
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

OBJECT-ORIENTED SIMULATION WITH SML AND SILK IN .NET AND JAVA

Richard A. Kilgore

SML Simulation Services
P. O. Box 7

Chesterfield, MO 63006, U.S.A.

ABSTRACT

This tutorial is for advanced simulation developers en-
gaged in the use of object-oriented programming languages
and libraries that support object-oriented, discrete-event
simulation. The tutorial is based on generic structures
common to SML simulation libraries in the .Net languages
VB.Net, C# and J# and the Silk libraries in Java. The fo-
cus of the tutorial is on the use of consistent design pat-
terns that encourage usability, reusability and cross-
language compatibility. Particular emphasis is placed on
designing and coding object-oriented simulation models to
properly transfer simulation control between entities, re-
sources and system controllers, and on techniques for ob-
taining a one-to-one correspondence between simulation
code and system behavior.

1 INTRODUCTION

The tools for developing discrete-event simulation applica-
tions have evolved from libraries of simulation subroutines to
high level process languages built on those libraries to visual
development environments built on the process languages.
Throughout this evolution, industrial-strength simulation ap-
plications continue to require the ability to add software func-
tionality beyond that provided by off-the-shelf simulation
packages. In particular, the ability to drop down into the un-
derlying programming language is often necessary to achieve
the desired system behavior and control policies.

The emergence of mainstream object-oriented pro-
gramming languages like Java and C# and simulation de-
velopers trained in these languages has led to the develop-
ment of a wide variety of object-oriented simulation
libraries. Some libraries are personal toolkits of research-
ers, professors, graduate students and consultants. Other
libraries are products of internal efforts by company devel-
opers. And still others are released as commercial libraries
used for development of models or new simulation devel-
opment environments. Since many of the SML libraries
share common objectives, it is also natural that some
common reusability and design patterns and interoperabil-
ity objectives emerge as shown in Figure 1.

Data
Interfaces

Figure 1: SML Interoperability and Reusability

This tutorial is an opportunity for advanced simulation

developers using object-oriented languages to review the
current status of the commercial simulation libraries for
discrete-event simulation like SML (Kilgore 2002a, 2002b)
and Silk (Kilgore et al. 1998a, 1998b). These object-
oriented simulation tools presented are not compiled simu-
lation languages but are rather extensions of the base pro-
gramming language. The power, flexibility and extensibil-
ity of the languages derive directly from their base
language and the ability to separate the data input and out-
put interfaces from the modeling programming code in
these languages (Kilgore 2001).

The remainder of this paper is intended to serve pri-
marily as an introduction for those not yet familiar with the
language level features of SML and Silk which serve as the
foundation for developing reusable simulation components
and higher level domain-specific simulators. Other articles
dealing with other important aspects of SML and the Silk
language are listed in the References section and readers
are encouraged to reference those web sites for more de-
tailed specifications and examples. Section 2 contains an
overview of creating object-oriented models with SML and
Silk. Section 3 describes the development of SML and
Silk in Java and .Net Integrated Development Environ-
ments. Section 4 contains concluding remarks.

Kilgore

2 OBJECT-ORIENTED DESIGN

Object-oriented simulation is the most powerful when the
user follows a consistent design pattern for object-oriented
modeling in which each “intelligent” component is mod-
eled as an independent entity class. Experience with this
design continues to create better opportunities for reusabil-
ity through production of the simulation “code” that is
more readable by other developers and engineers partici-
pating in the development.

To illustrate this concept, consider the standard single-
server queuing system of a customer served by a bank
teller. There are two intelligent components in the system
capable of independent thought and action, the Customer
and the Teller. This system could be modeled as a single
class from either a pure Customer-push or Teller-pull per-
spective. But there are substantial design benefits to ad-
herence to the proper object-oriented simulation represen-
tation of the system in which there is one simulation class
for each intelligent system component. The representation
of the Customer and Teller classes are described in Figures
2 and 3. The numbers in the text refer to the line numbers
1.

2.

3.
4.

5.
6.
7.
8.
9.
10.
11.

12.

13.
14.
15.

16.
17.
18.

19.
20.
21.

22.
23.
24.

25.

26.
27.

using; or import;

public class Customer extends Entity {

 // Attributes (instance variables) unique to each customer
 double attArrivalTime, attServiceDelay;

 // Objects (class variables) common to all customers
 static Exponential expInterArrivalTime = new Exponential(10.0),
 expServiceDelay = new Exponential(8.0);
 static Observational obsTimeInSystem = new Observational(“Time in System”),
 obsTimeInQueue = new Observational(“Time in Queue”);
 static Queue queCustomer = new Queue(“Customer Queue”);
 static TimeDependent timQueue = new TimeDependent(queCustomer.length,”In Queue”);

public void process(){

 // create next customer arrival and record arrival time
 create(expInterArrivalTime.sample());
 attArrivalTime = time;

 // assign service time for this customer and wait for service
 attServiceDelay = expServiceDelay.sample();
 queue(queCustomer);

 // queue delay controlled by teller
 halt(); // suspend process until teller activates
 obsTimeInQueue.record(time - attArrivalTime); // record queue time

 // service delay controlled by teller
 halt(); // suspend process until teller activates
 obsTimeInSystem.record(time - attArrivalTime); // record system time

 dispose();

 }// end of process method
}// end of Customer class

Figure 2: Customer Class Definition
in these figures and color is used in electronic versions of
this paper to distinguish keywords (blue), keywords (red),
comments (green), and user-defined identifiers (black).

2.1 The Customer Class

The package of object-oriented classes referenced are iden-
tified in an “import” or “using” statements [1] and the user-
defined class name Customer is declared as an extension of
the Entity class [2]. The class structure consists of the data
declarations [3-11] which will define the characteristics of
the simulation entities created from this class and the de-
fault process method [12-26] that will change those entity
characteristics as the state of the system changes. The es-
sence of object-oriented simulation is the use of these En-
tity methods, statements, and other objects within this
process method to represent exactly what behavior the real
systems entity experiences.

Each instance of this Customer class is assigned two
unique, user-defined attribute identifiers, attArrivalTime,
attServiceDelay [4]. Since the simulation will be executed
directly in the underlying language, these attributes can be

Kilgore

1.
2.

3.
4.

5.

6.

7.
8.

9.
10.

11.
12.
13.
14.
15.
16.

17.

18.

19.

using; or import;
public class Teller extends Entity {

 static Resource resTeller = new Resource (“Teller”);
 static TimeDependent timTeller = new TimeDependent(resTeller.numBusy, “Utilization”);

 public void process () {

 while (true) { // Teller not scheduled, continuously seeks new Customers

 // wait while condition is true (no customers in queue
 waituntil(condition (Customer.queCustomer.getLength() > 0));

 // obtain reference to first customer in queue and remove it
 Customer entCustomer = (Customer)Customer.queCustomer.remove(1);

 // process customer and release teller
 seize (resTeller);
 entCustomer.activate(); // end halt for customer in queue
 delay (entCustomer.attServiceDelay);
 entCustomer.activate(); // end halt for customer in system
 release (resTeller);

 }// end of while block for Teller processing

 }// end of process method

}// end of Teller class

Figure 3: Teller Class Definition
any valid language or user-defined type. The entity design
is improved if this set of attributes mirrors the actual ob-
servable characteristics necessary for decisions in the real
system, rather than simply a set of less descriptive pro-
gramming flags.

While each Customer instance will have these unique
attribute identifiers, all instances of the Customer class will
share common static class variables of other language or
simulation objects [6-11]. Only objects for random vari-
able generation and statistics are shown in this example,
but again remember that these models are programs so the
modeler has great flexibility in the location and form of
this information. For example, a more complex model
might contain an array of all of the required processing de-
lay distributions that this entity might require as a separate
data object, thus removing the specifics of entity perform-
ance from the general representation of entity behavior.

A significant advantage of SML and Silk over previ-
ous object-oriented languages is the use of process-
oriented methods familiar to users of other simulation lan-
guage. Every class must contain a process method con-
taining these statements (or references to other classes that
contain these statements) and it is here that the power of
object-oriented modeling becomes evident. The process
method [12-26] describes line for line the sequence of ac-
tions and information processing that defines the intelligent
behavior of this system component. When the component
is waiting for a decision or action of another intelligent
component, the entity will halt its process until activated.
In this example, the Customer creates [14] the arrival
of the next Customer using a sample from a Exponential
random variable object created in the data declaration. The
attArrivalTime variable is then set to the current value of
simulation time [15]. The “att” prefix is not required and
has no special significance other than to remind the mod-
eler that this is an instance variable unique to this object.
Next, the attServiceDelay variable is then assigned a sam-
ple value from the appropriate service time distribution
[17]. More complex models would likely have different
distributions for different Customer classes and the use of
an attribute for service delay will allow the Teller object
access to the required processing time for each Customer
instance and type.

This assignment of the service time to an attribute of
the Customer object is an important object-oriented design
choice. Is the time required for service an attribute of the
Customer or should it be defined as a characteristic of the
Teller? If different Tellers have different performance
characteristics in performing the required service, those
factors properly belong in the Teller class definition. But
if the basis for the service requirement is a characteristic of
the customer, new customer types (which might inherit
from this Customer class) should have the ability to modify
the default customer service requirement without modifica-
tion in Teller classes. Small design choices such as this are
crucial to the adherence of a consistent design that will
make models easier to reuse.

The Entity queue method then places this Customer
instance in a queue [18] object which is simply an ordered

Kilgore

list of Customer entities. Note that this queue is not linked
with any particular Resource object so an Entity can be si-
multaneously listed in any of a number of Queues. This is
extremely useful for modeling complex server behavior
and facilitates proper statistics collection.

Until this point, the Customer entity is an intelligent
component that has “pushed” through process methods to
join the Teller queue. In the actual system, control of the
choice of which Customer is served next is now passed to
the Teller object. Consequently, the Customer object is
halted by a halt method [20]. This distinction may seem
cumbersome at first and the traditional entity-push approach
could be used throughout the process definition. But the ob-
ject-oriented design requires that data characteristics and be-
havior of each object to be encapsulated within that object.
The significance of this approach will become clearer as the
behavior of the Teller object is described below.

The Customer is “pulled” from the queue and activated
by the Teller object [shown in Figure 3, line 13]. The Cus-
tomer object then continues the process method by recording
the time spent in the halted state in a Observation statistic
object [21]. The TimeDependent object for Customer queue
length [11] is automatically updated each time that the queue
characteristic length is changed. Similarly, the end of ser-
vice is also under the control of the Teller object so the Cus-
tomer is again halted [23] until service is completed and the
Customer is activated by the Teller object [Figure 3, 15].
Statistics for system time are then recorded for system time
[24], and this instance of the Customer class is then disposed
[25]. The dispose method actually places the entity object in
a pool of Customer objects to be reincarnated as representa-
tions of future customers.

2.2 The Teller Class

The description of the Teller class is found in Figure 3. It
defines the simulation system data and behavior from the
perspective of the Teller. Since the Teller class is also a
system component with independent intelligence, it is a
modeled as an Entity [2]. A Resource object created to
represent the Teller state [3]. The responsibility for when
and how to change this state from busy to available is left
to the process method for the Teller [5-18]. The while
block [6] is used to continuously loop the single instance of
the Teller throughout the simulation. By default, an entity
executes the process method only once so this construct is
necessary to allow the instance of Teller entity to continu-
ously repeat the process method for subsequent Customers.

The waituntil(condition()) construct in [8] combines
the waituntil method and the condition method. Similar to
the halt method, this statement temporarily stops the proc-
ess of an entity until activated by another process. In this
case, the entity proceeds only when the expression defined
within the condition method evaluates to false. The user is
responsible for stating the conditions for the wait based on
the state of Queues, Resources and other simulation or
user-defined state variables.

At first look, this structure may appear cumbersome
for simple systems. But more experienced modelers will
appreciate the ability to create compound conditions for
modeling resource behavior based on a variety of factors.
Performance is less affected by this complexity as Boolean
conditions are reevaluated only when those objects which
appear in the methods change value. Note that while many
entities may be waiting for the same condition, only one is
activated at a time to allow the activated entity an opportu-
nity to change the condition (by seizing a resource or join-
ing a queue).

The net result in the case of the Teller is that the arri-
val or existence of an entity in the Customer queue results
in the continuation of the Teller process. The Teller calls
the remove method of the Queue object to obtain a Cus-
tomer reference and remove the Customer entity from the
queue [10]. This statement shows the use of a declaration
of an object type within an expression (Customer entCus-
tomer) and also the casting of the object type returned by
the remove method to a Customer object type. Users
commonly “wrap” complex methods like these within
other simpler user-defined methods of their own creation.
But the power of open-source SML is the ability of the de-
velopment community to create and extend the language
without sacrificing the underlying power and flexibility of
the basic Entity methods.

The Teller object uses the reference to the Customer
entity entCustomer, to access the service delay attributes of
the Customer [14] and to invoke the activate method to re-
sume the process method for the halted Customer entity as
described earlier [13,15]. The seize and release methods in
[12,16] modify the busy state of the Teller Resource object
to allow the TimeDependent object to automatically track
Teller utilization [4].

2.3 The SIMULATION Class

The Simulation class shown in Figure 4 is necessary to
schedule the arrival of the first instance of each class in the
init method [3] which is called at the beginning of each
simulation run. The newEntity method [5] is responsible
for the creation and use of the entity object pool of the in-
dicated class and returns a reference to a new or existing
member of that pool. The start method [6] then begins the
execution of the Entity process method after a delay of the
appropriate time units. In addition, other global parameters
may be declared in the Simulation init method since all En-
tities extend Simulation and thus have access to all public
variables and methods defined in the Simulation class. Fi-
nally, the run method of the Simulation class is automati-
cally called to start the execution of the desired number of
runs and run length [12,13]. Execution will end with the
creation of a Summary Report window or the user can ask

Kilgore

1.

2.

3.

4.
5.
6.

7.
8.

9.

10.

11.
12.
13.
14.

15.

16.

using; or import;

public class Simulation {

 public void init () {

 // instantiate Entity objects prior to the beginning of run
 Customer entCustomer = (Customer)newEntity(Customer.class); // create first Customer
 entCustomer.start(0.0);

 Teller entTeller = (Teller)newEntity(Teller.class); // create first Teller
 entTeller.start(0.0);

 } // end init method

 public void run () {

 // initialize settings and flags prior to beginning of run
 setReplications(1); // End simulation at the end of 1 replication.
 setRunLength(10000.); // Execute the simulation for 10000 time units
 setControlConsole (true); // Use Control Console for interactive control

 } // end run method

} // end Simulation class

Figure 4: Simulation Class Definition
that a Control Console be used for interactive execution,
tracing and animation control [14]. The Simulation class
also has a finish method that is called at the end of each
replication of the simulation to allow programmed execu-
tion of complex experimental designs.

2.4 Object-Oriented Design Choices

As seen in this example, object-oriented simulation involves
flexibility regarding the choice of design patterns. Consider
the decision earlier to declare the Queue object to be a char-
acteristic of the Customer class [Fig. 1, 10]. Even in this
simple example, a user has at least four choices as to the
proper assignment of this Queue object. One option if for
the Queue object to be declared public and instantiated in the
Simulation class which makes the queue reference available
in all entity processes. But object-oriented design principles
encourage the encapsulation of data and methods in their re-
spective classes so that only those classes which need access
to these objects can access these objects. The choice is then
between the Teller class, the Customer class, or a third class
which might contain the physical description of the facility
in which the Teller is located.

This decision is very important for complex model de-
sign and simulation object reusability. Modelers are en-
couraged to create process methods that reflect the actual
characteristics and behavior of the corresponding intelli-
gent system component. In this system, the Customer is in
control of the behavior regarding which queue to join (and
in more complex models, how long to wait in the queue
chosen or whether to switch lines, etc.). For that reason,
the queue definitions are made in the Customer class so
that other versions of the model can change Customer
queuing behavior without modifying the Teller class.

3 DEVELOPMENT ENVIRONMENTS

The Silk and SML simulation extensions to object-oriented
languages are themselves implemented entirely in the un-
derlying languages. The only requirements for building
and executing simulation models are a Java or .Net lan-
guage compiler and Java or .Net run-time that are com-
patible with specification of the underlying language.
Most commercial simulation software constrain users to a
single proprietary and often cumbersome development en-
vironment. Commercial programming IDE’s like Visual
Studio .Net provide a sophisticated graphical interface and
a rich collection of tools for project management, source
code creation, modification, compilation, debugging, and
deployment. Figure 5 contains a screen snapshot of the
example problem from the previous section within an inte-
grated development environment.

Developing guidelines for enterprise modeling com-
ponents will be more challenging. Consideration will need
to be given to the application domain as well as the range
of model granularity the components are required to ac-
commodate. Silk and SML significantly facilitate the
manner in which these issues can be approached - both
from a design and implementation standpoint. In combina-
tion, they have the potential to raise component model de-
velopment, interoperability, and reusability, to a new level.

Kilgore

Figure 5: Modeling using an Integrated Java Development Environment

4 SUMMARY

The language extensions that constitute SML and Silk were
designed to encourage better discrete-event simulation
through better programming by better programmers. Since
the modeling language is integrated into the programming
language, the full power and flexibility of the program-
ming language is available. Unlike proprietary modeling
environments, Silk and SML users also benefit from the
growing number of commercially available professional
development tools. And unlike proprietary software, SML
users can benefit from the large community of simulation
researchers and practitioners who can guide and participate
in SML development. The open-source licensing of SML
will encourage developers to share language-level and
component-level advances via the Internet and will also
foster increased activity in the development of high-level,
domain-specific simulation tools that end-users favor.
REFERENCES

Kilgore, R. 2001. Open-Source Simulation Modeling
Language (SML). In Proceedings of the 2001 Winter
Simulation Conference, ed., B. Peters, J. Smith. Pis-
cataway, NJ: Institute of Electrical and Electronics
Engineers.

Kilgore, R. A. 2002a. Simulation Web Services with .Net
Technologies. In Proceedings of the 2002 Winter
Simulation Conference, ed., E. Yücesan, C.-H. Chen,
J. L. Snowdon, and J. M. Charnes. Piscataway, NJ:
Institute of Electrical and Electronics Engineers.

Kilgore, R. A. 2002b. Multi-Language, Open-Source
Modeling using the Microsoft .Net Architecture. In
Proceedings of the 2002 Winter Simulation Confer-
ence, ed., E. Yücesan, C.-H. Chen, J. L. Snowdon, and
J. M. Charnes. Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Kilgore, R. A., K. J. Healy, and G. B. Kleindorfer, 1998a.
The future of Java-based simulation. Proceedings of
the 1998 Winter Simulation Conference Proceedings,
ed. D. J. Medeiros, E. F. Watson, J. S. Carson, M. S.

Kilgore

Manivannan, 1707-1712. Piscataway, NJ: Institute of
Electrical and Electronics Engineers.

Kilgore, R., K. Healy, and G. Kleindorfer . 1998b. SilkTM:
usable and reusable Java-based object-oriented simula-
tion. Proceedings of the 12th European Simulation
Multiconference. SCS International, Ghent, Belgium.

AUTHOR BIOGRAPHY

RICHARD A. KILGORE is a consultant in the develop-
ment of industrial simulation and scheduling solutions. Dr.
Kilgore has over 20 years of experience as a modeling con-
sultant to Fortune 500 firms in a variety of industries with
a variety of simulation and scheduling tools. He received
his B.B.A. and M.B.A degrees from Ohio University and
Ph.D. in Management Science from the Pennsylvania State
University. Formerly, he was a capacity-planning analyst
with Ford Motor Co., Vice-President of Products for Sys-
tems Modeling Corp and President of ThreadTec, Inc. His
e-mail address is <mailto:kilgore@threadtec.com>.

mailto:kilgore@threadtec.com
mailto:kilgore@threadtec.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 218
	02: 219
	03: 220
	04: 221
	05: 222
	06: 223
	07: 224

