
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

GENETIC PROGRAMMING WITH MONTE CARLO SIMULATION FOR OPTION PRICING

N. K. Chidambaran

Rutgers Business School – Newark & New Brunswick
Rutgers University

Piscataway, NJ 08854, U.S.A.

ABSTRACT

I examine the role of programming parameters in determin-
ing the accuracy of Genetic Programming for option pric-
ing. I use Monte Carlo simulations to generate stock and
option price data needed to develop a Genetic Option Pric-
ing Program. I simulate data for two different stock price
processes – a Geometric Brownian process and a Jump-
Diffusion process. In the jump-diffusion setting, I seed the
Genetic Program with the Black-Scholes equation as a
starting approximation. I find that population size, fitness
criteria, and the ability to seed the program with known
analytical equations, are important determinants of the ef-
ficiency of Genetic Programming.

1 INTRODUCTION

Genetic Programming has been proposed for determining
the relationship between the options prices and the parame-
ters that are believed to be important in determining the
price. This advantage of a non-parametric approach such
as Genetic Programming is that it requires minimal as-
sumptions and can easily adapt to changing and uncertain
economic environments. The implementation of a Genetic
Program for option pricing involves various programming
parameters that determine the efficiency of the genetic
program. In this study I explore the effect of these pro-
gramming parameters in determining the efficiency of Ge-
netic Programming.
 Theoretical option pricing models based on risk-
neutral pricing theory, such as the seminal Black-Scholes
model, rely on strict assumptions that do not hold in the
real world. The Black-Scholes model, for example, has
been shown to exhibit systematic biases from observed op-
tion prices (Rubinstein 1977, Macbeth and Merville 1979,
Macbeth and Merville 1980) and researchers have at-
tempted to explain the systematic biases as an artifact of its
assumptions. The most often challenged assumption is the
normality of stock returns. Merton (1976) and Ball and
Torous (1985) propose a Poisson jump-diffusion returns
processes. French, Schwert and Stambaugh (1987) and

Ballie & DeGennaro (1990) advocate GARCH (Bollerslev
1986) processes. While closed-form solutions for the op-
tion price cannot be obtained for all these models, pricing
formulas can be obtained numerically.
 The difficulty in finding an analytical closed-form pa-
rametric solution has also led to non-parametric approaches.
Rubinstein (1997) suggests that we examine option data for
the implied binomial tree to be used for pricing options.
Chidambaran and Figlewski (1995) use a quasi-analytic ap-
proximation based on Monte Carlo simulation. Hutchinson,
Lo and Poggio (1994) build a numerical pricing model using
neural networks. Chidambaran, Lee, and Trigueros (1999)
propose Genetic Programming to develop an adaptive evolu-
tionary model of option pricing that is also data driven and
non-parametric. They show that this method offers some
advantages over learning networks. In particular, it can op-
erate on small data sets, circumventing the large data re-
quirement of the neural network approach noted by Hutchin-
son, Lo, and Poggio (1994).
 The philosophy underlying Genetic Programming is to
replicate the stochastic process by which genetic traits
evolve in offspring, through a random combination of the
genes of the parents, in the biological world. A random
selection of equations of the option contract terms and ba-
sic statistical properties of the underlying stock price will
have among them some elements that will ultimately make
up the true option pricing formula. By selectively breeding
the equations, presumably these elements will be passed
onto future generations of equations that can price options
more accurately. The essence of the method is the selec-
tion of equation components, i.e. genetic traits, which par-
ents pass on to the next generation. Since it is impossible
to determine which element is the best ex-ante, the focus is
on choosing parents that seem to be the fittest. The genes
to be propagated to the next generation are thus selected on
the basis of the pricing errors of the equations.
 There are many factors that determine the efficiency of
Genetic Programming. Important specifications include
the size of the population, the method of selecting equa-
tions with their embedded “genetic traits” to serve as par-
ents, the number of mutations that are allowed, the size of

Chidambaran

the data set used for training the program. In this paper, I
vary these parameters in exploring the efficiency of the
Genetic Program.
 An important advantage of the Genetic Programming
approach over other numerical techniques is its ability to
incorporate known approximate solution as a starting point
for the approximation. That is, we can seed the initial
population of equations with a particular equation or indi-
vidual. This has two effects on the efficiency of the pro-
gram. One, I start with an individual member in the popu-
lation that gives a good fit to the data. Two, the elements
of this equation will add to the “gene pool” to be used in
evolving future generations. In this paper, I include the
Black-Scholes model in the initial gene pool. This ap-
proach can reach the true pricing model more efficiently as
it begins the search from a locally optimum solution. I il-
lustrate how this approach quickly adapts the Black-
Scholes model to a jump-diffusion process, where the
Black-Scholes assumption of returns normality does not
hold and for pricing options in the real world.
 The paper proceeds as follows. In Section 2, I intro-
duce genetic programming and highlight its advantages
over other non-parametric methods. In Section 3, I assess
the ability of Genetic Programming in learning the Black-
Scholes model, given data that are simulated according to
the assumptions of the Black-Scholes world. In Section 4,
I construct a non-Black-Scholes world and show how Ge-
netic Programming can adapt the Black-Scholes model to
its specifications. In Section 5, I conclude.

2 GENETIC PROGRAMMING –
A BRIEF OVERVIEW

Genetic Programming is a technique that applies the Dar-
winian theory of evolution to develop efficient computer
programs. In this section I describe the mechanics of the
approach and the various ways to improve its efficiency.

2.1 Basic Approach

Genetic Programming is an offshoot of Genetic Algo-
rithms. Genetic Algorithms have been used to successfully
develop technical trading rules by Allen and Karlajainen
(1999) for the S&P 500 index and by Neely, Weller, and
Dittmar (1997) for foreign exchange markets. Genetic
Programming has also been used in heterogeneous multi-
agent economies by Marimon, McGrattan and Sargent
(1990), in multi-agent financial markets by Lettau (1997),
and in multi-agent games by Ho (1996).
 I use a variant of Genetic Programming called Genetic
Regression, where the desired program is a function that
relates a set of inputs such as share price, option exercise
price, etc. to one output, the option price. The set of data
on which the program operates to determine the relation-
ship between input parameters and the options price is
called the training set. The set of data on which the result-
ing formula is tested is called the test set. The procedure
of the basic approach is described as follows.

• Given a problem to be solved and a training set of
matched inputs and outputs, a set of possible for-
mulas is randomly generated. These formulas are
functions of some or all of the independent vari-
ables and randomly generated constants. Each
formula is an individual and the set of individuals
is called the population. The size of the popula-
tion is held constant and is a control variable for
optimizing the modeling process.

• Every individual in the population is evaluated to
test whether it can accurately price options in the
training data set. I assign a fitness measure to se-
lect the surviving gene. A smaller mispricing for
the training data set indicates a better fit.

• Based on a fitness measure, a subset of the popu-
lation is selected to act as the parents for the next
generation of the population of formulas.

• A pair of the parents generates a pair of offspring.
Components of the parent formulas are crossed to
generate offspring formulas. A random point is
selected in each parent tree. The sub-trees below
that random point are switched between the two
parent formulas. This operation creates a new
pair of individuals, the offspring. It is possible
that no crossover is performed and the parents
themselves are placed in the new population (a
clone). The process of selection and crossover is
repeated until the new generation is completely
populated.

• The individuals in the new population are tested
to gauge their performance in pricing options. The
steps above are repeated for a pre-specified num-
ber of times, or generations. Evolutionary pres-
sure in the form of fitness-related selection com-
bined with the crossover operation eventually
produces populations of highly fit individuals. I
keep track of the best-fit individual found
throughout this process and set it as the solution to
the option pricing problem.

2.2 Parent Selection Criteria

The method of selecting parents for the next generation can
affect the efficiency of genetic programs. I examine differ-
ent selection methods: Best, Fitness, Fitness-overselection,
Random, Tournament with 4 individuals and Tournament
with 7 individuals. These methods represent various at-
tempts to preserve a degree of randomness in the evolution-
ary process.
 In the Best method, individuals are ranked in terms of
their fitness, ascending in the order of magnitude of their
errors. The individuals with the smallest errors are thus

Chidambaran

picked to serve as parents of the next generation. In the
Fitness method, individuals are selected randomly with a
probability that is proportional to their fitness. In the Fit-
ness-overselection method, 400 individuals are classified
into two groups. Group 1 has 320 best-fit individuals and
Group 2 has the remainder. Individuals are selected ran-
domly with an 80% probability from Group 1 and a 20%
probability from Group 2. In the Random method, the fit-
ness of the individuals is completely ignored and parents
are chosen at random from the existing population. Fi-
nally, in the Tournament method, n individuals are selected
at random from the population and the best-fit individual is
chosen to be a parent. I examine Tournament method with
n=4 and n=7.

2.3 Advantages of Genetic Programming

An important advantage of Genetic Programming is its ca-
pability of incorporating a known analytical approximation
to the solution into the program. In this paper, I include the
Black-Scholes model as an initial parameter, i.e. part of the
initial gene pool, for the algorithm. Since the method be-
gins with a known approximation, it increases the probabil-
ity of finding the true pricing formula and reduces comput-
ing time.
 Genetic Programming requires smaller training sets
than Neural Networks, which is a popular alternative adap-
tive learning algorithm (see Hutchinson, Lo, and Poggio
(1994) and Koza (1992)). Since most options, especially
those that are deep-in-the-money and deep-out-of-the-
money, are thinly traded, Genetic Programming is an ideal
tool for option pricing,
 The methodology can also be made robust to changing
environmental conditions and can operate on data sets gen-
erated over a range of possible conditions. I make the
population robust by stochastically changing the training
sets in the middle of the evolution. Only individuals with
the desirable characteristics that are well adapted to chang-
ing environments will survive. The problem of over-fitting,
in particular, is easily resolved by this approach. Further,
new formulas can evolve out of previously optimal solu-
tions when the data set contains structural changes rather
than requiring retraining from scratch like in learning net-
works. Since genetic programs are self-learning and self-
improving, they are an ideal tool for practitioners.

2.4 Convergence Characteristics of

Genetic Algorithms and Programs

Our implementation of the Genetic Programming is effec-
tively a search over the space of functions that can be con-
structed from a user-defined set of base variables and op-
erations. This space of functions is generally infinite.
However, the Genetic Programming algorithms are aided
by the fact that I limit the search space and that the search
is a parallel search.
 I control and limit the complexity of the problem by
setting a maximum depth size of 17 for the trees used to
represent formulas. A 17 deep tree is a popular number
used to limit the size of tree sizes Koza (1992). Practi-
cally, I chose the maximum depth size possible without
running into excessive computer run times. Note that the
Black-Scholes formula is represented by a tree of depth
size 12. A depth size of 17, therefore, is large enough to
accommodate complicated option pricing formulas and
works in practice.
 The search space is, however, still very large and it is
computationally inefficient to examine every possible tree.
The implicit parallelism of Genetic Programming, how-
ever, ensures that the search is efficient. The central idea
behind the parallelism of Genetic Programming is that each
of the formula elements defines hyperplanes, i.e. sub-
regions of the search space. In the population of candidate
formulas, all the elements are present, and the fitness of
each formula is a function of how many of the elements of
the true pricing formula is present in the individual being
evaluated. All formulas that contain a particular element
will have similar errors and an evaluation of the formulas
in the population is a parallel search for the hyperplanes
containing the elements that make up the true option-
pricing model. For example, the Black-Scholes formula is:

)2()1(dNXedSNC rτ−−=

where,

τστστσ -d12 and /])2/()/[ln(1 2 =++= drXSd .

N (d1) and N (d2) are the cumulative standard normal val-
ues for d1 and d2, S is the current stock price, X is the ex-
ercise price, r is the risk free rate, τ is the option time to
maturity and σ is the volatility of the underlying stock. I
can treat the formula to be the point at which the hyper-
planes containing the term S N (d1) and -X e-rτ N (d2) in-
tersect. Searching over a randomly generated set of formu-
las is, therefore, a parallel search over a set of hyperplanes.

The true option pricing formula will consist of many
different elements that form a set of hyperplanes and these
is called its schemata. The individual sub-regions formed
by the hyperplanes are the schema. If an individual equa-
tion contains elements that represent a superior region of
the search space, it will generally be reflected as better fit-
ness for the equation. This will increase the individual’s
chance to reproduce and pass on its schema to the next
generation. When used to solve problems that involves a
search for the sequence of elements that make up a gene, or
any problem that involves a search for a sequence of num-
bers, Holland (75) and Koza (92) and show that the sche-

Chidambaran

mata of the Genetic Algorithm search process is extremely
efficient and the algorithm converges. In this paper, I im-
plicitly test whether such an approach will also work when
searching for a closed-form option-pricing model.

3 GENETIC PROGRAMMING IN A
BLACK-SCHOLES WORLD

In this section, I test the capacity of Genetic Programming
to learn the Black-Scholes model, paralleling the study by
Hutchinson, Lo, and Poggio (1994). Data to train the Ge-
netic Programming is generated through Monte-Carlo
simulation. For each data set, price paths of the underlying
stock with initial value S0 =50 are simulated for 504 days
(24 months * 21 days/month). Stock returns are assumed
to follow a diffusion process dS(t)/S(t) = µdt + σdW(t)
with annual continuously compounded expected return
µ=0.10, standard deviation σ=0.20 and risk-free rate
r=0.05. Stock price at time t is calculated as:

S t e
Zt

i

t

() =
∑

=1 ; t = 1,.., 504.

 I next generate a sample of call options for each stock
price realization. CBOE rules (Hull (1993)) were used to
create call options with varying strikes and maturity for
each day of the simulated price path. Option prices are de-
rived for each simulated option, using the Black-Scholes
equation. I thus have a sample of simulated options data. I
adopted many of the simplifications suggested by Hutchin-
son, Lo, and Poggio (1994) in generating the data sample,
for example, I hold the annual volatility σ and riskless rate
r constant throughout. Figure 1 shows a stock price path
generated by Geometric Brownian motion and Figure 2
shows the distribution of associated option prices.
 Table 1 describes the specifications of the Genetic
Programming model. I use the four basic mathematical op-
erations, the log function, the exponential function, the

Figure 1: Sample Geometric Brownian Stock
Price Process Using Monte Carlo Simulation

Figure 2: Distribution Of Option Prices Derived From
The Stock Price Path In Figure 1

Table 1: Training Variables and Arithmetic Operations

Name Source Definition
S Option Contract Stock price
X Option Contract Exercise price

S/X Part of Black-Scholes Option moneyness
σ Option Contract Time to maturity

(years)
max(S-

X) Boundary Condition Option intrinsic value
Max (S-X,0)

+ Standard arithmetic Addition
- Standard arithmetic Subtraction
* Standard arithmetic Multiplication
% Standard arithmetic Protected Division:

 x%y = 1 if y = 0
 = x/y otherwise

Exp Black-Scholes com-
ponent

Exponent: exp(x) = ex

Plog Black-Scholes com-
ponent

Protected Natural log:
plog(x) = ln(|x|)

Psqrt Black-Scholes com-
ponent

Protected Square root:
psqrt(x) = sqrt(|x|)

Ncdf Black-Scholes com-
ponent

Normal Cumulative
Distribution Function

square root function, and the cumulative Normal distribu-
tion. The basic division operation is protected against divi-
sion by zero and the log and square root functions are pro-
tected against negative arguments. The current stock price,
option exercise price, option intrinsic value, and option
time-to-maturity are input parameters. The functional rep-
resentation of a formula is assumed to be 17-step deep.
 I implement ten trial runs, i.e. a Genetic Programming
option pricing formula. Table 2 shows the genetic pro-
gramming parameters used in each run. For each training
set the price path of a stock with starting value S0=50 was
simulated through 24 21-day months as described earlier.
Options were created according to CBOE rules and valued
using the Black Scholes formula. Each training set con-
sisted of the daily values of these options. Formula popu-

Chidambaran

Table 2: Genetic Programming Parameters
Fitness Criterion Sum of absolute dollar er-

rors and percentage errors
Population Size 100 - 50,000
Sample Size 5% - dynamically sampled
Number of Generations 100 - 1,000
Mutations 10%-50%

lations were exposed to dynamically sampled subsets,
about 5% of the entire sample. The data set is stochasti-
cally changed in the middle of training run to prevent over-
fitting. I find that evaluating the population formulas on
such stochastic subsets of the data set resulted in reduced
training times and better out-of-sample performance. Only
robust formulas can survive the constantly changing envi-
ronment and pass on their “traits” to the next generation.
 I varied population size from 100 to 50,000 individual
formulas and varied the level of mutations between 10%
and 50%. Each trial was run up to 1,000 generations.
 The criterion for selecting the surviving formulas is a
linear combination of the absolute pricing errors and the
percentage pricing errors. I found (Chidambaran 2003)
that the formulas consistently made relatively small abso-
lute errors when pricing out-of-the-money options and
relatively large absolute errors when pricing in-the-money
options. The pattern in the magnitudes of the percentage
error is just the opposite. Linear combination of these two
error measurements leads to a more efficient selection rule.
 For example, if the true price of an option is $2.00 and
one of the Genetic Programming formulas gives a price of
$2.20, then percentage error is small (10%) but dollar error
is $0.20, which is economically significant. On the other
hand, if the true price is $0.10 and our formula gives a
price of $0.07, dollar error is small ($0.03) but the price is
off by 30%. Our error measure is then 30 (10% + $0.20) in
the first case and 33 (30% + $0.03) in the second case.
 In the classic Genetic Programming fashion, I define
the fitness of a formula to be:

∑+
=

casesfitnessofnumber

i
i

1
1

1

ε

where εi is the training error for the ith case. This training
error is defined as the sum of percentage and dollar errors if
the Black-Scholes value was greater than $0.01 and just the
dollar error if the Black-Scholes value was less than $0.01.
 It should be noted that the restrictions on Genetic Pro-
gramming are far fewer than those required for Neural Net-
works. Only the variables needed for pricing options have to
be specified. I need not make assumptions on the smooth-
ness or complexity of the formulas beyond the maximum
allowable depth (tree size) for representing a formula.
 I measure the performance of Genetic Programming
on an out-of-sample two-dimensional options grid of op-
tion maturities and strike prices. Each cell in the table is
the average pricing errors across ten different Genetic Pro-
gramming formulas.
 My results indicate a pattern of performance of the
Genetic Programming model consistent with Chidambaran,
Lee, and Trigueros (1999). First, the dollar pricing errors
are small for short-maturity options as opposed to long-
maturity options. However, the percentage pricing errors
are just the opposite. Obviously this is because the magni-
tude of option prices varies substantially across option ma-
turities. Second, the errors vary across the option strike.
Once again this is because option prices are very small for
out-of-the money options and much higher for in-the-
money options. The fitness criterion I use balances the
two effects by minimizing a combination of the absolute
and percentage pricing errors. I found that this allows me
to better control the pricing errors for out-of-the money
and in-the-money options without adversely affecting the
errors for at-the-money options.
 While all the parent selection methods yield similar
qualitative results, they vary widely in efficiency. Results
indicate that the Fitness-overselection method and the
Tournament method (n=7) providing the best results and
that Genetic Programming gives a good numerical ap-
proximation to the Black-Scholes model.

4 PERFORMANCE ANALYSIS IN
A JUMP-DIFFUSION WORLD

The Genetic Programming approach can incorporate any
known analytical approximation into its algorithm. It is
flexible to adapt to changing and unknown economic envi-
ronments. In this section, I illustrate how the Genetic Pro-
gramming model can adapt and outperform the Black-
Scholes model in a jump-diffusion world described by
Merton (1976). Since the closed form solution for the op-
tion prices in a jump-diffusion world is available, I can
measure the pricing errors from the Genetic Programming
model and the Black-Scholes model in such a world. The
performance analysis highlights the salient features of the
Genetic Programming approach to option pricing.
 The jump-diffusion process is a combination of a
Geometric Brownian diffusion process and a Poisson jump
process and can be written as:

dS t S t k dt dW t dq() / () () ()= − + +µ λ σ

where dq is the Poisson-lognormal jump process. The
Poisson process determines when a jump occurs and jump
size is lognormally distributed.
 I simulate the price path of daily stock prices over a 24
month period with the initial price set at S0 =50. Each
month is assumed to have 21 trading days. The diffusion

Chidambaran

parameters µ (mean) and σ(standard deviation) were set at
10% and 20% respectively, and jump parameters k(jump
size), λ (jump rate), and δ (standard deviation of the log-
jumps), were set at 0.02, 25 and 0.05 respectively. This
translates into 25 expected jumps per year, each inducing
an expected percentage change of 2% on the stock price.
The variance of the log-jumps is 0.05. These values are
well within the range estimated by stock price data. Thus,
504 stock prices, S(t), are simulated using random daily
returns zt ~ N((µ-σ2/2-k) /252,σ/252) and n(t)~Poisson(λt)
jumps, each of magnitude Yj (where lnYj ~ N(ln(1+k)-
0.5δ2, δ)), for each t in {1…504}:

S t e
z

Y n t S
i

i
t

() (()) =
∑

=
0

1 , t = 1, . . ,504

where,

.0)(,))((

1)0(
)(

1
∏ >=

=

=

tn

i
i tnYtnY

Y

 I use CBOE rules to create call options from the simu-
lated stock price path. This ensures that there is a suffi-
cient sample of at-the-money and near-the-money options
at all points. The methodology however can result in only
a few deep in-the-money and deep out-of-the-money op-
tions in the sample. I find that the performance of the ge-
netic program is sensitive to the number of options at vari-
ous moneyness levels in the sample.
 Options are priced using Merton’s (1976) jump diffu-
sion formula given below. Terms in the sum increase and
then decrease in magnitude due to the distribution of the
attached probabilities. I truncated at the point when the
marginal contribution of additional terms is negligible - all
terms in the decreasing segment of the series whose mar-
ginal contribution was less than 0.00001% were dropped,
as well as all terms beyond the 1000th in the sum.

F S X r k
e

n
f S

n

n
n(, , , , , , ,)

(')
!

(,)
'

σ τ λ δ λ τ τ
λ τ

=
−

=

∞

∑
0

where,

t).-(Tmaturity toTime

)1ln(
),,,,(

)1('

2
2

=

+=

++−=

−=
+=

τ
τ
δσ

τ
λ

τ
λλ

nv

knkrr

vrXSScholesBlackf
k

n

n

nnn

 The set of operations and variables used to develop the
Genetic Programs in the Jump Diffusion setting is the same
as that for the Black-Scholes setting shown in Table 1.

 The significant innovation in this step of the study is
to seed the initial population with the Black-Scholes equa-
tion. This provides a good starting point for finding a solu-
tion and is a way in which I can adapt known analytical
approximations to find a better approximation. I, however,
correct for the volatility estimate that an investor would
have calculated using a history of observed prices, which is
a combination of the variances of the diffusion and jump
processes. This reflects the approach of a naive investor
who is unaware of the true nature of the underlying stock
price process when using the Black-Scholes model to price
option. The estimated call option value with the modified
Black-Scholes model is (Merton 1976):

).,,,,(22 τλδσ += rXSBSC

 I use the same population sizes, convergence criteria,
and sample sizes in the jump-diffusion setting as I used in
the Black-Scholes setting.
 I also address an important criticism usually leveled at
complex numerical methodologies. Can the method per-
form any better than a simple linear regression model?
While linear regression of the options price on variables
such as the options strike and current stock price can result
in an equation that gives small errors within the sample, it
is obvious that out-of-the sample option values will be
priced with larger errors. It is, however, a useful bench-
mark. I, therefore, run single-stage and two-stage linear
regressions with and without Black-Scholes model as an
independent variable. The two-stage model represents
separate equations for in-the-money and for out-of-the-
money options.
 The linear models that have, however, have one major
draw back -- the partial derivatives of the pricing equation
are equal to the Black-Scholes partial derivatives with a
constant adjustment term. The true test of any option pric-
ing model is its performance in hedging and the constant
adjustment to the option price sensitivity with respect to
the stock price, the option delta, will not work in practice.
Genetic Programming allows general adjustments to the
option-pricing model and is not subject to this problem.
Note that if the linear model is indeed the best model, the
Genetic Program theoretically should be able to find it and
no generality is lost.
 I test the hedging effectiveness of the Genetic Program
formula by constructing a hedge portfolio of the option,
stock, and a riskless bond. The amount of stocks in the
portfolio is chosen as usual to be the delta amount, where
delta is determined by taking the first partial of the Genetic
Programming formula with respect to the stock price. I es-
timate the performance of the hedge over ten samples of

Chidambaran

100 paths for options of varying maturities and strike
prices. The hedging performance in each path is calculated
to be the deviation from zero in the portfolio value. I also
similarly determine the hedging performance of the Black-
Scholes model over the same 100 paths. My preliminary
results indicate that the Genetic Program beats the Black-
Scholes model in over 50% of the cases.
 I further evaluate the performance of the Genetic Pro-
gramming formula by comparing its pricing errors with
that of the Black-Scholes model and Neural Networks for
options of various maturities and moneyness. I chose Neu-
ral Networks for benchmarking results as it is the closest to
genetic programming in its philosophy and is a data-driven
non-parametric methodology. Other option pricing meth-
ods such as GARCH models require assumptions of the
underlying process and parameter values. My preliminary
results indicate that Genetic Programming beats Neural
Networks in all cases.
 To take advantage of Genetic Programming’s ability
to learn with small training sets (Koza 1992) and reduce
computational time, I tested its performance using random
samples of 5% and 25% of the options generated in the
simulation. I found that the training formulas with the
smaller data sets resulted in only a minimal reduction in
out-of-sample performance. Our tests dramatically support
the notion that Genetic Programming needs only small
training sets in order to arrive at a good solution.

5 CONCLUSION

In this paper I have examine the impact of the various pro-
gramming parameters in developing a Genetic Option Pric-
ing Program. I find that program design, in particular
population size, level of mutation, and sample size, is im-
portant in determining the accuracy and efficiency of the
Genetic Program.

A careful specification of the programming parameters
improves the efficiency of the Genetic Program. I find that
smaller data sets that are stochastically changed leads to
quicker convergence. I also find that larger population
sizes and a higher level of mutations leads to quicker con-
vergence of the program.
 The Genetic Programming method has many advan-
tages over other numerical techniques. First, it is a non-
parametric data driven approach and requires minimal as-
sumptions. I thus avoid the problems associated with mak-
ing specific assumptions regarding the stock price process.
The Genetic Programming method uses options price data
and extracts the implied pricing equation directly.
 Second, the Genetic Program can be seeded with the
Black-Scholes equation in developing a better model. The
ability to seed a Genetic Program is similar to choosing
starting values using all available information in a standard
optimization exercise. The final solution can be considered
to be an adaptation of the Black-Scholes model to condi-
tions that violate the underlying assumptions.
 Third, the Genetic Programming method requires less
data than other numerical techniques such as Neural Net-
works (Hutchinson, Lo, and Poggio (1994)).
 Finally, the flexibility in adding terms to the parameter
set used to develop the functional approximation can be
used to examine whether factors beyond those used in this
study, for example, trading volume, skewness and kurtosis
of returns, and inflation, are relevant to option pricing. The
self-learning and self-improving feature also makes the
method robust to changes in the economic environment.
The Genetic Option Pricing Program is fast, self-learning,
and self-improving, it is an ideal too for practitioners.

REFERENCES

Allen, F. and Karjalainen, R., 1999. “Using Genetic Algo-
rithms to find technical trading rules,” Journal of Fi-
nancial Economics, Vol. 51 (2).

Ball, C.A. and Torous, W.N., 1985. “On jumps in common
stock prices and their impact on call option pricing.”
Journal of Finance, Vol. 40 (March).

Ballie R. and DeGennaro, R., 1990. “Stock returns and
volatility.” Journal of Financial and Quantitative
Analysis, Vol. 25 (June).

Black, F. and Scholes, M., 1972. “The valuation of option
contracts and a test of market efficiency.” Journal of
Finance, Vol. 27 (May).

Black, F. and Scholes, M., 1973. “The pricing of options
and corporate liabilities.” Journal of Political Econ-
omy, Vol. 81.

Bollerslev T., 1986. “Generalized Autoregressive condi-
tional Heteroskedasticity.” Journal of Econometrics,
Vol. 31 (April).

Chance, D. M., 1986. “Empirical tests of the pricing of in-
dex call options,” Advances in Futures and Options
Research, Vol. 1.

Chidambaran, N. K., 2003. Genetic Programming with
Monte Carlo Simulation for Option Pricing, Unpub-
lished Working Paper, Rutgers University.

Chidambaran, N. K., C. H. Jevons Lee, and Joaquin
Trigueros, 1999. An Adaptive Evolutionary Approach
to Option Pricing via Genetic Programming, in: Com-
putational Finance -- Proceedings of the Sixth Inter-
national Conference, editors: Y. S. Abu-Mostafa, B.
LeBaron, A. W. Lo, and A. S. Weigend, Cambridge,
MA: MIT Press.

Chidambaran, N. K. and S. Figlewski, 1995. “Streamlining
Monte Carlo Simulation with the Quasi-Analytic
Method: Analysis of a Path-Dependent Option Strat-
egy,” Journal of Derivatives, Winter.

French, K. R., Schwert, G.W., and Stambaugh, R.F., 1987.
“Expected stock returns and volatility.” Journal of Fi-
nancial Economics, Vol. 19 (September).

Chidambaran

Ho, T. H., 1996. “Finite automata play repeated prisoner’s

dilemma with information processing costs.” Journal
of Economic Dynamics and Control, Vol. 20 (January-
March).

Holland, J. H. 1975. Adaptation in natural and artificial sys-
tems, The University of Michigan Press, Ann Arbor.

Hull, J., 1993. Options, Futures, and Other Derivative Se-
curities, 2nd Ed., Prentice-Hall, Englewood Cliffs,
New Jersey.

Hutchinson, J., Lo A., and Poggio, T., 1994. “A Nonpara-
metric approach to the Pricing and Hedging of Deriva-
tive Securities Via Learning Networks,” Journal of
Finance, Vol. 49. (June).

Kim, D. and Kon, S.J., 1994. “Alternative models for the
conditional heteroscedasticity of stock returns.” The
Journal of Business, Vol. 67 (October).

Koza, J. R., 1992. Genetic Programming, MIT Press,
Cambridge, Massachusetts.

Lettau, M., 1997. “Explaining the facts with adaptive
agents.” Journal of Economic Dynamics and Control,
Vol. 21.

Macbeth, J. D. and Merville, L. J., 1979. “An empirical es-
timation of the Black-Scholes call option pricing
model.” Journal of Finance, Vol. 34 (December).

Macbeth, J. D. and Merville, L. J., 1980. “Tests of the
Black-Scholes and Cox call option valuation models”
Journal of Finance, Vol. 35 (May).

Marimon, R., McGrattan, E., Sargent, T.J., 1990. “Money
as a medium of exchange in an economy with artifi-
cially intelligent agents.” Journal of Economic Dy-
namics and Control, Vol. 14.

Merton, R.C., 1976. “Option pricing when underlying
stock returns are discontinuous.” Journal of Financial
Economics, Vol. 3 (January-March).

Neely, C., P. Weller, and R. Dittmar, 1997. “Is Technical
Analysis in the Foreign Exchange Market Profitable? A
Genetic Programming Approach,” Journal of Financial
and Quantitative Analysis, Vol. 32(4), pp.405-426.

Rubinstein, M., 1985. “Nonparametric Tests of Alternative
Option Pricing Models.” Journal of Finance, Vol. 40
(June).

Rubinstein, M., 1997. “Implied Binomial Trees”, Journal
of Finance, Vol. 49.

AUTHOR BIOGRAPHY

N. K. CHIDAMBARAN is an Assistant Professor of Fi-
nance in the Rutgers Business School – Newark and New
Brunswick at Rutgers University. He has a B.Tech. degree
in Chemical Engineering from IIT, Bombay, and M.Phil.
and Ph.D. degrees in Finance from New York University.
His research interests are in the areas of Corporate Finance
and Financial Derivatives. His email address is <chiddi@
rci.rutgers.edu>.

mailto:chiddi@�rci.rutgers.edu
mailto:chiddi@�rci.rutgers.edu
mailto:chiddi@rci.rutgers.edu
mailto:chiddi@rci.rutgers.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 285
	02: 286
	03: 287
	04: 288
	05: 289
	06: 290
	07: 291
	08: 292

