricing model and is not subject to this problem.  
Note that if the linear model is indeed the best model, the 
Genetic Program theoretically should be able to find it and 
no generality is lost. 
 I test the hedging effectiveness of the Genetic Program 
formula by constructing a hedge portfolio of the option, 
stock, and a riskless bond.  The amount of stocks in the 
portfolio is chosen as usual to be the delta amount, where 
delta is determined by taking the first partial of the Genetic 
Programming formula with respect to the stock price.  I es-
timate the performance of the hedge over ten samples of 
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100 paths for options of varying maturities and strike 
prices.  The hedging performance in each path is calculated 
to be the deviation from zero in the portfolio value.  I also 
similarly determine the hedging performance of the Black-
Scholes model over the same 100 paths.  My preliminary 
results indicate that the Genetic Program beats the Black-
Scholes model in over 50% of the cases. 
 I further evaluate the performance of the Genetic Pro-
gramming formula by comparing its pricing errors with 
that of the Black-Scholes model and Neural Networks for 
options of various maturities and moneyness.  I chose Neu-
ral Networks for benchmarking results as it is the closest to 
genetic programming in its philosophy and is a data-driven 
non-parametric methodology.  Other option pricing meth-
ods such as GARCH models require assumptions of the 
underlying process and parameter values. My preliminary 
results indicate that Genetic Programming beats Neural 
Networks in all cases. 
 To take advantage of Genetic Programming’s ability 
to learn with small training sets (Koza 1992) and reduce 
computational time, I tested its performance using random 
samples of 5% and 25% of the options generated in the 
simulation.  I found that the training formulas with the 
smaller data sets resulted in only a minimal reduction in 
out-of-sample performance.  Our tests dramatically support 
the notion that Genetic Programming needs only small 
training sets in order to arrive at a good solution. 

5 CONCLUSION 

In this paper I have examine the impact of the various pro-
gramming parameters in developing a Genetic Option Pric-
ing Program.  I find that program design, in particular 
population size, level of mutation, and sample size, is im-
portant in determining the accuracy and efficiency of the 
Genetic Program. 

A careful specification of the programming parameters 
improves the efficiency of the Genetic Program.  I find that 
smaller data sets that are stochastically changed leads to 
quicker convergence.  I also find that larger population 
sizes and a higher level of mutations leads to quicker con-
vergence of the program.  
 The Genetic Programming method has many advan-
tages over other numerical techniques.  First, it is a non-
parametric data driven approach and requires minimal as-
sumptions. I thus avoid the problems associated with mak-
ing specific assumptions regarding the stock price process. 
The Genetic Programming method uses options price data 
and extracts the implied pricing equation directly. 
 Second, the Genetic Program can be seeded with the 
Black-Scholes equation in developing a better model.  The 
ability to seed a Genetic Program is similar to choosing 
starting values using all available information in a standard 
optimization exercise. The final solution can be considered 
to be an adaptation of the Black-Scholes model to condi-
tions that violate the underlying assumptions. 
 Third, the Genetic Programming method requires less 
data than other numerical techniques such as Neural Net-
works (Hutchinson, Lo, and Poggio (1994)).  
 Finally, the flexibility in adding terms to the parameter 
set used to develop the functional approximation can be 
used to examine whether factors beyond those used in this 
study, for example, trading volume, skewness and kurtosis 
of returns, and inflation, are relevant to option pricing. The 
self-learning and self-improving feature also makes the 
method robust to changes in the economic environment.  
The Genetic Option Pricing Program is fast, self-learning, 
and self-improving, it is an ideal too for practitioners. 
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