
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

INSIDE DISCRETE-EVENT SIMULATION SOFTWARE:
HOW IT WORKS AND WHY IT MATTERS

Thomas J. Schriber

The University of Michigan
Computer and Information Systems
Ann Arbor, MI 48109-1234, U.S.A.

 Daniel T. Brunner

Systemflow Simulations, Inc.
6366 Guilford Avenue, Suite 300

Indianapolis, IN 46220-1750, U.S.A.

ABSTRACT

This paper provides simulation practitioners and consum-
ers with a grounding in how discrete-event simulation
software works. Topics include discrete-event systems; en-
tities, resources, control elements and operations; simula-
tion runs; entity states; entity lists; and entity-list manage-
ment. The implementation of these generic ideas in
AutoMod, SLX, and Extend is described. The paper con-
cludes with several examples of “why it matters” for mod-
elers to know how their simulation software works, includ-
ing coverage of SIMAN (Arena), ProModel, and GPSS/H
as well as the other three tools.

1 INTRODUCTION

1.1 Background

A “black box” approach is often taken in teaching and
learning discrete-event simulation software. The external
characteristics of the software are studied, but the founda-
tion on which the software is based is ignored or is touched
on only briefly. Choices made in implementation of the
foundation might not be studied at all and related to step-
by-step model execution. The modeler therefore might not
be able to think things through when faced with such needs
as developing good approaches for modeling complex
situations, using interactive tools to come to a rapid under-
standing of error conditions arising during model devel-
opment, and using interactive tools to verify that complex
system logic has been captured correctly in a model. The
objective of this paper, then, is to describe the logical un-
derpinnings of discrete-event simulation and illustrate this
material in terms of various implementations of discrete-
event simulation software.

This paper is a revised version of an identically named
paper from the 1996 Winter Simulation Conference
(Schriber and Brunner 1996). The 1996 paper covered the
entity-list management rules and “why it matters” for
SIMAN (the language underlying Arena), ProModel, and

GPSS/H. An expanded version of the 1996 material con-
taining figures, flow charts, and additional explanation can
be found in Schriber and Brunner (1998).

1.2 Structure of the Paper

In Sections 2, 3 and 4 we comment on the nature of dis-
crete-event simulation; basic simulation constructs such as
entities, resources, control elements, and operations; and
model execution. Sections 5 and 6 deal with entity states
and entity management data structures. Section 7 discusses
three specific implementations of entity management rules.
Section 8 explores “why it matters.”

1.3 Terminology and Conventions

Throughout this paper we use terms that we define as well
as terms reserved by the developers of particular simula-
tion tools. Terms we define are boldfaced on first use.
Tool-specific terms are Capitalized or, where appropriate,
are spelled out in ALL CAPS.

2 ABOUT DISCRETE-EVENT SIMULATION

2.1 The Transaction-Flow World View

The “transaction-flow world view” often provides the basis
for discrete-event simulation. In this world view, a system
is visualized as consisting of discrete units of traffic that
move (“flow”) from point to point in the system while
competing with each other for the use of scarce resources.
The units of traffic are sometimes called “transactions,”
giving rise to the phrase “transaction flow.”

Numerous systems fit the preceding description. In-
cluded are many manufacturing, material handling, trans-
portation, health care, civil, natural resource, communica-
tion, defense, and information processing systems, and
queuing systems in general.

Schriber and Brunner

2.2 The Nature of Discrete-Event Simulation

A discrete-event simulation is one in which the state of a
model changes at only a discrete, but possibly random, set
of simulated time points. Two or more traffic units often
have to be manipulated at one and the same time point.
Such “simultaneous” movement of traffic at a time point is
achieved by manipulating units of traffic serially at that
time point. This often leads to logical complexities in dis-
crete-event simulation because it raises questions about the
order in which two or more units of traffic are to be ma-
nipulated at one time point.

2.3 Discrete-Event Modeling Languages

The challenges faced by a modeler escalate for the de-
signer of a modeling language. The designer must take the
logical requirements of discrete-event simulation into ac-
count in a generalized way. Choices and tradeoffs exist. As
a result, although discrete-event simulation languages are
similar in broad terms, they can and typically do differ in
subtle but important particulars.

3 ENTITIES, RESOURCES, CONTROL
 ELEMENTS, AND OPERATIONS

The term entity is used here to designate a unit of traffic (a
“transaction”). Entities instigate and respond to events. An
event is a happening that changes the state of a model (or
system). In a model of an order-filling system, for exam-
ple, the arrival of an order, which is an event, might be
simulated by bringing an entity into the model.

There are two possible types of entities, here referred to
as external entities and internal entities. External entities
are those whose creation and movement is explicitly ar-
ranged for by the modeler. In contrast, internal entities are
created and manipulated implicitly by the simulation soft-
ware itself. For example, internal entities might be used in
some languages to simulate machine failures, whereas ex-
ternal entities might be used to simulate the use of machines.

The term resource designates a system element that
provides service (such as a drill, an automated guided ve-
hicle, or space in an input buffer). The users of resources
are usually entities. (For example, a work-in-process entity
claims space in an input buffer, then captures an automated
guided vehicle to move it to the input buffer.) Resources
are usually capacity-limited, so entities compete for their
use and sometimes must wait to use them, experiencing de-
lay as a result.

The term control element designates a construct that
supports other types of delay or logical alternatives based
on a system’s state. Control elements can take the form of
switches, counters, user data values, and system data val-
ues built into the modeling tool. Complex control may rely
on truth-valued expressions that use arithmetic and/or Boo-
lean combinations of control elements.

An operation is a step carried out by or on an entity
while it moves through a system. The operations applicable
to a ship at a harbor might be these: arrive at the harbor; re-
quest a berth; capture a berth; request a tugboat; capture a
tugboat; get pulled into the berth; free the tugboat; load
cargo; request a tugboat; get pulled out of the berth; free the
berth; get pulled into open water; free the tugboat; depart.

4 OVERVIEW OF MODEL EXECUTION

4.1 Experiments, Replications, and Runs

A simulation project is composed of experiments. Ex-
periments are differentiated by the use of alternatives in a
model’s logic and/or data. An alternate part-sequencing
rule might be tried, for example, in the model of a produc-
tion system, and/or the quantity of various types of ma-
chines might be varied. Or the number of loading and
unloading berths in a harbor might be varied.

Each experiment consists of one or more replications
(trials). A replication is a simulation that uses the experi-
ment’s model logic and data but a different set of random
numbers, and so produces different statistical results that
can then be analyzed across a set of replications.

A replication involves initializing the model, running
it until a run-ending condition is met, and reporting results.
This “running it” phase is called a run.

4.2 Inside a Run

During a run the simulation clock (an internally managed,
stored data value) tracks the passage of simulated time (as
distinct from wall-clock time). The clock advances in dis-
crete steps (typically of unequal size) during the run. After
all possible actions have been taken at a given simulated
time, the clock is advanced to the time of the next earliest
event. Then the appropriate actions are carried out at this
new simulated time, etc.

The execution of a run therefore takes the form of a
two-phase loop: “carry out all possible actions at the cur-
rent simulated time,” followed by “advance the simulated
clock,” with these two phases repeated again and again un-
til a run-ending condition is met. The two phases are here
respectively called the Entity Movement Phase (EMP)
and the Clock Update Phase (CUP).

5 ENTITY STATES

Entities migrate from state to state while they work their
way through a model. An entity is always in one of five al-
ternative states, as detailed below.

Schriber and Brunner

5.1 The Active State

The Active State is the state of the currently moving en-
tity. Only one entity moves at any instant of wall-clock
time. This entity progresses through its operations nonstop
until it encounters a delay. It then migrates to an alternative
state. Some other entity then becomes the next active en-
tity. And so on.

5.2 The Ready State

During an Entity Movement Phase there may be more than
one entity ready to move, and yet entities can only move
(be in the Active State) one-by-one. The Ready State is
the state of entities waiting to enter the Active State during
the current Entity Movement Phase.

5.3 The Time-Delayed State

The Time-Delayed State is the state of entities waiting for
a known future simulated time to be reached so that they
can then (re)enter the Ready State. A “part” entity is in a
Time-Delayed State, for example, while waiting for the fu-
ture simulated time at which an operation being performed
on it by a machine will come to an end.

5.4 The Condition-Delayed State

The Condition-Delayed State is the state of entities de-
layed until some specified condition comes about, e.g., a
“part” entity might wait in the Condition-Delayed State un-
til its turn comes to use a machine. Condition-Delayed en-
tities are removed automatically from the Condition-
Delayed state when conditions permit.

5.5 The Dormant State

Sometimes it is desirable to put entities into a state from
which no escape will be triggered automatically by
changes in model conditions. We call this state the Dor-
mant State. Dormant-State entities rely on modeler-
supplied logic to transfer them from the Dormant State
back to the Ready State. Job-ticket entities might be put
into a Dormant State, for example, until an operator entity
decides which job-ticket to pull next.

6 ENTITY MANAGEMENT STRUCTURES

Simulation software uses the following lists to organize
and track entities in the five entity states.

6.1 The Active Entity

The active entity forms an unnamed “list” consisting only
of the active entity. The Active-State entity moves nonstop
until encountering an operation that puts it into another
state (transfers it to another list) or removes it from the
model. A Ready-State entity then becomes the next Active-
State entity. Eventually there is no possibility of further ac-
tion at the current time. The EMP then ends and a Clock
Update Phase begins.

6.2 The Current Events List

Entities in the Ready State are kept in a single list here
called the current events list (CEL). Entities migrate to
the current events list from the future events list, from de-
lay lists, and from user-managed lists. (Each of these latter
lists is described below). In addition, entities cloned from
the Active-State entity usually start their existence on the
current events list.

Some software tools have a built-in Priority attribute
that is used to group Entities on the CEL in priority order.

6.3 The Future Events List

Entities in the Time-Delayed State belong to a single list
into which they are inserted at the beginning of their time-
based delay. This list, called the future events list (FEL)
here, is usually ranked by increasing entity move time.
(Move time is the simulated time at which an entity is
scheduled to try to move again.) At the time of entity inser-
tion into the FEL, the entity’s move time is calculated by
adding the value of the simulation clock to the known
(sampled) duration of the time-based delay.

After an Entity Movement Phase is over, the Clock
Update Phase sets the clock’s value to the move time of the
FEL’s highest ranked (smallest move time) entity. This en-
tity is then transferred from the FEL to the CEL, migrating
from the Time-Delayed State to the Ready State and set-
ting the stage for the next EMP to begin.

The preceding statement assumes there are not other
entities on the FEL whose move time matches the clock’s
updated value. In the case of move-time ties, some tools
will transfer all the time-tied entities from the FEL to the
CEL during a single CUP, whereas other tools take a “one
entity transfer per CUP” approach.

Languages that work with internal entities usually use
the FEL to support the timing requirements of these enti-
ties. The FEL is typically composed both of external and
internal entities in such languages.

6.4 Delay Lists

Delay lists are lists of entities in the Condition-Delayed
State. These entities are waiting for a condition to come
about (e.g., waiting their turn to use a machine) so they can
be transferred automatically into the Ready State on the
current events list. Delay lists, which are generally created

Schriber and Brunner

automatically by the simulation software, are managed by
using related waiting or polled waiting.

If a delay can be related easily to events in the model
that might resolve the condition, then related waiting can
be used to manage the delay list. For example, suppose a
machine’s status changes from busy to idle. In response,
the software can automatically remove the next waiting en-
tity from the appropriate delay list and put it in the Ready
State on the current events list. Related waiting is the
prevalent approach used to manage conditional delays.

If the delay condition is too complex to be related eas-
ily to events that might resolve it, polled waiting can be
used. With polled waiting the software checks routinely to
see if entities can be transferred from one or more delay
lists to the Ready State. Complex delay conditions for
which polled waiting can be useful include Boolean com-
binations of state changes, e.g., a part supply runs low or
an output bin needs to be emptied.

6.5 User-Managed Lists

User-managed lists are lists of entities in the Dormant
State. The modeler must take steps to establish such lists
and provide the logic needed to transfer entities to and
from the lists. (The underlying software has no way to
know why entities are put into user-managed lists and so
has no basis for removing entities from such lists.)

7 IMPLEMENTATION IN THREE TOOLS

The tools chosen for commentary on implementation par-
ticulars are AutoMod, Version 9 (Phillips 1997); SLX, Re-
lease 1 (Henriksen 1999); and Extend, Version 4.1 (Krahl
and Lamperti 1997). A previous version of this paper
(Schriber and Brunner 1996) covered SIMAN (Pegden,
Shannon and Sadowski, 1995), ProModel (ProModel Cor-
poration 1995), and GPSS/H (Crain and Henriksen 1999)
in similar detail. These five are among more than forty
tools reported in 2001 for discrete-event simulation (Swain
2003). Some other tools might be better suited than any of
these for particular modeling activities, but we think that
these tools are representative.

7.1 AutoMod

AutoMod equivalents for the preceding generic terms are
given in Table 1. For example, AutoMod uses Actions to
specify operations for Loads.

7.1.1 The Current Event List

The current events list is named the Current Event List in
AutoMod. Cloned Loads, Loads leaving the Future Event
List due to a clock update, and Loads ordered off Order

Table 1: AutoMod Terminology
Generic Term AutoMod Equivalent
External Entity Load
Internal Entity Logical Load

Resource Resource; Queue; Block
Control Element Counter;

Process Traffic Limit
Operation Action

Current Events List Current Event List
Future Events List Future Event List

Delay List Delay List;
Condition Delay List;

Load Ready List
User-Managed List Order List

Lists are placed immediately on the CEL. The insertion
rule is to rank first by priority (priority is a built-in attrib-
ute of every Load) and then FIFO within priority.

When the CEL becomes empty, the Condition Delay
List (see below) is checked, and Loads may be transferred
from there to the CEL. This continues until the CEL is
empty and no more Loads can be transferred, at which
point the EMP is over and a CUP is initiated.

7.1.2 The Future Event List

The AutoMod Future Event List (FEL) is like future events
lists in other tools. Loads arrive on the FEL in the Time-
Delayed State by executing a WAIT FOR statement.
AutoMod allows the specification of time units (day, hr,
min, sec) in a WAIT FOR statement.

The AutoMod CUP removes multiple Loads from the
FEL if they are tied for the earliest move time, inserting
them one by one into their appropriate place on the CEL.

There are also internal entities in AutoMod, called
Logical Loads that do things such as wait on the FEL to
trigger scheduled shift breaks.

7.1.3 Delay Lists

Delay Lists (DL) are lists of Loads waiting to claim capac-
ity of a finite capacity element (a resource or control ele-
ment such as an individual Resource, Queue, Block,
Counter, or Process). Each finite capacity element within
the model has one DL associated with it.

The waiting that results from this mechanism is related
waiting. Whenever capacity is freed, one Load from the head
of the element’s DL gets tentatively placed on the CEL (but a
placeholder is left on the DL). When that Load is encoun-
tered during the EMP, it tries to claim the requested capacity.
If it fails (for example because it wants two units but only
one is free), it is returned to the DL in its original place.

Immediately after this evaluation, if there is still any
capacity, the next Load on the DL is placed on the CEL.

Schriber and Brunner

Processing of the active Load then continues. After each
time a tentatively placed Load is evaluated during the
EMP, the existence of available capacity will cause another
Load to be removed from the DL.

7.1.4 The Condition Delay List

For conditional waiting other than the five cases enumer-
ated above, AutoMod has a WAIT UNTIL statement that
results in polled waiting. WAIT UNTIL conditions can be
compounded using Boolean operators. If a Load executes a
WAIT UNTIL and the condition is false, the Load is
placed on a single global AutoMod list called the Condi-
tion Delay List (CDL).

After the CEL has been emptied, but before the simu-
lation clock progresses, all Loads on the CDL are moved
to the CEL (actually, the CDL “becomes” the CEL) if there
has been a state change to at least one element of the same
general type (e.g. Queue) that any Load on the CDL is
waiting for. (This mechanism is primarily “polled” in the
sense in which that term is used in this paper, although the
global triggering mechanism is related.)

If the CEL is now non-empty then the EMP resumes.
If the condition that a CEL Load is waiting for is false,
AutoMod moves that Load from the Current Event List
back to the CDL. The CDL in some cases may get emptied
multiple times during one EMP until eventually the CEL
gets emptied without having triggered a state change re-
lated to any Load on the CDL. A CUP then occurs.

Because of the potential for repetitive list migration
with WAIT UNTIL, AutoMod’s vendor encourages the use
of Order Lists or other explicit control mechanisms to
manage complex waiting.

7.1.5 Order Lists

AutoMod implements the Dormant State with Order Lists,
which are user-managed lists of Loads. After a Load puts
itself onto an Order List (by executing a WAIT TO BE
ORDERED Action), it can only be removed by another
Load (or another active model element such as a Vehicle)
which executes an ORDER Action. An ORDER Action may
specify a quantity of Loads, or a condition that must be satis-
fied for a given Load if that Load is to be ordered, or both.
Loads successfully ordered are placed immediately on the
CEL (one at a time according to how they were chosen from
the Order List, and ranked on the CEL FIFO by priority).

Order Lists can achieve performance improvements
over CDL waiting because Order Lists are never scanned
except on explicit request.

AutoMod Order Lists offer several interesting wrin-
kles including the ability for an ordering Load to place a
back order if the ORDER quantity is not satisfied, the abil-
ity for a Load on an Order List to be ordered to continue
(to the next Action) instead of to a Process (this feature is
useful for control handshaking), and the ability to have a
function called for each Load on the Order List (by using
the ORDER…SATISFYING Action).

7.1.6 Other Lists

AutoMod has a number of material handling constructs that
are integrated with Load movement. For vehicle systems
there are three other types of lists. Loads on Load Ready
Lists (LRL) (one list per vehicle system) are waiting to be
picked up by a vehicle. Loads claimed (but not yet picked
up) by a vehicle reside on the vehicle’s Vehicle Claim List
(VCL). Claimed loads that have been picked up reside on
the vehicle’s Vehicle Onboard List (VOL). The vehicle then
becomes the active “load” and moves among AutoMod’s
lists (FEL, CEL, and possibly DLs) instead of the Load.

7.2 SLX

SLX is a hierarchical language in which the built-in primi-
tives are at a lower level than most simulation languages, fa-
cilitating user (or developer) definition of the behavior of
many system elements. This design philosophy allows the
SLX developer to create higher-level modeling tools whose
constructs have precisely defined yet modifiable behavior.

Equivalents for the generic terms for users of low-
level SLX are given in Table 2. For example, SLX uses
Control Variables to act as Control Elements. The “con-
trol” modifier can be attached to a global or local Variable
of any data type (integer, real, string, etc.). (A local Vari-
able is analogous to an attribute in other tools.)

Note that SLX has two types of Objects: Active and
Passive. An Active Object is distinguished from a Passive
Object by the presence of actions – executable Statements
– in an Active Object’s Class definition. (Even without ac-
tions, Passive Objects are useful in their own right, func-
tioning as user-defined complex data structures.)

Table 2: SLX Terminology (Low-level)
Generic Term SLX Equivalent
External Entity Active Object and its Puck(s)
Internal Entity none

Resource Control Variable
Control Element Control Variable

Operation Statement
Current Events List Current Events Chain
Future Events List Future Events List

Delay List Delay List
User-Managed List Set (see section 7.2.4)

Table 3 shows how higher-level tools based on SLX

might exploit the definitional capabilities of SLX.

d Brunner
Schriber an

Table 3: Tools Based on SLX
Generic Term SLX Equivalent

Resource Active or Passive Object
Control Element Active or Passive Object

Operation User-defined Statement
Delay List User-defined based on Set

User-Managed List User-defined based on Set

7.2.1 The Current Events Chain

The current events list is named the Current Events Chain
(CEC) in SLX. The members of the CEC are given the in-
teresting name Pucks.

What is a Puck? SLX dissociates the concept of an Ac-
tive Object (with its associated local data) from a Puck,
which is the “moving entity” that executes the actions, car-
ries its own entity scheduling data, and migrates from list
to list. The effect of this dissociation is that a single Object
can “own” more than one Puck. All Pucks owned by a sin-
gle Object share the Object’s local data (attributes). For
example, one application of this “local parallelism” feature
(as compared with the “global parallelism” offered by
CLONE or SPLIT actions in other languages) is the use of
a second Puck to simulate a balk time while the original
Puck is waiting for some condition.

Activating a new Object creates one Puck and
launches that Puck into the actions. In many cases no addi-
tional Pucks are ever created, and the combination of an
Active Object and its Puck forms the equivalent to an en-
tity in the terminology of this paper. (Passive Objects have
no actions and therefore own no Pucks.)

Newly activated Pucks, Pucks leaving the FEL due to
a clock update, and reactivated Pucks (see 7.2.4) are placed
immediately on the CEC. The CEC is ranked FIFO by pri-
ority. The SLX CEC is empty when an EMP ends.

7.2.2 The Future Events List

The SLX Future Events List (FEL) is like future events
lists in other tools. Pucks arrive on the FEL in the Time-
Delayed State by executing an ADVANCE statement.

The SLX CUP will remove multiple Pucks from the
FEC if they are tied for the earliest move time, inserting
them one by one into their appropriate place on the CEC.

Because the low-level primitives in SLX do not in-
clude downtimes or even repetitive Puck generation
(scheduled arrivals), all activity on the SLX FEL unfolds
as specified by the developer of the SLX model. However,
if a user is using a model (or a model builder) that contains
higher-level primitives defined by a developer, chances are
that all kinds of things are going on behind the scenes, hid-
den from the higher-level user’s view.

7.2.3 Delay Lists

Delay Lists (DL) are lists of Pucks waiting (through WAIT
UNTIL) for state changes in any combination of Control
Variables and the simulation clock value. A Puck waiting
for a compound condition involving two or more Control
Variables is listed on more than one DL. All higher-level
constructs defined by developers can use this mechanism.
Each Control Variable (which may be a local Variable, in
which case there is one for each Object in the Class) has a
separate DL associated with it.

A DL is ranked by order of insertion. The entire con-
tents of a DL are removed whenever the associated Control
Variable changes value and are inserted one at a time into
the CEC. Removed Pucks that are waiting on compound
conditions are also tentatively removed from each of the
other Delay Lists to which they belong. As these Pucks are
encountered on the CEC during the EMP, those failing to
pass their WAIT UNTIL are returned to the Delay List(s)
for those Control Variables still contributing to the false-
ness of the condition.

For conditions that include a clock reference, the Puck
is inserted if necessary into the FEL, subject to early re-
moval from the FEL if the condition becomes true due to
other Control Variable changes.

This low-level related waiting mechanism based on
Control Variables is the default SLX approach to modeling
all types of simple or compound Condition-Delayed states.

7.2.4 Sets and User-Managed Waiting

SLX handles the Dormant State in a unique way. Instead of
moving the Puck from the active state to a user-managed
list and suspending it, all in the same operation, SLX
breaks this operation into two pieces.

First, the Puck should join a Set. But joining a Set
does not automatically suspend the Puck. A Puck can be-
long to any number of Sets. Set membership merely pro-
vides any other Puck with access to the member Puck.

To go into the Dormant state, a Puck executes a WAIT
statement. It then is suspended indefinitely, outside of any
particular list, until another Puck identifies the waiting
Puck and executes a REACTIVATE statement on it. Often
the REACTIVATEing Puck is scanning a Set to find the
Puck to REACTIVATE, but a Set is not exactly the same
as a user-managed list in our terminology. A Dormant-state
Puck might be a member of no Sets (as long as a pointer to
it has been stashed somewhere) or of one or more Sets.

An SLX developer can easily define a user-managed
list construct, using Sets, WAIT, and REACTIVATE as
building blocks, that mimics those of other languages or
offer unique features of its own.

Schriber and Brunner

7.3 Extend

Extend uses a message-based architecture for discrete-
event simulation. Various types of messages are used to
schedule events, propel Items (Entities) through a model,
enforce the logic incorporated into a model, and force
computation. The senders and receivers of messages are
Blocks (Operations), including the Executive Block (mas-
ter controller). In Extend, it is the execution of Blocks,
which is scheduled. (When a Block executes, for example,
this can trigger the sending of messages back and forth
among Blocks, with the effect of logically propelling an
Item along its Block-based path in a model.)

Extend equivalents for generic model terms are given
in Table 4, and are discussed below.

Table 4: Extend Terminology

Generic Term Extend Equivalent
External Entity Item
Internal Entity none

Resource Resource; Resource Pool;
generally, any Block with a

limited capacity
Control Element Block Dialog

Operation Block
Current Events List Next Times Array

and Current Events Array
Future Events List Time Array

Delay List List of Items Resident in a
Pre-Programmed Block

User-Managed List List of Items Resident in a
User-Programmed Block

7.3.1 Blocks

Blocks are Extend’s basic modeling construct. Each Block
has an icon, message-passing connectors, dialog capability,
and behavior-defining code. Residence Blocks can hold
Items while simulated time goes by, whereas Passing
Blocks cannot. (Items go through Passing Blocks in zero
simulated time.) Models can be constructed by selecting
pre-programmed Blocks from Extend’s Block libraries.
The modeler can also modify the source code given for li-
brary Blocks. (All Blocks in the base version of Extend are
open source.) Finally, the modeler can create customized
Blocks from scratch (user-programmed Blocks) using de-
velopment tools that Extend provides.

7.3.2 The Time Array

Extend uses a Time Array to schedule future Block execu-
tions. For a given model, the Time Array contains exactly
one element for each Block whose execution can poten-
tially be scheduled. A Block’s Time Array element records
the earliest future time for which execution of that Block
has been scheduled.

Blocks not currently scheduled for future execution
are temporarily “blacked out” by recording arbitrarily large
time values for them in the Time Array.

Residence Blocks that can hold multiple Items manage
the corresponding event times internally, with only the ear-
liest of the Block’s event time kept in the Time Array.

Block execution can result in scheduling future Block
executions. For example, if messages are passed that result
in an Item entering a unit-capacity Residence Block de-
signed to hold the Item until a sampled amount of simu-
lated time has elapsed, then the Time Array entry for that
Block will have its value set accordingly.

Because the number of Blocks in a given model is
constant, the Time Array is of fixed and relatively small
size. Because of its small size, the Time Array is searched
to find imminent event time; it is not kept in sort order.

7.3.3 The Next Times and Current Events Arrays

The Next Times Array is used to manage the execution of
Blocks whose execution has been scheduled via the Time
Array. The Next Times Array is populated just prior to a
Block Execution Phase (Extend’s equivalent of an Entity
Movement Phase) as follows. At each Clock Update Phase,
the Time Array is searched to find the earliest future time
at which a Block execution has been scheduled. Identifiers
for the corresponding Block (or Blocks, in case of time
times) is (or are) then put into the Next Times Array. The
Block Execution Phase (BEP) then begins, with the Execu-
tive messaging the most highly qualified Block in the Next
Times array to start its execution.

The Current Events Array is used to manage the re-
sumption of execution of Blocks whose execution has been
temporarily suspended during the course of a Block Execu-
tion Phase.

For example, suppose a Block sends a message, and the
receiving Block replies (returns control) immediately to the
sending Block (even though it still has to do additional proc-
essing at the simulated time in question). In this case, the re-
ceiving Block’s identifier is added to the Current Events Ar-
ray. When the sending Block is finished executing, the
Executive messages the most highly qualified Block in the
Current Events Array to resume its execution. Eventually,
the Current Events Array becomes empty. Then the Execu-
tive turns again to the Next Times Array messaging its most
highly qualified Block to start executing.

During a Block Execution Phase, it is possible for
Blocks to schedule themselves to be executed at the current
simulated time (that is, during the ongoing BEP). The Cur-
rent Events Array comes into play here, too, to manage the
execution of Blocks in such cases.

For example, if a capacity-constrained Block becomes
non-full as a result of some other Block’s execution, the

Schriber and Brunner

non-full Block puts its identifier into the Current Events
Array. The Executive will later (but at the same simulated
time) message the Block to start executing. The Block will
then try to pull into itself Items (if any) that have been
waiting to enter the Block. (In Extend, Items can be both
pulled and pushed through a model.)

When the Current Events Array and the Next Times
Array both become empty, this brings Extend’s Block
Execution Phase to an end. Then the next CUP and BEP
take place, repeating until a simulation-ending condition is
satisfied.

7.3.4 Delay Lists

Delay lists are composed of Items delayed in Residence
Blocks, waiting their turn to be pulled or pushed into the
next Block(s) for which they are targeted. Message passing
is used to accomplish the pulling and pushing when model
conditions permit. Extend provides related-waiting man-
agement of delay lists based on user-specified FIFO, LIFO,
Priority, Attribute, Reneging, and Matching alternatives.

Waiting for arbitrary compound conditions is normally
achieved in Extend by combining Blocks appropriately and
exploiting Extend’s message-based architecture. The au-
thors view this as another form of related waiting, because
it is a change in one of the underlying values that triggers a
re-evaluation of the condition.

In version 6 the Extend developers re-implemented a
form of polled waiting that had existed in some earlier ver-
sions but had been removed for performance reasons. The
Activity Service block (which prevents items from passing
through if the demand connector is false, and allows items
to pass through free if the demand connector is true. Items
wait in the nearest upstream residence block) now has an
option for it to check its demand connector on every simu-
lation event. This is done after the future and current
events have been processed.

7.3.5 User-Managed Lists

The modeler can work with user-programmed Blocks to cre-
ate and manage lists of the modeler’s own design. The code
for custom blocks can be written to achieve the modeler’s
objectives in this regard, just as the code for Extend’s pre-
programmed Blocks has been written to specify the behavior
of those Blocks. Extend provides functions that can be used
by Blocks to share lists (arrays) with other Blocks, further
supporting customized list management in models.

8 WHY IT MATTERS

8.1 Overview

We now describe five situations that reveal some of the
practical differences in implementation particulars among
SIMAN, ProModel (Version 3), GPSS/H, AutoMod, SLX,
and Extend. These differences reflect differing implemen-
tation choices made by the software designers.

None of the alternative approaches mentioned in each
subsection is either intrinsically “right” or “wrong.” The
modeler simply must be aware of the alternative in effect
in the simulation software being used and work with it to
produce the desired outcome. (If a modeler is unaware of
the alternative in effect, it is possible to mis-model a situa-
tion and perhaps not become aware of this fact.)

We finish the “why it matters” discussion with some
comments on how knowledge of software internals is
needed to make effective use of software checkout tools.

8.2 Trying to Re-Capture a Resource Immediately

Suppose a part releases a machine, then immediately at-
tempts to re-capture the machine. The modeler might – or
might not – want a more highly qualified waiting part, if
any, to be the next to capture the machine.

Of interest here is the order of events following the
giving up of a resource. There are at least three alterna-
tives: (1) Coupled with the giving up of the resource is the
immediate choosing of the next user of the resource, with-
out the releasing entity having yet become a contender for
the resource. (2) The choosing of the next user of the re-
source is deferred until the releasing entity has become a
contender. (3) “Neither of the above;” that is, without pay-
ing heed to other contenders, the releasing entity recaptures
the resource immediately.

SIMAN and Extend implement (1). ProModel imple-
ments (2). GPSS/H and AutoMod implement (3) by de-
fault. In SLX, using a low-level Control Variable as the re-
source state, the result is also (3). (However developers
could implement higher-level resource constructs in SLX
that behave in any of the three ways.)

8.3 The First in Line is Still Delayed

Suppose two Condition-Delayed entities are waiting in a
list because no units of a particular resource are idle. Sup-
pose the first entity needs two units of the resource,
whereas the second entity only needs one unit. Now as-
sume that one unit of the resource becomes idle. The needs
of the first list entity cannot yet be satisfied, but the needs
of the second entity can. What will happen?

There are at least three possible alternatives: (1) Nei-
ther entity claims the idle resource unit. (2) The first entity
claims the one idle resource unit and waits for a second
unit. (3) The second entity claims the idle resource unit and
goes on its way.

As in Section 8.2, each of these alternatives comes
into play in the tools considered here. SIMAN (SEIZE) and
ProModel (GET or USE) implement (1) and (2) respec-
tively by default. AutoMod (GET or USE), GPSS/H

Schriber and Brunner

(ENTER or TEST), and SLX (WAIT UNTIL on a Control
Variable) implement (3) by default. Extend also imple-
ments (3) by default. But Extend gives the modeler the
choice of locally implementing (1) for resources specified
by the modeler. The modeler does this by checking an
“Only allocate resource pool to the highest ranked Item”
option for each such resource.

8.4 Yielding Control

Suppose the active entity wants to give control to one or
more Ready-State entities, but then needs to become the
active entity again before the simulation clock has been
advanced. This might be useful, for example, if the active
entity has opened a switch permitting a set of other entities
to move past a point in the model, and then needs to re-
close the switch after the forward movement has been ac-
complished. (Perhaps a group of identically flavored car-
tons of ice cream is to be transferred from an accumulation
point to a conveyor leading to a one-flavor-per-box pack-
ing operation.)

In SIMAN and AutoMod, the effect can be accom-
plished approximately with a DELAY (SIMAN) or WAIT
FOR (AutoMod) that puts the active entity into a Time-
Delayed State for an arbitrarily short but non-zero simu-
lated time.

In ProModel, “WAIT 0” can be used to put the active
entity back on the FEL. It will be returned later (at the
same simulated time) by the CUP to the Active State.

In GPSS/H, the active Transaction (“Xact”) can exe-
cute a YIELD (BUFFER) Block to shift from the Active
State to the Ready State and restart the CEC scan. Higher-
priority (and higher-ranked same priority) Xacts on the
CEC can then try to become active, one by one, before the
control-yielding Xact itself again becomes active at the
same simulated time. (A “PRIORITY PR,YIELD” Block
can alternatively be used in order to reposition the just-
active Xact behind equal-priority Xacts on the CEC prior
to restarting the scan.)

In SLX there is also a YIELD statement. A normal
YIELD shifts the active Puck to the back of its priority
class on the CEC and picks up the next Puck. It is also pos-
sible to YIELD to a specific other Puck that is on the CEC,
in which case the active Puck is not shifted.

In Extend, a message is sent out the appropriate Block
connector when an Item moves into or out of a Block. This
message will propagate to other connected Blocks, perhaps
changing system status or moving Items from one Block to
another as a result. When the originating Block eventually
receives the reply, it continues processing the original
Item. Hence, “yield and then eventually resume” is part of
the fabric of Extend’s message-based architecture.

8.5 Conditions Involving the Clock

If an entity needs to wait until a particular clock value has
been reached, every language has a time-delay for FEL
waiting. But what if an entity needs to wait for a compound
condition involving the clock, such as “wait until my input
buffer is empty or it is exactly 5:00 PM?”

A typical approach to this is to clone a dummy
(“shadow”) entity to do the time-based waiting. Manage-
ment of dummy entities can be cumbersome, particularly
for very complex rules. ProModel does not use polled wait-
ing, so a dummy entity would be the best approach avail-
able (otherwise, the condition would not be checked until
the other component of the compound condition had a
value change). Extend also does not use polled waiting, so
a similar situation applies for Extend. In the Extend archi-
tecture this is best described as the use of an additional
Block (for example, an Input Data Block) that can schedule
an event at the specified time, at which point a message
would be sent to the waiting Block.

Even when a polled waiting mechanism is present, if a
single entity tries to wait on a compound condition involv-
ing the clock, a similar problem can arise. This is because
the next polling time may not match the target clock time.
SIMAN and AutoMod detect the truth of compound condi-
tions through their end-of-EMP polling mechanisms.
GPSS/H also detects the truth through its version of polled
waiting (refusal-mode TEST). But in the absence of a
clone that waits on the FEL until exactly 5:00 PM (i.e. the
same approach as that recommended above with ProModel
and Extend), all three of those tools are subject to the pos-
sibility that the first EMP that finds the condition true oc-
curs when the clock has a value greater than 5:00 PM.
(Also, in the case of AutoMod, the condition is not guaran-
teed to be checked at the end of the first EMP after 5:00
PM. See the second paragraph of Section 7.1.4.)

SLX recognizes the clock as a related wait-until target.
A WAIT UNTIL using a future clock value in a way that
contributes to the falseness of the condition will cause the
Puck to be scheduled onto the FEL to force an EMP at the
precise time referenced. This solves the greater-than-the-
desired-time problem. Note that this Puck may also be
waiting on one or more delay lists.

8.6 Mixed-Mode Waiting

Suppose many entities are waiting to capture a particular
resource, while a user-defined controller entity is waiting
for the condition “shift status is off-shift and number wait-
ing is less than six and resource is not currently in use” to
take some action (such as shutting the resource down, in
languages that allow user-defined entities to shut down re-
sources; or printing a status message). How can we guaran-
tee that the controller will be able to cut in front of the

Schriber and Brunner

waiting entities at the appropriate instant (before the re-
source is recaptured)?

One way to handle this would be through entity priori-
ties, in languages that offer this mechanism. However, as
described below, that may not work even if the controller
has higher priority than any other entity.

The key issue is the method used to implement the
waiting. If it is related for the entities waiting to capture the
resource and polled for the controller entity waiting for the
compound condition, things can get complicated. (This is
what we mean by the term “mixed-mode waiting.”) Every
time the resource comes free, a new entity will be selected
from a delay list immediately in SIMAN and via the CEL
in AutoMod, in both cases preceding the end-of-EMP
checking for polled wait conditions (and thereby ignoring
the entity priority of the controller). There are many ways
to work around this if desired, such as using a different
type of operation to force a polled wait for entities wishing
to use the resource.

In GPSS/H, using a high-priority controller Transac-
tion at a refusal-mode TEST Block, the controller waits at
the front of the CEC. The Facility RELEASE will trigger a
scan restart and the controller will do its job.

In ProModel there is no polled waiting but there can
be related waiting on compound conditions involving
Variables. Variables would have to be defined and manipu-
lated for each element of the Boolean condition and, to as-
sure equal competition, the entities waiting to capture the
resource might also have to use WAIT UNTIL instead of
GET or USE. Another possibility with ProModel would be
to have the entity that frees the resource do some state-
checking right away (in effect becoming a surrogate for the
controller). This is possible because of the deferred-
selection method used by ProModel (see Section 8.2).

In the related waiting of SLX, a Puck awaiting a com-
pound condition will be registered on the delay lists of
those (and only those) Control Variables that are contribut-
ing to the falseness of the condition at the time it is evalu-
ated. The SLX architecture (in which only global or local
Control Variables and the clock can be referenced in any
sort of conditional wait at the lowest level) assures that
there will already be Variables underlying the state
changes being monitored. The model developer needs only
to be sure they are defined as Control Variables.

As with ProModel and SLX, Extend would use related
waiting to detect and immediately respond to a change in
the compound condition. The desired effect is achieved in
Extend by use of a Program Block, which can be used to
issue a message to create a controller Item with its priority
set to a value that assures that it will be processed before
other Items are processed at a specified simulated time.
This Item would wait in Extend’s related-waiting fashion
(using connectors to monitor the state changes).

8.7 Interactive Model Verification

We now comment briefly on why a detailed understanding
of “how simulation software works” supports interactive
probing of simulation-model behavior.

In general, simulation models can be run interactively
or in batch mode. Interactive runs are of use in checking
out (verifying) model logic during model building and in
troubleshooting a model when execution errors occur.
Batch mode is then used to make production runs.

Interactive runs put a magnifying glass on a simulation
model while it executes. The modeler can follow the active
entity step by step and display the current and future events
lists and the delay and user-managed lists as well as other
aspects of the model. These activities yield valuable in-
sights into model behavior for the modeler who knows the
underlying concepts. Without such knowledge, the modeler
might not take full advantage of the interactive tools pro-
vided by the software or, worse yet, might even avoid us-
ing the tools.

ACKNOWLEDGMENTS

Much of the information in this paper was derived from
conversations with software-vendor personnel. The authors
gratefully acknowledge the past support provided by David
T. Sturrock, Deborah A. Sadowski, C. Dennis Pegden and
Vivek Bapat (SIMAN); Charles Harrell (ProModel); Ken-
neth Farnsworth and Tyler Phillips (AutoMod); Robert C.
Crain and James O. Henriksen (GPSS/H and SLX); and
David Krahl (Extend).

REFERENCES

Crain, R. C., and J. O. Henriksen. 1999. Simulation Using

GPSS/H. In Proceedings of the 1999 Winter Simula-
tion Conference, ed. P. A. Farrington, H. B. Nemb-
hard, D. T. Sturrock, and G. W. Evans, 182-187. Pis-
cataway, NJ: Institute of Electrical and Electronics
Engineers.

Henriksen, J. O. 1999. SLX: Pyramid Power. In Proceed-
ings of the 1999 Winter Simulation Conference, ed. P.
A. Farrington, H. B. Nembhard, D. T. Sturrock, and G.
W. Evans, 167-175. Piscataway, NJ: Institute of Elec-
trical and Electronics Engineers.

Krahl, D., and J. S. Lamperti. 1997. A Message-Based
Discrete Event Simulation Architecture. In Proceed-
ings of the 1997 Winter Simulation Conference, ed. S.
Andradottir, K. J. Healy, D. H. Withers, and B. L.
Nelson, 1361-1367. Piscataway, NJ: Institute of Elec-
trical and Electronics Engineers.

Pegden, C. D., R. E. Shannon, and R. P. Sadowski. 1995.
Introduction to Simulation Using SIMAN, Second Edi-
tion. New York: McGraw-Hill.

Schriber and Brunner

Phillips, T. 1997. Know your AutoMod Current Events. In

AutoFlash newsletter, July 1997, Volume 10, Number
7. Bountiful, UT: AutoSimulations, Inc.

ProModel Corporation. 1995. ProModel Version 3 User’s
Guide. Orem, UT: ProModel Corporation.

Schriber, T. J., and D. T. Brunner. 1996. Inside Simu-
lation Software: How It Works and Why It Matters. In
Proceedings of the 1996 Winter Simulation Confer-
ence, ed. J. Charnes, D. Morrice, D. Brunner, and J.
Swain, 23-30. Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Schriber, T. J. and D. T. Brunner. 1998. How Discrete-
Event Simulation Software Works. Chapter 24 in
Handbook of Simulation: Principles, Methodology,
Advances, Applications, and Practice, ed. J. Banks.
New York: John Wiley & Sons.

Swain, J. J. 2003. Simulation Reloaded: Sixth biennial sur-
vey of discrete-event software tools. OR/MS Today
30(4): 46-57 (August 2003). Baltimore, Maryland:
INFORMS.

AUTHOR BIOGRAPHIES

THOMAS J. SCHRIBER is a Professor of Computer and
Information Systems at The University of Michigan. A Fel-
low of the Institute of Decision Sciences, he is a recipient of
the INFORMS College of Simulation’s Distinguished Ser-
vice Award and Lifetime Professional Achievement Award.
He has been a Winter Simulation Conference Program Chair
and served ten years on the WSC Board of Directors as
ACM/SIGSIM representative, chairing the board for two
years. He teaches modeling, decision analysis and discrete-
event simulation in Michigan’s MBA program. He is a
member of ASIM (the German-language simulation soci-
ety), the Decision Sciences Institute, the Institute of Indus-
trial Engineers, and INFORMS, and is listed in Who’s Who
in America. His email and web addresses are:
<schriber@umich.edu>; <www.bus.umich.edu/
FacultyBios/FacultyBio.asp?id=000119900>.

DANIEL T. BRUNNER is President of Systemflow
Simulations, Inc., a software and services firm active in
simulation and visualization of operations in manufactur-
ing, material handling, distribution, transportation, health
care, and mining. He holds a B.S.E.E. from Purdue Uni-
versity and an MBA from The University of Michigan. He
has served as the Winter Simulation Conference Publicity
Chair (1988), Business Chair (1992), General Chair
(1996), and Transportation Applications Track Coordinator
(1998). He is a member of the Institute of Industrial Engi-
neers, INFORMS, the Society for Computer Simulation,
and the Society for Mining, Metallurgy and Exploration.
His email and web addresses are: <brunner@system
flow.com>; <www.systemflow.com>.

mailto:schriber@umich.edu
http://www.bus.umich.edu/FacultyBios/ FacultyBio.asp?id=000119900
http://www.bus.umich.edu/FacultyBios/ FacultyBio.asp?id=000119900
mailto:brunner@system�flow.com
mailto:brunner@system�flow.com
mailto:schriber@umich.edu
http://www.bus.umich.edu/FacultyBios/FacultyBio.asp?id=000119900
http://www.bus.umich.edu/FacultyBios/FacultyBio.asp?id=000119900
mailto:brunner@systemflow.com
mailto:brunner@systemflow.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 113
	02: 114
	03: 115
	04: 116
	05: 117
	06: 118
	07: 119
	08: 120
	09: 121
	10: 122
	11: 123

