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ABSTRACT 

 

This tutorial is for advanced simulation developers en-
gaged in the use of object-oriented programming languages 
and libraries that support object-oriented, discrete-event 
simulation.  The tutorial is based on generic structures 
common to SML simulation libraries in the .Net languages 
VB.Net, C# and J# and the Silk libraries in Java.  The fo-
cus of the tutorial is on the use of consistent design pat-
terns that encourage usability, reusability and cross-
language compatibility.  Particular emphasis is placed on 
designing and coding object-oriented simulation models to 
properly transfer simulation control between entities, re-
sources and system controllers, and on techniques for ob-
taining a one-to-one correspondence between simulation 
code and system behavior.     

1 INTRODUCTION 

The tools for developing discrete-event simulation applica-
tions have evolved from libraries of simulation subroutines to 
high level process languages built on those libraries to visual 
development environments built on the process languages.  
Throughout this evolution, industrial-strength simulation ap-
plications continue to require the ability to add software func-
tionality beyond that provided by off-the-shelf simulation 
packages.  In particular, the ability to drop down into the un-
derlying programming language is often necessary to achieve 
the desired system behavior and control policies.   

The emergence of mainstream object-oriented pro-
gramming languages like Java and C# and simulation de-
velopers trained in these languages has led to the develop-
ment of a wide variety of object-oriented simulation 
libraries.  Some libraries are personal toolkits of research-
ers, professors, graduate students and consultants.  Other 
libraries are products of internal efforts by company devel-
opers.  And still others are released as commercial libraries 
used for development of models or new simulation devel-
opment environments.  Since many of the SML libraries 
share common objectives, it is also natural that some 
common reusability and design patterns and interoperabil-
ity objectives emerge as shown in Figure 1.  
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Figure 1: SML Interoperability and Reusability 
 
This tutorial is an opportunity for advanced simulation 

developers using object-oriented languages to review the 
current status of the commercial simulation libraries for 
discrete-event simulation like SML (Kilgore 2002a, 2002b) 
and Silk (Kilgore et al. 1998a, 1998b).  These object-
oriented simulation tools presented are not compiled simu-
lation languages but are rather extensions of the base pro-
gramming language. The power, flexibility and extensibil-
ity of the languages derive directly from their base 
language and the ability to separate the data input and out-
put interfaces from the modeling programming code in 
these languages (Kilgore 2001).    

The remainder of this paper is intended to serve pri-
marily as an introduction for those not yet familiar with the 
language level features of SML and Silk which serve as the 
foundation for developing reusable simulation components 
and higher level domain-specific simulators.  Other articles 
dealing with other important aspects of SML and the Silk 
language are listed in the References section and readers 
are encouraged to reference those web sites for more de-
tailed specifications and examples.  Section 2 contains an 
overview of creating object-oriented models with SML and 
Silk.  Section 3 describes the development of SML and 
Silk in Java and .Net Integrated Development Environ-
ments.  Section 4 contains concluding remarks.  
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2 OBJECT-ORIENTED DESIGN 

Object-oriented simulation is the most powerful when the 
user follows a consistent design pattern for object-oriented 
modeling in which each “intelligent” component is mod-
eled as an independent entity class.   Experience with this 
design continues to create better opportunities for reusabil-
ity through production of the simulation “code” that is 
more readable by other developers and engineers partici-
pating in the development.    

To illustrate this concept, consider the standard single-
server queuing system of a customer served by a bank 
teller.  There are two intelligent components in the system 
capable of independent thought and action, the Customer 
and the Teller.  This system could be modeled as a single 
class from either a pure Customer-push or Teller-pull per-
spective.  But there are substantial design benefits to ad-
herence to the proper object-oriented simulation represen-
tation of the system in which there is one simulation class 
for each intelligent system component.  The representation 
of the Customer and Teller classes are described in Figures 
2 and 3. The numbers in the text refer to the line numbers 
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public class Customer extends Entity { 
 
  // Attributes (instance variables) unique to each customer 
  double attArrivalTime, attServiceDelay; 

 
  // Objects (class variables) common to all customers 
  static Exponential   expInterArrivalTime = new Exponential( 10.0 ), 
                       expServiceDelay     = new Exponential( 8.0 ); 
  static Observational obsTimeInSystem     = new Observational( “Time in System” ), 
                       obsTimeInQueue      = new Observational( “Time in Queue” ); 
  static Queue         queCustomer         = new Queue( “Customer Queue” );  
  static TimeDependent timQueue            = new TimeDependent( queCustomer.length,”In Queue”); 

 
public void process( ){ 

 
  // create next customer arrival and record arrival time 
  create( expInterArrivalTime.sample( ) ); 
  attArrivalTime = time; 
 
  // assign service time for this customer and wait for service 
  attServiceDelay = expServiceDelay.sample( ); 
  queue( queCustomer ); 

 
  // queue delay controlled by teller 
  halt( );                    // suspend process until teller activates 
  obsTimeInQueue.record( time - attArrivalTime ); // record queue time 

 
  // service delay controlled by teller 
  halt( );                    // suspend process until teller activates 
  obsTimeInSystem.record( time - attArrivalTime ); // record system time 

 
  dispose( );  

 
  }// end of process method 
}// end of Customer class  

 

Figure 2: Customer Class Definition 
in these figures and color is used in electronic versions of 
this paper to distinguish keywords (blue), keywords (red), 
comments (green), and user-defined identifiers (black). 

2.1 The Customer Class 

The package of object-oriented classes referenced are iden-
tified in an “import” or “using” statements [1] and the user-
defined class name Customer is declared as an extension of 
the Entity class [2].  The class structure consists of the data 
declarations [3-11] which will define the characteristics of 
the simulation entities created from this class and the de-
fault process method [12-26] that will change those entity 
characteristics as the state of the system changes.  The es-
sence of object-oriented simulation is the use of these En-
tity methods, statements, and other objects within this 
process method to represent exactly what behavior the real 
systems entity experiences.   

Each instance of this Customer class is assigned two 
unique, user-defined attribute identifiers, attArrivalTime, 
attServiceDelay [4].  Since the simulation will be executed 
directly in the underlying language, these attributes can be 
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public class Teller extends Entity { 

 
  static Resource resTeller = new Resource (“Teller”); 
  static TimeDependent timTeller = new TimeDependent( resTeller.numBusy, “Utilization”); 
 
  public void process ( ) { 

 
    while ( true ) {  // Teller not scheduled, continuously seeks new Customers 
 
    // wait while condition is true (no customers in queue 
    waituntil( condition (  Customer.queCustomer.getLength( ) > 0 ) ); 

 
    // obtain reference to first customer in queue and remove it 
    Customer entCustomer = (Customer)Customer.queCustomer.remove(1); 

 
    // process customer and release teller 
    seize ( resTeller ); 
    entCustomer.activate( );        // end halt for customer in queue 
    delay ( entCustomer.attServiceDelay ); 
    entCustomer.activate( );        // end halt for customer in system 
    release ( resTeller ); 

 
    }// end of while block for Teller processing 
 
  }// end of process method 

 
}// end of Teller class 

 

Figure 3: Teller Class Definition 
any valid language or user-defined type.  The entity design 
is improved if this set of attributes mirrors the actual ob-
servable characteristics necessary for decisions in the real 
system, rather than simply a set of less descriptive pro-
gramming flags.   

While each Customer instance will have these unique 
attribute identifiers, all instances of the Customer class will 
share common static class variables of other language or 
simulation objects [6-11].  Only objects for random vari-
able generation and statistics are shown in this example, 
but again remember that these models are programs so the 
modeler has great flexibility in the location and form of 
this information.  For example, a more complex model 
might contain an array of all of the required processing de-
lay distributions that this entity might require as a separate 
data object, thus removing the specifics of entity perform-
ance from the general representation of entity behavior. 

A significant advantage of SML and Silk over previ-
ous object-oriented languages is the use of process-
oriented methods familiar to users of other simulation lan-
guage.  Every class must contain a process method con-
taining these statements (or references to other classes that 
contain these statements) and it is here that the power of 
object-oriented modeling becomes evident.  The process 
method [12-26] describes line for line the sequence of ac-
tions and information processing that defines the intelligent 
behavior of this system component.  When the component 
is waiting for a decision or action of another intelligent 
component, the entity will halt its process until activated. 
In this example, the Customer creates [14] the arrival 
of the next Customer using a sample from a Exponential 
random variable object created in the data declaration.  The 
attArrivalTime variable is then set to the current value of 
simulation time [15].  The “att” prefix is not required and 
has no special significance other than to remind the mod-
eler that this is an instance variable unique to this object.  
Next, the attServiceDelay variable is then assigned a sam-
ple value from the appropriate service time distribution 
[17].  More complex models would likely have different 
distributions for different Customer classes and the use of 
an attribute for service delay will allow the Teller object 
access to the required processing time for each Customer 
instance and type. 

This assignment of the service time to an attribute of 
the Customer object is an important object-oriented design 
choice.  Is the time required for service an attribute of the 
Customer or should it be defined as a characteristic of the 
Teller? If different Tellers have different performance 
characteristics in performing the required service, those 
factors properly belong in the Teller class definition.  But 
if the basis for the service requirement is a characteristic of 
the customer, new customer types (which might inherit 
from this Customer class) should have the ability to modify 
the default customer service requirement without modifica-
tion in Teller classes.  Small design choices such as this are 
crucial to the adherence of a consistent design that will 
make models easier to reuse. 

The Entity queue method then places this Customer 
instance in a queue [18] object which is simply an ordered 
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list of Customer entities.  Note that this queue is not linked 
with any particular Resource object so an Entity can be si-
multaneously listed in any of a number of Queues.  This is 
extremely useful for modeling complex server behavior 
and facilitates proper statistics collection. 

Until this point, the Customer entity is an intelligent 
component that has “pushed” through process methods to 
join the Teller queue.  In the actual system, control of the 
choice of which Customer is served next is now passed to 
the Teller object.  Consequently, the Customer object is 
halted by a halt method [20].  This distinction may seem 
cumbersome at first and the traditional entity-push approach 
could be used throughout the process definition.  But the ob-
ject-oriented design requires that data characteristics and be-
havior of each object to be encapsulated within that object.  
The significance of this approach will become clearer as the 
behavior of the Teller object is described below. 

The Customer is “pulled” from the queue and activated 
by the Teller object [shown in Figure 3,  line 13].  The Cus-
tomer object then continues the process method by recording 
the time spent in the halted state in a Observation statistic 
object [21].  The TimeDependent object for Customer queue 
length [11] is automatically updated each time that the queue 
characteristic length is changed.  Similarly, the end of ser-
vice is also under the control of the Teller object so the Cus-
tomer is again halted [23] until service is completed and the 
Customer is activated by the Teller object [Figure 3, 15].  
Statistics for system time are then recorded for system time 
[24], and this instance of the Customer class is then disposed 
[25].  The dispose method actually places the entity object in 
a pool of Customer objects to be reincarnated as representa-
tions of future customers. 

2.2 The Teller Class 

The description of the Teller class is found in Figure 3.  It 
defines the simulation system data and behavior from the 
perspective of the Teller.  Since the Teller class is also a 
system component with independent intelligence, it is a 
modeled as an Entity [2].  A Resource object created to 
represent the Teller state [3].  The responsibility for when 
and how to change this state from busy to available is left 
to the process method for the Teller [5-18].  The while 
block [6] is used to continuously loop the single instance of 
the Teller throughout the simulation.  By default, an entity 
executes the process method only once so this construct is 
necessary to allow the instance of  Teller entity to continu-
ously repeat the process method for subsequent Customers. 

The waituntil(condition( )) construct in [8] combines 
the waituntil method and the condition method.  Similar to 
the halt method, this statement temporarily stops the proc-
ess of an entity until activated by another process.  In this 
case, the entity proceeds only when the expression defined 
within the condition method evaluates to false.  The user is 
responsible for stating the conditions for the wait based on 
the state of Queues, Resources and other simulation or 
user-defined state variables. 

At first look, this structure may appear cumbersome 
for simple systems.  But more experienced modelers will 
appreciate the ability to create compound conditions for 
modeling resource behavior based on a variety of factors.  
Performance is less affected by this complexity as Boolean 
conditions are reevaluated only when those objects which 
appear in the methods change value.  Note that while many 
entities may be waiting for the same condition, only one is 
activated at a time to allow the activated entity an opportu-
nity to change the condition (by seizing a resource or join-
ing a queue). 

The net result in the case of the Teller is that the arri-
val or existence of an entity in the Customer queue results 
in the continuation of the Teller process.  The Teller calls 
the remove method of the Queue object to obtain a Cus-
tomer reference and remove the Customer entity from the 
queue [10].  This statement shows the use of a declaration 
of an object type within an expression (Customer entCus-
tomer) and also the casting of the object type returned by 
the remove method to a Customer object type.  Users 
commonly “wrap” complex methods like these within 
other simpler user-defined methods of their own creation.  
But the power of open-source SML is the ability of the de-
velopment community to create and extend the language 
without sacrificing the underlying power and flexibility of 
the basic Entity methods. 

The Teller object uses the reference to the Customer 
entity entCustomer, to access the service delay attributes of 
the Customer [14] and to invoke the activate method to re-
sume the process method for the halted Customer entity as 
described earlier [13,15].  The seize and release methods in 
[12,16] modify the busy state of the Teller Resource object 
to allow the TimeDependent object to automatically track 
Teller utilization [4].  

2.3 The SIMULATION Class 

The Simulation class shown in Figure 4 is necessary to 
schedule the arrival of the first instance of each class in the 
init method [3] which is called at the beginning of each 
simulation run.  The newEntity method [5] is responsible 
for the creation and use of the entity object pool of the in-
dicated class and returns a reference to a new or existing 
member of that pool.  The start method [6] then begins the 
execution of the Entity process method after a delay of the 
appropriate time units.  In addition, other global parameters 
may be declared in the Simulation init method since all En-
tities extend Simulation and thus have access to all public 
variables and methods defined in the Simulation class.  Fi-
nally, the run method of the Simulation class is automati-
cally called to start the execution of the desired number of 
runs and run length [12,13].  Execution will end with the 
creation of a Summary Report window or the user can ask 
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public class Simulation { 
 
  public void init ( ) { 

 
    // instantiate Entity objects prior to the beginning of run 
    Customer entCustomer = (Customer)newEntity( Customer.class ); // create first Customer 
    entCustomer.start( 0.0 ); 

 
    Teller entTeller = (Teller)newEntity( Teller.class );         // create first Teller 
    entTeller.start( 0.0); 

 
  } // end init method 
 

  public void run ( ) {  
 

    // initialize settings and flags prior to beginning of run 
    setReplications( 1 );                      // End simulation at the end of 1 replication. 
    setRunLength( 10000. );                    // Execute the simulation for 10000 time units 
    setControlConsole (true);                  // Use Control Console for interactive control 
 
  } // end run method 
 

} // end Simulation class 

 
Figure 4: Simulation Class Definition 
that a Control Console be used for interactive execution, 
tracing and animation control [14].  The Simulation class 
also has a finish method that is called at the end of each 
replication of the simulation to allow programmed execu-
tion of complex experimental designs. 

2.4 Object-Oriented Design Choices 

As seen in this example, object-oriented simulation involves 
flexibility regarding the choice of design patterns.  Consider 
the decision earlier to declare the Queue object to be a char-
acteristic of the Customer class [Fig. 1, 10].  Even in this 
simple example, a user has at least four choices as to the 
proper assignment of this Queue object.  One option if for 
the Queue object to be declared public and instantiated in the 
Simulation class which makes the queue reference available 
in all entity processes.  But object-oriented design principles 
encourage the encapsulation of data and methods in their re-
spective classes so that only those classes which need access 
to these objects can access these objects.  The choice is then 
between the Teller class, the Customer class, or a third class 
which might contain the physical description of the facility 
in which the Teller is located. 

This decision is very important for complex model de-
sign and simulation object reusability. Modelers are en-
couraged to create process methods that reflect the actual 
characteristics and behavior of the corresponding intelli-
gent system component.  In this system, the Customer is in 
control of the behavior regarding which queue to join (and 
in more complex models, how long to wait in the queue 
chosen or whether to switch lines, etc.).  For that reason, 
the queue definitions are made in the Customer class so 
that other versions of the model can change Customer 
queuing behavior without modifying the Teller class. 

3 DEVELOPMENT ENVIRONMENTS 

The Silk and SML simulation extensions to object-oriented 
languages are themselves implemented entirely in the un-
derlying languages.  The only requirements for building 
and executing simulation models are a Java or .Net lan-
guage compiler and Java or .Net run-time  that are com-
patible with specification of the underlying language.  
Most commercial simulation software constrain users to a 
single proprietary and often cumbersome development en-
vironment.  Commercial programming IDE’s like Visual 
Studio .Net provide a sophisticated graphical interface and 
a rich collection of tools for project management, source 
code creation, modification, compilation, debugging, and 
deployment.  Figure 5 contains a screen snapshot of the 
example problem from the previous section within an inte-
grated development environment.    

Developing guidelines for enterprise modeling com-
ponents will be more challenging.  Consideration will need 
to be given to the application domain as well as the range 
of model granularity the components are required to ac-
commodate.  Silk and SML significantly facilitate the 
manner in which these issues can be approached - both 
from a design and implementation standpoint. In combina-
tion, they have the potential to raise component model de-
velopment, interoperability, and reusability, to a new level. 
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Figure 5: Modeling using an Integrated Java Development Environment 

 

4 SUMMARY 

The language extensions that constitute SML and Silk were 
designed to encourage better discrete-event simulation 
through better programming by better programmers.  Since 
the modeling language is integrated into the programming 
language, the full power and flexibility of the program-
ming language is available.  Unlike proprietary modeling 
environments, Silk and SML users also benefit from the 
growing number of commercially available professional 
development tools.  And unlike proprietary software, SML 
users can benefit from the large community of simulation 
researchers and practitioners who can guide and participate 
in SML development. The open-source licensing of SML 
will encourage developers to share language-level and 
component-level advances via the Internet and will also 
foster increased activity in the development of high-level, 
domain-specific simulation tools that end-users favor. 
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