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ABSTRACT 

The merging of optimization and simulation technologies 
has seen a rapid growth in recent years.  A Google search on 
“Simulation Optimization” returns more than six thousand 
pages where this phrase appears.  The content of these pages 
ranges from articles, conference presentations and books to 
software, sponsored work and consultancy.  This is an area 
that has sparked as much interest in the academic world as in 
practical settings.  In this paper, we first summarize some of 
the most relevant approaches that have been developed for 
the purpose of optimizing simulated systems. We then con-
centrate on the metaheuristic black-box approach that leads 
the field of practical applications and provide some relevant 
details of how this approach has been implemented and used 
in commercial software.  Finally, we present an example of 
simulation optimization in the context of a simulation model 
developed to predict performance and measure risk in a real 
world project selection problem. 

1 INTRODUCTION 

The optimization of simulation models deals with the situa-
tion in which the analyst would like to find which of possi-
bly many sets of model specifications (i.e., input parame-
ters and/or structural assumptions) lead to optimal 
performance.  In the area of design of experiments, the in-
put parameters and structural assumptions associated with 
a simulation model are called factors.  The output perform-
ance measures are called responses.  For instance, a simu-
lation model of a manufacturing facility may include fac-
tors such as number of machines of each type, machine 
settings, layout and the number of workers for each skill 
level.  The responses may be cycle time, work-in-progress 
and resource utilization. 

In the world of optimization, the factors become deci-
sion variables and the responses are used to model an ob-
jective function and constraints.  Whereas the goal of ex-
 
perimental design is to find out which factors have the 
greatest effect on a response, optimization seeks the com-
bination of factor levels that minimizes or maximizes a re-
sponse (subject to constraints imposed on factors and/or 
responses).  Returning to our manufacturing example, we 
may want to formulate an optimization model that seeks to 
minimize cycle time by manipulating the number of work-
ers and machines, while restricting capital investment and 
operational costs as well as maintaining a minimum utiliza-
tion level of all resources.  A model for this optimization 
problem would consists of decision variables associated 
with labor and machines as well as a performance measure 
based on a cycle time obtained from running the simulation 
of the manufacturing facility.  The constraints are formu-
lated both with decision variables and responses (i.e., utili-
zation of resources). 

In the context of simulation optimization, a simulation 
model can be though of as a “mechanism that turns input 
parameters into output performance measures” (Law and 
Kelton, 1991).  In other words, the simulation model is a 
function (whose explicit form is unknown) that evaluates 
the merit of a set of specifications, typically represented as 
set of values.  Viewing a simulation model as a function 
has motivated a family of approaches to optimize simula-
tions based on response surfaces and metamodels. 

A response surface is a numerical representation of the 
function that the simulation model represents.  A response 
surface is built by recording the responses obtained from 
running the simulation model over a list of specified values 
for the input factors.  A response surface is in essence a 
plot that numerically characterizes the unknown function.  
Hence, a response surface is not an algebraic representa-
tion of the unknown function. 

A metamodel is an algebraic model of the simulation.  
A metamodel approximates the response surface and there-
fore optimizers use it instead of the simulation model to es-
timate performance.  Standard linear regression has been and 
continues to be one of the most popular techniques used to 
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build metamodels in simulation.  More recently, metamodels 
based on neural networks (Laguna and Martí, 2002) and 
Kriging (van Beers and Kleijnen, 2003) have also been de-
veloped and used for estimating responses based on input 
factors.  Once a metamodel is obtained, in principle, appro-
priate deterministic optimization procedures can be applied 
to obtain an estimate of the optimum (Fu, 2002). 

2 CLASSICAL APPROACHES FOR  
SIMULATION OPTIMIZATION 

Fu (2002) identifies 4 main approaches for optimizing 
simulations: 

• 

• 
• 
• 

stochastic approximation (gradient-based ap-
proaches) 
(sequential) response surface methodology 
random search 
sample path optimization (also known as stochas-
tic counterpart) 

Stochastic approximation algorithms attempt to mimic 
the gradient search method used in deterministic optimiza-
tion.  The procedures based on this methodology must es-
timate the gradient of the objective function in order to de-
termine a search direction.  Stochastic approximation 
targets continuous variable problems because of its close 
relationship with steepest descent gradient search.  How-
ever, this methodology has been applied to discrete prob-
lems (see e.g. Gerencsér, 1999). 

Sequential response surface methodology is based on the 
principle of building metamodels, but it does so in a more lo-
calized way.  The “local response surface” is used to deter-
mine a search strategy (e.g., moving to the estimated gradient 
direction) and the process is repeated. In other words, the 
metamodels do not attempt to characterize the objective func-
tion in the entire solution space but rather concentrate in the 
local area that the search is currently exploring. 

A random search method moves through the solution 
space by randomly selecting a point from the neighborhood 
of the current point.  This implies that a neighborhood 
must be defined as part of developing a random search al-
gorithm.  Random search has been applied mainly to dis-
crete problems and its appeal is based on the existence of 
theoretical convergence proofs.  Unfortunately, these theo-
retical convergence results mean little in practice where its 
more important to find high quality solutions within a rea-
sonable length of time than to guarantee convergence to 
the optimum in an infinite number of steps. 

Sample path optimization is a methodology that ex-
ploits the knowledge and experience developed for deter-
ministic continuous optimization problems.  The idea is to 
optimize a deterministic function that is based on n random 
variables, where n is the size of the sample path.  In the 
simulation context, the method of common random num-
bers is used to provide the same sample path to calculate 
the response over different values of the input factors.  
Sample path optimization owes its name to the fact that the 
estimated optimal solution that it finds is based on a deter-
ministic function built with one sample path obtained with 
a simulation model.  Generally, n needs to be large for the 
approximating optimization problem to be close to the 
original optimization problem (Andradóttir, 1998). 

While these four approaches account for most of the 
literature in simulation optimization, they have not been 
used to develop optimization for simulation software.  Fu 
(2002) identifies only one case (SIMUL8’s OPTIMZ) 
where a procedure similar to a response surface method 
has been used in a commercial simulation package.  In par-
ticular, he quotes the following short description of 
OPTIMZ from SIMUL8’s website: 
 

“OPTIMIZ uses SIMUL8’s ‘trials’ facility multiple 
times to build an understanding of the simulation’s 
‘response surface’.  (The effect that the variables, 
in combination, have on the outcome).  It does this 
very quickly because it does not run every possible 
combination!  It uses Neural Network technology 
to learn the shape of the response surface from a 
limited set of simulation runs.  It then uses more 
runs to obtain more accurate information as it ap-
proaches potential optimal solutions.” 
 
Since Fu’s article was published, however, SIMUL8 

has abandoned the use of OPTIMZ, bringing down to zero 
the number of practical applications of the four methods 
mentioned above.  Andradóttir (1998) gives the following 
explanation for the lack of practical (commercial) imple-
mentations of the methods mentioned above: 

 
“Although simulation optimization has received a 
fair amount of attention from the research commu-
nity in recent years, the current methods generally 
require a considerable amount of technical sophisti-
cation on the part of the user, and they often require 
a substantial amount of computer time as well.” 
 
Leading commercial simulation software employs 

metaheuristics as the methodology of choice to provide op-
timization capabilities to their users.  We explore this ap-
proach to simulation optimization in the next section.   

3 METAHEURISTIC APPROACH TO 
SIMULATION OPTIMIZATION 

Now a days nearly every commercial discrete-event or 
Monte Carlo simulation software package contains an op-
timization module that performs some sort of search for 
optimal values of input parameters rather than just perform 
pure statistical estimation.  This is a significant change 
from 1990 when none of the packages included such a 
functionality.  
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Like other developments in the Operations Re-

search/Computer Science interface (e.g., those associated 
with solving large combinatorial optimization problems) 
commercial implementations of simulation optimization 
procedures have only become practical with the exponen-
tial increase of computational power and the advance in 
metaheuristic research.  The metaheuristic approach to 
simulation optimization is based on viewing the simulation 
model as a black box function evaluator. 

Figure 1 shows the black-box approach to simulation 
optimization favored by procedures based on metaheuristic 
methodology.  In this approach, the metaheuristic opti-
mizer chooses a set of values for the input parameters (i.e., 
factors or decision variables) and uses the responses gener-
ated by the simulation model to make decisions regarding 
the selection of the next trial solution. 

 

Metaheuristic
Optimizer

Simulation
Model

Input
ParametersResponses

 
Figure 1: Black Box Approach to Simulation Optimization 

 
Most of the optimization engines embedded in com-

mercial simulation software are based on evolutionary ap-
proaches.  The most notable exception is the optimization 
algorithm in WITNESS, which is based on search strate-
gies from simulated annealing and tabu search.  (Inciden-
tally, simulated annealing may be viewed as an instance of 
a random search procedure; its main disadvantage is the 
computational time required to find solutions of a reasona-
bly high quality.) 

Evolutionary approaches search the solution space by 
building and then evolving a population of solutions.  The 
evolution is achieved by means of mechanisms that create 
new trials solutions out of the combination of two or more 
solutions that are in the current population.  Transformation 
of a single solution into a new trial solution is also considered 
in these approaches.  Examples of evolutionary approaches 
utilized in commercial software are shown in Table 1. 

The main advantage of evolutionary approaches over 
those based in sampling the neighborhood of a single solu-
tion (e.g., simulated annealing) is that they are capable of 
exploring a larger area of the solution space with a smaller 
number of objective function evaluations.  Since in the 
context of simulation optimization evaluating the objective 
function entails running the simulation model, being able 
to find high quality solutions early in the search is of criti-
cal importance.  A procedure based on exploring neighbor-
hoods would be effective if the starting point is a solution 
 

Table 1: Commercial Implementations of Evolutionary 
Approaches to Simulation Optimization 

Optimizer Technology Simulation Software 
OptQuest Scatter Search AnyLogic 

Arena 
Crystal Ball 

CSIM19 
Enterprise Dynamics 

Micro Saint 
ProModel 

Quest 
SimFlex 

SIMPROCESS 
SIMUL8 
TERAS 

Evolutionary 
Optimizer 

Genetic Algo-
rithms 

Extend 

Evolver Genetic Algo-
rithms 

@Risk 

AutoStat Evolution 
Strategies 

AutoMod 

 
that is “close” to high quality solutions and if theses solu-
tions can be reached by the move mechanism that defines 
the neighborhood. 

3.1 Solution Representation and Combination 

The methods that are designed to combine solutions in an 
evolutionary metaheuristic approach depend on the way 
solutions are represented.  We define a solution to the op-
timization problem as a set of values given to the decision 
variables (i.e., the input parameters to the simulation 
model, also called factors).  For continuous problems, a so-
lution is given by a set of real numbers.  For pure integer 
problems, a solution is represented by a set of integer val-
ues.  A special case of integer problems, called Boolean, 
are those where the decision variables can take only two 
values: zero and one.  Other solution representations in-
clude permutations, where the input parameters are integer 
values are required to be all different.  Complicated prob-
lems have mixed solution representations with decision 
variables represented with continuous and discrete values 
as well as permutations. 

For solutions represented by continuous variables, lin-
ear combinations are often used as a mechanism to create 
new trial solutions.  For instance, OptQuest uses the fol-
lowing scheme: 

 
  (1) )( xxrxx ′−′′−′=
  (2) )( xxrxx ′−′′+′=
  (3) )( xxrxx ′−′′+′′=
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Here  and  are the solutions being combined, and

r is a random number in the range (0, 1).  When a different
random number is used for each variable in the solution, the
combination mechanism creates new trial solutions by sam-
pling the rectangles shown in Figure 2, which depicts the
combination of two solutions, x

x′ x ′′

1 and x2, to generate three
trial solutions x3, x4, and x5 in a two-dimensional space. 

To limit the generation of new trial solutions to the line
defined by x1 and x2, the same random number r is used to
generate the values for each variable in the solutions being
combined.  This linear combination procedure, suggested in
connection with the scatter search methodology, is more
general than the so-called “linear, arithmetical, average or
intermediate” crossover in the genetic algorithm literature. 

In genetic algorithms, the methods used to combine
solutions are called crossover operators.  Many crossover
operators have been suggested for specific applications in
settings such as nonlinear and combinatorial optimization.
For instance, if solutions are represented by a binary string,
the one-point crossover operator may be used.  A crossover
point is selected at random and then two new trial solutions
are generated from two existing solutions, as shown in Fig-
ure 3.  The crossover point in Figure 3 is between the 7th

and 8th binary variable. 
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Figure 2: Linear Combination of Two Solutions 
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Figure 3: One-point Crossover for Binary Strings 
The crossover operator in Figure 3 can be used not only 
to combine binary strings but also to combine solutions rep-
resented by general integer variables.  When solutions are 
represented by permutations, however, the crossover operator 
must be modified, because the one illustrated in Figure 3 may 
result in new trial solutions that are not permutations. 

A simple modification results in the following opera-
tor.  After selecting a crossover point, the permutation is 
copied from the first existing solution until the crossover 
point, then the other existing solution is scanned and the 
next number is added if is not yet in the new trial solution.  
The roles of the existing solutions are then changed to gen-
erate a second trial solution, as illustrated in Figure 4. 

 

7,8,2,4,5

Existing solutions

New trial solutions

3,1,6 6,5,3,2,7 1,4,8

8,4,16,3,17,8,2,4,5 6,5,3,2,7

 
Figure 4: One-point Crossover for Permutations 

 
A variety of combination methods for permutation 

problems in the context of comparing the performance of 
implementations of scatter search and genetic algorithms 
can be found in Martí, Laguna and Campos (2002). 

3.2 Use of Metamodels 

Metaheuristic optimizers typically use metamodels as fil-
ters with the goal of screening out solutions that are pre-
dicted to be inferior compared to the current best known 
solution.  Laguna and Martí (2002) point out the impor-
tance of using metamodels during the metaheuristic search 
for the optimal solution: 

 
“Since simulations are computationally expensive, 
the optimization process would be able to search 
the solution space more extensively if it were able 
to quickly eliminate from consideration low-
quality solutions, where quality is based on the 
performance measure being optimized.” 
 
OptQuest uses neural networks to build a metamodel 

and then applies predefined rules to filter out potentially 
bad solutions.  The main issues that need to be resolved in 
an implementation such as this one are: 

• 
• 
• 

the architecture of the neural network 
data collection and training frequency 
filtering rules 
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The architecture of the neural network must be general 
enough to be able to handle a wide variety of situations, 
since the trained neural network becomes the metamodel 
for the simulation model that evaluates the objective func-
tion.  At the beginning of the optimization process, there 
are no data available to train the neural network.  However, 
as the search progresses, data become available because 
new trial solutions are evaluated by running the simulation 
model.  Hence, a system such as OptQuest must decide 
when enough data have been collected to trigger the train-
ing of the neural network. 

Once the neural network has been trained, it can be 
used for filtering purposes.  Suppose that x is a new trial 
solution.  Also suppose that x* is the best solution found so 
far in the search.  Let f(x) be the objective function value 
associated with solution x.  In other words, f(x) is the re-
sponse generated by the simulation model when x is used 
as the input parameters.  Also let  be the predicted 
objective function value for a solution x.  In other words,  

 is the value obtained by evaluating the metamodel 
with solution x.  The filtering rules are based on the follow-
ing calculation (for a minimization problem): 

)(ˆ xf

)(ˆ xf

 
 d =  - f(x)(ˆ xf *) (5) 

 
The main question now is: how large would d have to 

be in order to eliminate x from further consideration?  The 
answer to this question would likely depend on the predic-
tion error of the metamodel and a parameter to trade off 
speed and accuracy of the search.  Figure 5 depicts the 
metaheuristic optimization process with a metamodel filter. 

 

Metaheuristic
Optimizer

Simulation
Model

f(x)

Metamodel
x

large d?

Discard x 

Yes

No

)(ˆ xf

 
Figure 5: Metaheuristic Optimizer with a Metamodel Filter 

 
Metamodels can also be used as a means for generat-

ing new trial solutions within a metaheuristic search.  For 
instance, OptQuest utilizes data collected during the search 
to build a linear approximation of f(x) with standard linear 
regression.  If in addition, the optimization problem con-
tains linear constraints (see next subsection), then linear 
programming may be used to find a solution to the optimi-
zation problem.  Since the true but unknown objective 
function would likely be not linear in most simulation op-
timization problems, the solution found by solving the lin-
ear program can then be sent to the simulator for evalua-
tion purposes. 

3.3 Constraints 

An important feature in simulation optimization software is 
the ability to specify constraints.  Constraints define the 
feasibility of trial solutions.  Constraints may be specified 
as mathematical expressions (as in the case of mathemati-
cal programming) or as statements based on logic (as in the 
case of constraint logic programming).  In the context of 
simulation optimization, constraints may be formulated 
with input factors or responses. 

Suppose that a Monte Carlo simulation model is built 
to predict the performance of a portfolio of projects.  The 
factors in this model are a set of variables that represent the 
projects selected for the portfolio.  A number of statistics 
to define performance may be obtained after running the 
simulation model.  For instance, the mean and the variance 
on the returns are two responses that are available after 
running the simulation.  Percentile values are also available 
from the empirical distribution of returns.  Then, an opti-
mization problem can be formulated in terms of factors and 
responses, where one or more responses are used to create 
an objective function and where constraints are formulated 
in terms of factors and/or responses. 

If the constraints in a simulation optimization model 
depend only on input parameters then a new trial solution 
can be checked for feasibility before running the simula-
tion.  An infeasible trial solution may be discarded or may 
be mapped to a feasible one when its feasibility depends 
only on constraints formulated with input parameters.  Op-
tQuest, for instance, has a mechanism to map infeasible so-
lutions of this type into feasible ones. 

On the other hand, if constraints depend on responses 
then the feasibility of a solution is not known before run-
ning the simulation.  In our project selection problem, for 
example, a constraint that specifies that the variance of the 
returns should not exceed a desired limit cannot be en-
forced before the simulation is executed.  All optimizers 
can allow for constraints implicitly, by penalizing the ob-
jective function significantly if an output constraint is vio-
lated by a simulation run, like a barrier function.  That 
method may require double-checking the output to insure 
that the constraints were indeed satisfied.  In addition, 
some optimization software (e.g., OptQuest) allows for ex-
plicit constraints on responses in the same way that input 
constraints are expressed. 
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4 BUDGET-CONSTRAINED PROJECT 

SELECTION EXAMPLE 

In this section, we expand upon the example that we intro-
duced above and show the benefits of simulation optimiza-
tion using Crystal Ball for the simulation and OptQuest for 
the optimization.  The problem may be stated as follows.  
A company is considering investing in 5 different projects 
and would like to determine a level of participation in each 
project: 

• 
• 
• 
• 
• 

Tight Gas Play Scenario (TGP) 
Oil – Water Flood Prospect (OWF) 
Dependent Layer Gas Play Scenario (DL) 
Oil - Offshore Prospect (OOP) 
Oil - Horizontal Well Prospect  (OHW) 

The company has information regarding the cost, 
probability of success and estimated distribution of re-
turns for each project.  The company also knows that the 
total investment should not exceed a specified limit.  
With this information, the company has built a ten-year 
Monte Carlo simulation model that incorporates different 
types of uncertainty. 

A base optimization model is constructed where the 
objective function consists of maximizing the expected net 
present value of the portfolio while keeping the standard 
deviation of the NPV to less than 10,000 M$.  The base 
model has 5 continuous variables bounded between 0 and 1 
to represent the level of participation in each project.  It 
also has two constraints, one that limits the total invest-
ment and one that limits the variability of the returns.  
Therefore, one of the constraints is solely based on input 
factors and the other is solely based on a response.  The re-
sults from optimizing the base model with OptQuest are 
summarized in Figure 6. 

 

Figure 6: Results for Base Case 

Frequency Chart

 M$

Mean = $37,393.13
.000

.007

.014

.021

.028

0

7
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$15,382.13 $27,100.03 $38,817.92 $50,535.82 $62,253.71

1,000 Trials    16 Outliers

Forecast: NPV

 
The company would like to compare the performance 

of the base case with cases that allow for additional flexi-
bility and that define risk in different ways.  Hence, we 
now formulate a “deferment” case that consists of allowing 

TGP = 0.4, OWF = 0.4, DL = 0.8, OHW = 1. 
E(NPV) = 37,393   σ =9,501 
the projects to start in any of the first three years in the 
planning horizon of 10 years.  The number of decision 
variables has increased from 5 to 10, because now the 
model must choose the starting time for each project in ad-
dition to specifying the level of participation.  It is interest-
ing to point out that in a deterministic setting, the optimiza-
tion model for the deferment case would have 15 binary 
variables associated with the starting times.  The model 
also would have more constraints than the base mode, in 
order to assure that the starting time of each project occurs 
in only one out of three possible years.  Let yit equal 1 if 
the starting time for project i is year t and equal 0 other-
wise.  Then the following set of constraints would be 
added to a deterministic optimization model: 

 
 y11 + y12 + y13 = 1 
 y21 + y22 + y23 = 1 
 y31 + y32 + y33 = 1 
 y41 + y42 + y43 = 1 
 y51 + y52 + y53 = 1 

 
However, in our simulation optimization setting, we 

only need to add 5 more variables to indicate the starting 
times and no more constraints are necessary.  The only 
thing that is needed is to account for the starting times 
when these values are passed to the simulation model.  If 
the simulation model has the information regarding the 
starting times, then it will simulate the portfolio over the 
planning horizon accordingly.  The summary of the results 
for the deferment case is shown in Figure 7. 

 

Figure 7: Results for Deferment Case 

Frequency Chart
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TGP1 = 0.6, DL1=0.4, OHW3=0.2 
E(NPV) = 47,455   σ =9,513  10th Pc.=36,096 

 
Comparing the results of the deferment case and the 

base case, it is immediately evident that the flexibility of 
allowing for different starting times has resulted in an in-
crease in the expected NPV.  The new portfolio is such that 
it delays the investment on OHW until the third year and it 
does not invest anything on OWF, for which the level of 
participation was 40% in the base case.  The results in Fig-
ure 7 also show that the 10th percentile of the distribution 
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of returns is 36,096 M$.  This information is used to model 
our third and last case. 

Encouraged by the results obtained with the model for 
the deferment case, the company would like to find both 
the participation levels and the starting times for a model 
that attempts to maximize the probability that the NPV is 
47,455 M$.  This new “Probability of Success” model 
changes the definition of risk from setting a maximum on 
the variability of the returns to maximizing the probability 
of obtaining a desired NPV.  The new model has the same 
number of variables and fewer constraints as the previous 
one, because the constraint that controlled the maximum 
variability has been eliminated.  The results associated 
with this model are shown in Figure 8. 

 

Figure 8: Results for Probability of Success Case 

Frequency Chart
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E(NPV) = 83,972     σ =18,522   
P(NPV > 47,455) = 0.99 

 
The results in Figure 8 show that the new optimization 

model has the effect of “pushing” the distribution of NPVs 
to the right, i.e., to the larger returns.  Therefore, although 
the variability has exceeded the limit that was used in the 
base case to control risk, the new portfolio is not more risky 
than the first two if we consider that with a high probability 
the NPV will be at least as large as the expected NPV in the 
deferment case.  In fact, the 10th percentile of the new distri-
bution of returns is larger than the one in Figure 7. 

5 CONCLUSIONS 

In this paper, we have introduced the key concepts associ-
ated with the area of optimizing simulations.  We started 
by looking at the approaches that researchers have investi-
gated for many years.  For the most part, these approaches 
have not found use in commercial software. 

We then discussed the metaheuristic approach to simu-
lation optimization.  This is the approach widely used in 
commercial applications and we focused on aspects that 
are relevant to its implementation, namely: the solution 
representation and combination, the use of metamodels and 
the formulation of constraints. 
Finally, we provided a Monte Carlo simulation exam-
ple that showed the advantage of combining simulation and 
optimization.  The level of performance achieved by the 
solutions found with optimization would be hard to match 
using a manual what-if analysis because of the overwhelm-
ingly large number of possible scenarios that the analyst 
would have to consider. 

There is still much to learn and discover about how to 
optimize simulated systems both from the theoretical and 
the practical points of view.  As Andradóttir (1998) states 
“… additional research aimed at increasing the efficiency 
and ease of application of simulation optimization tech-
niques would be valuable.” 
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