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ABSTRACT

We develop an observation that a simulation method in
troduced recently for heavy-tailed stochastic simulation
namely hazard-rate twisting, is equivalent to doing expo
nential twisting on a transformed version of the heavy-taile
random-variable; the transforming function is the hazar
function. Using this approach, the paper develops efficie
methods for computing portfolio value-at-risk (VAR) when
changes in the underlying risk factors have the multivaria
Laplace distribution.

1 INTRODUCTION

We consider the problem of estimating thesmallprobability
that a random variable that is an output to a simulatio
exceeds a large threshold. The output random variab
may be a function of several input random variables, an
is generated via generating the input random variable
Importance sampling based simulations of such problem
have been studied extensively in the context where th
input random variables and the output random variables a
light-tailed (see, e.g., Bucklew 1990, Heidelberger 1995 fo
expositions). We consider estimation of such probabilitie
for the case where some or all of these random variabl
may have heavy-tailed distribution, i.e., distributions whos
tail decay at a subexponential rate.

Rare-event simulation in the heavy-tailed context seem
to be a challenging problem. One of the reasons is th
“exponential twisting”, that is the main importance sampling
framework in the light-tailed setting, cannot be used o
heavy-tailed random variables. Hence new and innovati
methods are needed. Till date, provably efficient simulatio
techniques and changes of measures exist only for estimat
the probability that a sum of a fixed or a geometric number o
i.i.d heavy-tailed random variable exceeds a large thresho
(Asmussen and Binswanger 1997, Asmussen, Binswang
and Hojgaard 2000, and Juneja and Shahabuddin 200
t
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This has applications only in some very simple models i
queueing and insurance. Some partial success has b
obtained for the case of random walks, for some specifi
heavy-tailed distributions (Boots and Shahabuddin 2000

This paper attempts to build on a technique introduce
in Juneja and Shahabuddin (2002) called hazard rate twi
ing. Hazard rate twisting of a heavy-tailed random variab
involves twisting at a sub-exponential rate, rather than at
exponential rate as is done in exponential twisting. Conca
ity properties of the hazard function are used in Juneja a
Shahabuddin (2002) to prove asymptotic (i.e., as the thres
old tends to∞) efficiency in the simulation of sums and
geometric sums of heavy-tailed random variables. We d
velop the observation that hazard rate twisting of any rando
variable is equivalent to exponentially twisting the hazar
function transformation of the random variable. We the
give conditions under which one can use the latter approa
to estimate probabilities for more complicated random stru
tures as compared to sums and geometric sums. At the m
conceptual level, whereas Juneja and Shahabuddin (20
thought in terms of hazard rate twisting of the input random
variables, we think in terms of hazard rate twisting of th
output random variable, and then work backward to fin
the corresponding changes of measure on the input rand
variables (that maynot necessarily be hazard rate twisting)
Interpreting hazard rate twisting in terms of hazard functio
transformations facilitates this approach, as then one c
use the experience accumulated in light-tailed, importan
sampling simulations.

We then apply this approach to the value-at-risk prob
lem. The value-at-risk is an important concept for quantitify
ing and managing portfolio risk (see, e.g., Jorion 1997, Wi
son 1999). One core problem from the simulation metho
ology point of view is to estimate the risk of large portfolio
losses in given time intervals, where the value of the por
folio depends on several time-dependent and correlated r
factors. Recently new simulation approaches based on i
portance sampling and stratification have been develop
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for this problem under different assumptions on the ri
factors. Glasserman, Heidelberger and Shahabuddin (20
developed fast simulation methods when the risk facto
have the multivariate normal distribution. They develope
a provably efficient, importance sampling change of meas
for estimating the risk, when the loss function is replac
by a “quadratic approximation”. They then used the sam
change of measure for estimating the risk associated w
the actual loss function, and obtained orders of magnitu
of variance reduction in the estimation. Stratification o
the quadratic approximation made the technique even m
efficient.

However, it has been observed that market returns
hibit systematic deviations from normality in terms of th
tail-weight. Two different families of tail behaviors have
been advanced in the literature (see, e.g., Heyde and K
(2002)and references therein). The first is polynomial ty
tails of which the multivariate t distribution is an example
The second is exponential type tails (which is still an o
der of magnitude heavier than the Gaussian type tails)
which the multivariate Laplace distribution (see, e.g., Kot
Kozubowski and Podgorski 2001) is an example.

Glasserman, Heidelberger and Shahabuddin (2002)
tend the work in their earlier paper to the case where the r
factors have the multivariate t distribution of the type in An
derson (1984). In this paper we consider the case where
risk factors have the multivariate Laplace distribution. U
like the case in Glasserman, Heidelberger and Shahabu
(2000), in both the above cases the quadratic approxima
is heavy-tailed and thus, as mentioned above, necessit
the development of new ideas not found in the predom
nantly light-tailed importance sampling literature. It shou
be mentioned here that Glasserman, Heidelberger and S
habuddin (2002) also used a tranformation approach t
changes their problem into a light-tailed estimation pro
lem. However the particular transformation they consid
is specific to the multivariatet and not easily generalizable
to other assumptions on the risk factors like the one w
have.

2 A GENERAL PROBLEM

Let X = (X1, . . . , Xm) be a vector of independent, non
negative random variables. For simplicity in presentation w
will assume that eachXi has a probability density function
(pdf) fi (x) which is positive at all points on(0,∞). Let
the cumulative distribution function (cdf) beFi (x), and
let F̄i (x) = 1 − F(x). Also let λi (x) = fi (x)/F̄i (x) be
the hazard rate function, and3Xi (x) = ∫ x

0 λi (s)ds be the
hazard function. Hence3Xi (0) = 0. The assumption on
the fi (x) implies thatλi (x) > 0 for all x in (0,∞), which
implies that3Xi (x) is strictly increasing. It is also well
known that3Xi (x) = − ln(F̄i (x)). For any generic random
variableW we will let 3W(x) denote its hazard function.
)
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For any two functions, sayg1(x) andg2(x), g1(x) ∼ g2(x)

denotes that limx→∞ g1(x)/g2(x) exists and it is equal to
1.

We consider the problem of estimatingα(y) = P(Y >

y) whereY = h(X) (we assume the distribution ofY to
have the same regularity properties as those of theXi ’s).
We will assumeh(x1, . . . xn) to be a non-negative-valued
function, but the theory presented below also goes throug
for the general case ifh+(X) = max(h(X), 0) and h(X)

have the same decay behavior in their tail probabilities
i.e., 3h(X)(y) ∼ 3h+(X)(y). There is signicant work in
the literature whenY is light-tailed. We concern ourselves
with the more general case whenY may be light-tailed or
heavy-tailed.

3 PRELIMINARIES

3.1 Importance Sampling and Exponential Twisting

For y large, the event{Y > y} may be rare, and we
use importance sampling to simulate forP(Y > y) more
efficiently. In particular, if f̃i (x) is a new probability density
function for Xi , with the same support asXi , then we may
express

P(Y > y) = E(I (Y > y)) = Ẽ(I (Y > y)l (X)) (1)

where

l (x1, . . . , xn) =
m∏

i=1

fi (xi )

f̃i (xi )
,

and theẼ(·) indicates that theXi ’s have the new pdf, i.e.,
the f̃i ’s. The quantity within the expectation on the RHS
(right-hand side) of (1) forms an unbiased, “importance
sampling” estimator ofP(Y > y).

The attempt is to findf̃i ’s so that the variance of this
new estimator is as low as possible. More specifically
we want to Ẽ(I (Y > y)l 2(X)) to be the least possible.
The change of measure( f̃1, . . . , f̃n) is called “asymptoti-
cally logarithmically efficient” (also called asymptotically
efficient) if

lim inf
y→∞

ln Ẽ(I (Y > y)l 2(X))

2 lnα(y)
≥ 1. (2)

This means that the exponential rate of decrease of th
second moment is twice the exponential rate of decrease
the probability one is trying to estimate. Non-negativity of
the variance implies that this is the fastest possible rate fo
any unbiased estimator. This is the reason why asymptoti
logarithmic efficiency is also called “asymptotic logarithmic
optimality” or simply “asymptotic optimality’. Note that for
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standard simulation,(ln Ẽ(I (Y > y)l (X)))/(2 lnα(y)) ∼
1/2.

Define a random variable, sayXi , to be light-tailed if
lim inf x→∞ 3i (x)/x ≥ λi for some postive constantλ1. For
light-tailed random variables one may use a special chan
of measure that is obtained by “exponential twisting”. Fo
example, for the case offi (x), the exponentially twisted
density by amountθ , θ > 0, is given by

fi,θ (x) = fi (x)eθxdx

MXi (θ)
,

whereMW(θ) denotes the moment generating function (mgf
of the random variableW. Note that if 3Xi (x) ∼ λi x
for someλi > 0, then exponential twisting makes sense
only when θ ≤ λi . In many cases below we will use
f̃i (x) = fi,θ (x) for some appropriately chosenθ .

3.2 Light-Tailed Simulations

Consider the case whenY is light-tailed. For simplicity in
presentation, we will consider the special case whenY has
an “exponential tail”, i.e.,3Y(y) ∼ λy for someλ > 0. In
that case the attempt in the literature is to choosef̃1, . . . , f̃m,
so that one “achieves” exponential twisting on theY by
amountθ . If one is able to do that, then by the definition
of exponential twisting,l (X) = MY(θ)e−θY. Hence

Ẽ(I (Y > y)l 2(X)) = Ẽ(I (Y > y)M2
Y(θ)e−2θY)

≤ M2
Y(θ)e−2θy. (3)

One then choosesθ to minimizeM2
Y(θ)e−2θy or equivalently

to minimize lnMY(θ)−θy. It can be shown that appropriate
convexity properties hold so that the optimal solution,θ∗

y ,
may be obtained as the solution of the equation (see, e.
Bucklew 1990 for this and other results mentioned here)

M ′
Y(θ)

MY(θ)
= y. (4)

Theθ∗
y is continuous and increasing iny, and limy→∞ θ∗

y =
λ. It is also known that (except for some pathologica
examples),

− ln
{

MY(θ∗
y )e−θ∗

y y
}

∼ λy. (5)

Using (2),(3) (with θ replaced byθ∗
y ) and (5), one can

infer that doing exponential twisting onY by amountθ∗
y is

asymptotically logarithmically efficient.
We still need to show as to how to “achieve” the

exponential twisting on theY by any amountθ , 0 < θ < λ,
i.e., what f̃i should one choose for theXi . We will illustrate
this for a case where exponential twisting is very usefu
i.e., whereY = ∑m

i=1 Xi , andXi ’s are light-tailed random
e

.,

,

variables. Consider doing exponential twisting by amou
θ on Xi . Then one can easily see that

l (X) =
m∏

i=1

(MXi (θ)e−θ Xi ) = MY(θ)e−θY,

and hence we have achieved exponential twisting onY by
amountθ .

4 THE HAZARD FUNCTION TRANSFORMATION
APPROACH

4.1 Heavy-Tailed Random Variables and
Hazard Function Transformations

Now consider estimatingα = P(Y > y), whereY is a
heavy-tailed random variable. For the purposes of this pap
we will characterize random variables being heavy or ligh
tailed based on their hazard function3(x). In particular,
we assume heavy-tailed to mean that3(x)/x → 0 as
x → ∞. Three common examples areWeibull(λ, α), α <

1, with 3(x) = λαxα, Lognormal(µ, σ 2) with 3(x) ∼
ln2(x)/(2σ 2), and thePareto(λ, α) with 3(x) = α ln(1+
λx). Note that the above three distributions are ordere
with respect to increasing heaviness of their tails.

Exponential twisting is not defined for heavy-tailedY
since the mgfMY(θ) is not defined forθ > 0. Hence
the approach described in Section 3.2 cannot be us
here. However, it can be trivially shown that3Y(Y) is
exponentially distributed with rate 1 (see Lemma 4.1
Also, by the monotonically increasing property of3Y(y),
P(Y > y) = P(3Y(Y) > 3Y(y)). Hence one has trans-
formed a heavy-tailed estimation problem into a light-taile
one!

Lemma 4.1 Let W be a random variable with in-
creasing and continuous3W(y). Then3W(W) is an ex-
ponential random variable with rate 1.
Proof. Since the hazard function3W(y) is strictly increas-
ing and continuous, the inverse3−1

W (y) is defined, and is
also increasing and continuous. Hence

P(3W(W) > y) = P(3−1
W (3W(W)) > 3−1

W (y))

= P(W > 3−1
W (y))

= e−3W(3−1
W (y)) = e−y.

However it is usually not possible to know3Y(y)

(otherwise one can trivially computeα(y)). In those cases
one uses the transformation3(Y), instead of3Y(Y) where
3(y) is an increasing continuous function such that3(y) ∼
3Y(y). Then one is still assured that3(Y) is a random
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variable with its tail probability decaying exponentially a
rate 1.

Lemma 4.2 Suppose3(y) ∼ 3Y(y) with 3(y)

continuous and increasing for all sufficiently largey. Then

lim
y→∞ − log P(3(Y) > y)

y
= 1.

Proof.

lim
y→∞ − log P(3(Y) > y)

y

= lim
y→∞ − log P(Y > 3−1(y))

y

= lim
y→∞

3Y(3−1(y))

3(3−1(y))

= lim
z→∞

3Y(z)

3(z)
= 1.

Note that the third equality follows by making the chang
of variablez = 3−1(y), and then making use of the fac
that 3(y) is increasing and continuous for all sufficiently
large y.

In most cases it is easy to determine such a3(y).
For example, consider the case whereY = ∑m

i=1 Xi where
the Xi ’s are i.i.d. andWeibull(λ, α), α < 1. Hence
3X1(x) = λαxα. Now the Weibull(λ, α), α < 1, be-
longs to a large class of heavy-tailed distributions calle
subexponential distribution, for which

P(

m∑
i=1

Xi > y) ∼ P(max(X1, . . . Xm) > y)

∼ m P(X1 > y) (6)

(see, e.g., Embrechts, Klüppelberg and Mikosch 199
Hence

P(Y > y) = P(

m∑
i=1

Xi > y) ∼ me−λα yα

,

and one may choose3(y) = λα yα.
In summary, the hazard function transformation a

proach is based on first recognizing the fact that with3(y)

satisfying the properties in Lemma 4.2,3(Y) is a light-
tailed random variable, and that due to the monotonicity
3(y),

P(Y > y) = P(3(Y) > 3(y)).

So once again we have a light-tailed problem, and we can
exactly the same procedure as we did to estimateP(Y > y)

when Y was light-tailed. In particular, we would now try
to find new pdfs for theXi ’s, f̃i ’s, that achieve exponential
.

e

twisting of the3(Y) by amountθ . The optimalθ , θ∗
y , will

now be obtained as the solution of

M ′
3(Y)(θ)

M3(Y)(θ)
= 3(y), (7)

instead of (4). Observing (5), it should be clear that (w
setλ=1 in (5), since3(Y) has an exponential tail of rate 1)

− ln
{

M3(Y)(θ
∗
y )e−θ∗

y3(y)
}

∼ 3(y), (8)

since the main thing that has changed in (7) is thaty has
been replaced by a continuous, increasing function3(y).
This immediately yields asymptotic logarithmic efficiency
in the simulation.

However, there are two problems with this approac
The first is thatM3(Y)(θ) may not be easily computable.
Consider for example the case considered previously wh
Y = ∑m

i=1 Xi whereXi ’s are i.i.d. Weibull(λ, α), α < 1.
If we use3(y) = λα yα as we had mentioned previously
then 3(Y) = λα(

∑m
i=1 Xi )

α , for which it is extremely
difficult to compute the mgf (since it is not decomposab
as a sum of independent random variables). The secon
that it may be very difficult to findf̃i ’s that will achieve the
exponential twisting of3(Y) by amountθ . So the above
approach needs to be modified.

4.2 Hazard Function Transformations with Upperbound

Let 3(y) satisfy the conditions of Lemma 4.2. LetV =
h̃(X1, . . . , Xm) be a random variable such that:

• 3(Y) ≤ V w.p. 1.
• V is decomposable as a sum of functions ofXi ’s

respectively, so thatMV (θ) is easy to compute.
• 3(Y) and V have the same asymptotic log-tai

behavior, i.e.,3V (y) ∼ 33(Y)(y) ∼ y.

• It is possible to find f̃i ’s that will achieve expo-
nential twisting ofV by amountθ .

The modified approach tries to achieve exponential twistin
of V instead of3(Y). In that case

P(Y > y) = E(I (3(Y) > 3(y))

= Ẽ(I (3(Y) > 3(y))MV (θ)e−θV ).

Hence the new unbiased estimator isI (3(Y) >

3(y))MV (θ)e−θV , whereY and V are obtained from the
Xi ’s, and theXi ’s are sampled using thẽfi ’s.

Given the conditions onV , this new estimator can be
shown to be asymptotically, logarithmically efficient. In
particular, we have the upperbound

Ẽ(I (3(Y) > 3(y))l 2(X))

= Ẽ(I (3(Y) > 3(y))M2
V (θ)e−2θV)

≤ Ẽ(I (V > 3(y))M2
V (θ)e−2θV)

≤ M2
V (θ)e−2θ3(y).
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Ẽ(I (3(Y) > 3(y))l 2(X)) ≤ M2
V (θ∗)e−2θ∗

y3(y),

whereθ∗
y is the solution of

M ′
V (θ)

MV (θ)
= 3(y). (9)

As in (8), sinceV also has an exponential tail of rate 1,

− ln
{

MV (θ∗
y )e−θ∗

y

}
∼ 3(y).

This leads to asymptotic logarithmic efficiency in the est
mation of P(Y > y).

Let us now consider the application of this approac
to estimatingP(Y > y) whereY = ∑n

i=1 Xi and theXi ’s
are i.i.d and heavy-tailed. We will now restrict ourselve
to Xi belonging the class of subexponential distribution
that we had mentioned earlier. Different asymptotically
logarithmically efficient changes of measure for this proble
have been given in Asmussen, Binswanger and Hojgaa
(2000), and Juneja and Shahabuddin (2002). We use t
example just to illustrate our approach. Most subexponent
distributions (i.e., excepting pathologoical cases) satisfy t
property that the hazard function is eventually concav
(see, e.g., Juneja and Shahabuddin 2002). For purpo
of illustration we will restrict ourselves to the case wher
3X1(x) is always concave (one can check this for the Weibu
and Pareto). By the property of subexponential distributio
given in (6), 3Y(x) ∼ 3X1(x) and hence we can use
3(x) = 3X1(x). We can then useV = ∑m

i=1 3(Xi ). Let
us check whether this satisfies the properties ofV that we
had stated earlier.

• Due to the concavity of3(y),

3(Y) = 3(

m∑
i=1

Xi ) ≤
m∑

i=1

3(Xi ) = V.

• Unlike 3(Y), V is decomposable into a sum of
independent random variables. This together wit
the fact from Lemma 4.1 that3(Xi ) ≡ 3Xi (Xi )

is exponentially distributed with rate 1, we get tha
MV (θ) = 1/(1 − θ)m. Hence MV (θ) is easily
computable.

• Since the3(Xi )’s are exponentially distributed
with rate 1, theV is an Erlang with rate parameter
1. Hence33(Y)(y) ∼ 3V (y).

• Since V is sum of light-tailed random variables,
exponential twisting of each3(Xi ) by amountθ
will yield exponential twisting ofV by amountθ
(as described at the end of Section 3.2).
d
is
l

s

4.3 Hazard Rate Twisting and Hazard
Function Transformations

As mentioned in the Introduction, Juneja and Shahabu
din (2002) introduced the idea of “hazard rate twisting”
Hazard rate twisting may be viewed as a generalizati
of exponential twisting to non-negative random variable
with both light-tails and heavy-tails. For any non-negativ
random variable, sayXi , with pdf fi (x), the hazard rate
twisted pdf by amountθ , 0 < θ < 1, is given by

f h
i,θ (x) = eθ3Xi (x) fi (x)∫ ∞

0 eθ3Xi (s) fi (s)ds
= eθ3Xi (x) fi (x)

(1 − θ)
.

It is easy to verify that doing hazard rate twisting by amou
θ on Xi is equivalent to doing exponential twisting by the
same amount on3Xi (Xi ).

Juneja and Shahabuddin (2002) applied hazard r
twisting to the problem mentioned in the previous subsectio
i.e., of estimatingP(Y > y) where Y = ∑m

i=1 Xi , with
Xi ’s being i.i.d. subexponential random variables. Ou
contribution is to extend this approach to estimatingP(Y >

y) for some more general functionsY = h(X). At the more
conceptual level, whereas Juneja and Shahabuddin (20
thought in terms of hazard rate twisting of theXi ’s, we
think in terms of hazard rate twisting directly of theY’s.
We then work backwards to determine the correspondi
change of measure on theXi ’s (that maynot necessarily be
hazard rate twisting). Viewing hazard rate twisting in term
of hazard function transformations facilitates this approac

5 APPLICATIONS TO VALUE-AT-RISK

5.1 The Value-at-Risk Problem

We give a brief overview of the standard setting that ha
also been considered in Glasserman, Heidelberger, S
habuddin (2000) and Glasserman, Heidelberger, Shahab
din (2002). Consider a portfolio that is based onm risk
factors and letS(t) = (S1(t), . . . , Sm(t)) denote their values
at time t . Let 1S= [S(t + 1t) − S(t)]T (the notationAT

stands for the transpose of the matrixA) be the random
change in risk factors over the future interval(t, t + 1t).
The value of the portfolio at current timet is given by
V(S(t), t) and the loss over the interval1t is given by
L = V(S(t), t) − V(S(t) + 1S, t + 1t) (note that the
only random quantity in the expression for the loss is1S).
The risk problem is to estimateP(L > x) for a givenx,
and the value-at-risk problem is to estimatex such that
P(L > x) = p for a given p, 0 < p < 1. Usually p is of
the order 0.01. As mentioned in Glasserman, Heidelberge
and Shahabuddin (2000) and Glasserman, Heidelberger
Shahabuddin (2002), techniques that are efficient for es
matingP(L > x) for a givenx, can be adapted to estimate
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the value-at-risk. Hence the focus in this paper, as in t
previous papers, is efficient estimation ofP(L > x).

Usually some probability model is assumed for the1S,
and parameters of the model are estimated from the da
The usual assumption is that1S is multivariate normal
with mean 0 and some covariance matrix6 (see, e.g.,
Glasserman, Heidelberger and Shahabuddin 2000). T
multivariate normal is quite light-tailed and there is evidenc
from empirical finance that risk factors may have tails th
are heavier than normal. This led Glasserman, Heidelber
and Shahabuddin (2002) to consider the case where the1S
has the multivariate t distribution. The t distribution ha
a tail that decays polynomially, rather than according
1
x e

−x2

2σ2 , as in the case of a normal.
As mentioned in the Introduction, we consider the ca

where1S has the multivariate Laplace distribution. In thi
case, the tails of the marginal distributions decay accordi
to e−cx, for some constantc > 0. Also, the multivariate
Laplace random-variable may be expressed as

√
BW where

B is an exponentiallydistributed random variable with rate
andW = (W1, . . . , Wn) is the multivariate normal random
vector with mean 0, and covariance matrix6 (see, e.g.,
Kotz, Kozubowski and Podgorski 2001). Hence one ca
write

1S= √
BW.

Once a probability model is assumed for the1S, then
one can estimateP(L > x) by simulation. The naive
simulation method is to generate1S, computeV(S(t) +
1S, t + 1t) and compute the lossL. Then I (L > x) is an
estimator ofP(L > x). Howeverx may be large leading
to most samples ofI (L > x) being 0, i.e., the typical rare-
event simulation problem. Also, a portfolio may consist o
many different types of instruments based on them risk
factors, making each evaluation ofV(S(t) + 1S, t + 1t)
very time consuming. Hence one needs to use varian
reduction techniques that reduce the number of samp
needed for an accurate estimation.

5.2 A Quadratic Approximation
for the Delta-Hedged Case

A quadratic approximation toL is given by

L ≈ a0 + aT1S+ (1S)T A1S≡ a0 + Q, (10)

where a0 is a scalar,a is a vector, andA is a matrix.
The importance sampling approach given in Glasserm
Heidelberger, Shahabuddin (2000), involves finding efficie
change of measure for estimatingP(Q+a0 > x), and then
using the same change of measure for estimatingP(L > x);
sinceL ≈ a0 + Q, it is likely that such an approach will be
efficient for estimating the latter. SinceQ is more tractable
e

a.

e

t
er

g

,

e
s

,
t

it is easier to come up with efficient changes of measu
for estimatingP(Q > x −a0) and proving their asymptotic
logarithmic efficiency.

One quadratic approximation for theL is the delta-
gamma approximation. This is simply a Taylor serie
expansion of the lossL in terms of 1S. In particular,
a0 = −21t , a = −(δi ), and A = − − 1

2(0i j ) in (10),

where 2 = ∂V
∂t , δi = ∂V

∂Si
, and 0i j = ∂2V

∂Si ∂Sj
(all partial

derivatives are evaluated at(S(t), t)). Many of theδi ’s and
0i j ’s (especially the0i i ’s) are routinely computed for other
purposes and hence are usually available prior to runn
the simulation.

For the purposes of this paper we consider the ca
where the portfolio is “delta-hedged”, i.e, the proportion
investments in the various securities are selected such
theδi ’s are zero. Hence, in the delta-hedged case,a = 0 in
(10), and thusQ = (1S)T A(1S). For generating1S, one
can findC such thatCCT = 6. Then one can generate
a multivariate standard normalZ, and an exponentialB
with rate 1, and set1S = √

BC Z. In that caseQ =
B(ZT CT AC Z). In order to develop importance samplin
techniques for estimatingP(Q > x − a0) for largex, it is
advisable to find aC such thatZT CT AC Z is a “diagonalized
quadratic form”. To find such aC, first find any C̃ such
thatC̃C̃T = 6 (say using Cholesky factorization). We the
solve a eigenvalue problem, i.e., find an orthonormal mat
U (i.e., U such thatUT = U−1) and a diagonal matrix3
such thatC̃T AC̃ = U3UT . Let C = C̃U. Then we have
that CCT = C̃UUT C̃T = C̃C̃T = 6 and

ZT CT AC Z = ZTUT C̃T AC̃U Z = ZT3Z.

Hence

Q = B(ZT3Z) =
m∑

i=1

Bλi Z
2
i

whereλi ’s are the diagonal elements of3. Without loss
of generality we will assume thatλ1 ≥ . . . ≥ λm.

5.3 Asymptotic Logarithmic Efficiency
for Estimating P( Q > y)

Let y ≡ x − a0. We now show how the hazard transfo
mation approach of Section 4 can be used to determine
asymptotically, logarithmically efficient change of measu
for the estimation ofP(Q > y). It is easy to check that
each componentBλi Z2

i of Q is heavy-tailed and soQ may
be considered adependentsum of heavy-tailed random-
variables. Thus this problem is very different in essen
from the ones considered in Asmussen and Binswan
(1997), Asmussen, Binswanger and Hojgaard (2000) a
Juneja and Shahabuddin (2002), that considered sum
independent heavy-tailed random variables.
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To keep things simple, we will also assume thatλm ≥ 0,
though it is not at all necessary for our method or th
asymptotic logarithmically efficient proof. It is easy to
check thatQ is heavy-tailed, and hence as in Section 4.
the first step is to find a3(y) such that3Q(y) ∼ 3(y). The
following theorem gives the asymptotic order ofP(Q > y)

for large y.
Theorem 5.1 Supposeλ1 ≥ λ2 ≥ ... ≥ λm, and

λ1 > 0. Then

P(Q > y) ∼
√

2π

y1/4 e
−

√
2
λ1

y
.

The proof uses the Laplace method (see, e.g., Bleiste
and Handelsman 1975) for which we need a lemma:

Lemma 5.2 Supposeλ1 ≥ λ2 ≥ ... ≥ λm, and
λ1 > 0. Then on domainD := {(u, v1, . . . , vm) :∑m

i=1 λi uv2
i ≥ 1, u ≥ 0} we have

max
D

[−u − 1

2

m∑
i=1

v2
i ] = −

√
2

λ1
.

Proof. (of Lemma 5.2) Sinceλ1 ≥ λ2 ≥ ... ≥ λm, on
domainD, we have

∑m
i=1 λ1uv2

i ≥ ∑m
i=1 λi uv2

i ≥ 1, i.e.
u ≥ 1

λ1
∑m

i=1 v2
i

> 0. Thus,

−u − 1

2

m∑
i=1

v2
i ≤ − 1

λ1
∑m

i=1 v2
i

− 1

2

m∑
i=1

v2
i .

Note that

1

λ1
∑m

i=1 v2
i

+ 1

2

m∑
i=1

v2
i ≥ 2

√√√√ 1

λ1
∑m

i=1 v2
i

× 1

2

m∑
i=1

v2
i

=
√

2

λ1
.

Hence, we have that−u − 1
2

∑m
i=1 v2

i ≤ −
√

2
λ1

. By taking

u =
√

1
2λ1

, v1 = 4
√

2
λ1

, v2 = v3 = ... = vm = 0, we reach

the maximum, which is−
√

2
λ1

.

Proof. (of Theorem 5.1)

P(

m∑
i=1

λi B Z2
i > y)

= 1√
2π)m

∫
...

∫
{(t,z1,...zm):∑m

i=1 λi t z2
i >y,t>0}

e− 1
2

∑m
i=1 z2

i −t dtdz1...dzm

[change variables:u = t/
√

y, vi = zi /
4
√

y]

= y
m+2

4

(
√

2π)m
I (y),
,

in

where I (y) = ∫
...

∫
D0

e−√
x( 1

2

∑m
i=1 v2

i +u)dudv1...dvm, and
the domainD0 is defined asD0 := {(u, v1, . . . , vm) :∑m

i=1 λi uv2
i > 1, u > 0}. I (y) is an m + 1-dimension

Laplace type integral. By a result in Bleistein and Han-
delsman (1975), we know that

I (y) ∼ (2π)(m+1)/2

y
m+3

4

e
√

yφmax.

Hereφmax = maxD[−u− 1
2

∑m
i=1 v2

i ] whereD is the closure
of D0. The result then follows from Lemma 5.2.

From Theorem 5.1 we see that one can choose3(y) =√
2y/λ1. Hence, if we letλ̃i = λi /(2λ1),

3(Q) = 2
√

B

√√√√ m∑
i=1

λ̃i Z2
i ≤ B +

m∑
i=1

λ̃i Z2
i ,

where the last inequality uses the fact that 2x1x2 ≤ x2
1 +x2

2.
Hence we can useV = B +∑m

i=1 λ̃i Z2
i . Sinceλ̃i Z2

i is are
gamma random variables (with̃λ1Z2

1 having the heaviest
exponential tail of rate 1), it is easy to check thatV has
an exponential tail of rate 1. The mgf ofV is trivial to
compute:

MV (θ) = 1

(1 − θ)

m∏
i=1

1√
1 − 2λ̃i θ

. (11)

The only thing we need to do now is to find a changes o
measure onB andZi ’s that will achieve exponential twisting
on theV by amountθ , 0 < θ < 1. As shown at the end
of Section 3.2, sinceV is a sum of independent light-tailed
random variables, doing an exponential change of measu
by amountθ , 0 < θ < 1, on the B and each of thẽλi Z2

i ’s
yields and exponential change of measure by amountθ

on theV . The exponential change of measure by amoun
θ on B yields another exponential distribution with rate
(1− θ). One can also easily show that if the new measure
on the Zi is N(0, 1/

√
1 − 2λ̃i θ), then the likelihood ratio

is e−θλ̃i Z2
i /

√
1 − 2λ̃i θ. Hence with this new measure on the

Zi , we achieve exponential twisting ofλ̃i Z2
i by amountθ .

5.4 The Importance Sampling Algorithm

To summarize, we give the steps of the importance samplin
algorithm to estimateP(L > x) for a givenx and1t . We
assume that we are givena0 and A from the quadratic
approximation, and6 for the W in 1S= √

BW.
Preprocessing:
• Find current portfolio valueV(t, S(t)).
• Find C̃ such thatC̃C̃T = 6 (e.g., use Cholesky

factorization). Solve the eigenvalue problem, i.e.,
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find a orthonormal vectorU and a diagonal matrix
3, such thatC̃T AC̃ = U3UT . Let λ1, . . . , λm be
the diagonal elements of3 arranged in descending
order and let̃λi = λi /(2λ1). SetC = C̃U.

• Set y = x − a0. Computeθ∗
y as the solution of

(9) where MV (θ) is given by (11) and3(y) =√
2y/λ1. ComputeMV (θ∗

y ).
Generating a sample under importance sampling:
1. GenerateB that is exponentially distributed with

rate (1 − θ∗
y ). Generate independent normal

Z1, Z2, ..., Zm, with Z j =d N(0, 1
1−θ∗

yλ j /λ1
).

2. Compute likelihood ratio

l ≡ l (B, Z1, . . . Zm) = MV (θ∗
y)e

−θ∗
y (B+∑m

i=1
λi

2λ1
Z2

i )
.

3. Set1S = √
BC(Z1, . . . , Zm)T . ComputeL =

V(t, S(t)) − V(S(t) + 1S, t + 1t).
4. ComputeI (L > x)l .
By generatingn samples ofI (L > x)l independently,

and taking the sample mean one gets an unbiased estim
of P(L > x).

Table 1: Variance Ratios (VR) of Standard Sim-
ulation to Importance Sampling in Estimating
P(L > x).

Portfolio 1: Delta-hedged.
y 400 500 600
P(Q > y) 0.01519 0.00693 0.00326
P(L > x) 0.01405 0.00592 0.00257
VR 6.24 11.25 20.39

Portfolio 2: Largeλ1.
y 1000 1200 1400
P(Q > y) 0.01265 0.00762 0.00486
P(L > x) 0.01212 0.00716 0.00445
VR 8.96 12.69 17.23

Portfolio 3: Linearλ.
y 2500 2600 2800
P(Q > y) 0.01122 0.00977 0.00765
P(L > x) 0.01021 0.00885 0.00674
VR 12.76 14.00 17.35

Portfolio 4: Index.
y 200 300 400
P(Q > y) 0.02070 0.00717 0.00282
P(L > x) 0.02048 0.00670 0.00255
VR 6.54 13.39 24.83

6 EXPERIMENTAL RESULTS

We test the performance of the method described above
some test portfolios consisting of calls and puts. We assu
250 trading days in a year, and a continuously compound
tor

n
e
d,

risk-free, annual rate of interest of 5%. We investigate loss
over 10 days (1t = 0.04 years). Each option has a maturit
of 0.5 years. We use the Black-Scholes formula to price t
options. In the first three portfolios, we take the initial pric
of each asset to be 100; we also assume the asset pr
to be uncorrelated, with each having an annual volatility
0.3.

1. Delta-hedged: short ten at-the-money (i.e., strik
price is the same as the initial price) calls and certa
fixed number of puts on each of 10 underlying
assets, such that the portfolio is delta-hedged.

2. Largeλ1: same as ‘Delta-hedged’ but with numbe
of calls and puts on first asset increased by a fact
of 10.

3. Linearλ: same as ‘Delta-hedged’ but with numbe
of calls and puts oni th asset increased by a facto
of i , i = 1, ..., 10.

4. Index: short fifty at-the-money calls and a ce
tain fixed number of at-the-money puts on each o
10 assets, such that the port-folio is delta-hedge
The asset prices are correlated; the covariance m
trix was is from the RiskMetrics website, and is
given in Glasserman, Heidelberger and Shahabu
din (2000a). The initial asset prices are taken a
(100, 50, 30, 100, 80, 20, 50, 200, 150, 10).

Table 1 gives importance sampling estimates ofP(Q >

y), P(L > x) (recall that y ≡ x − a0) and the variance
reduction factor achieved by importance sampling in th
estimation ofP(L > x). We estimate each of these from
100,000 samples. Results from more detailed experime
tation may be found in Huang and Shahabuddin (2003)
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