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ABSTRACT 

This tutorial introduces some of the ideas, issues, chal-
lenges, solutions, and opportunities in deciding how to ex-
periment with simulation models to learn about their be-
havior.  Careful planning, or designing, of simulation 
experiments is generally a great help, saving time and ef-
fort by providing efficient ways to estimate the effects of 
changes in the model’s inputs on its outputs.  Traditional 
experimental-design methods are discussed in the context 
of simulation experiments, as are the broader questions 
pertaining to planning computer-simulation experiments. 

1 INTRODUCTION 

The real meat of a simulation project is running your mod-
els and trying to understand the results.  To do so effec-
tively, you need to plan ahead before doing the runs, since 
just trying different things to see what happens can be a 
very inefficient way of attempting to learn about your 
models’ (and hopefully the systems’) behaviors.  Careful 
planning of how you’re going to experiment with your 
models will generally repay big dividends in terms of how 
effectively you learn about the systems and how you can 
exercise your models further. 

This tutorial looks at such experimental-design issues in 
the broad context of a simulation project.  The term “ex-
perimental design” has specific connotations in its traditional 
interpretation, and I will mention some of these below, in 
Section 5.  But I will also try to cover the issues of planning 
your simulations in a broader context, which consider the 
special challenges and opportunities you have when con-
ducting a computer-based simulation experiment rather than 
a physical experiment.  This includes questions of the over-
all purpose of the project, what the output performance 
measures should be, how you use the underlying random 
numbers, measuring how changes in the inputs might affect 
the outputs, and searching for some kind of optimal system 
configuration.  Specific questions of this type might include: 

• What model configurations should you run? 
• How long should the runs be? 
 
• How many runs should you make? 
• How should you interpret and analyze the output? 
• What’s the most efficient way to make the runs? 

These questions, among others, are what you deal with 
when trying to design simulation experiments. 

My purpose in this tutorial is to call your attention to 
these issues and indicate in general terms how you can deal 
with them.  I won’t be going into great depth on a lot of 
technical details, but refer you instead to any of several 
texts on simulation that do, and to tutorials and reviews on 
this subject in this and recent Proceedings of the Winter 
Simulation Conference.  General book-based references for 
this subject include chapter 12 of Law and Kelton (2000), 
chapter 11 of Kelton, Sadowski, and Sadowski (2002), 
Banks, Carson, Nelson, and Nicol (2001), Kleijnen (1998), 
and Barton (1999), all of which contain numerous refer-
ences to other books and papers on this subject.  Examples 
of application of some of these ideas can be found in Hood 
and Welch (1992, 1993) and Swain and Farrington (1994), 
and another recent tutorial is Barton (2002).  Parts of this 
paper are taken from Kelton (1997, 2000), which also con-
tain further references and discussion on this and closely 
related subjects. 

2 WHAT IS THE PURPOSE OF THE PROJECT? 

Though it seems like pretty obvious advice, it might bear 
mentioning that you should be clear about what the ultimate 
purpose is of doing your simulation project in the first place.  
Depending on how this question is answered, you can be led 
to different ways of planning your experiments.  Worse, 
failure to ask (and answer) the question of just what the 
point of your project is can often leave you adrift without 
any organized way of carrying out your experiments. 

For instance, even if there is just one system of interest 
to analyze and understand, there still could be questions 
like run length, the number of runs, allocation of random 
numbers, and interpretation of results, but there are no 
questions of which model configurations to run.  Likewise, 
if there are just a few model configurations of interest, and 
they have been given to you (or are obvious), then the 
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problem of experimental-design is similar to the single-
configuration situation. 

However, if you are interested more generally in how 
changes in the inputs affect the outputs, then there clearly 
are questions of which configurations to run, as well as the 
questions mentioned in the previous paragraph.  Likewise, 
if you’re searching for a configuration of inputs that 
maximizes or minimizes some key output performance 
measure, you need to decide very carefully which configu-
rations you’ll run (and which ones you won’t). 

The reality is that often you can’t be completely sure 
what your ultimate goals are until you get into a bit.  Often, 
your goals may change as you go along, generally becom-
ing more ambitious as you work with your models and 
learn about their behavior.  The good news is that as your 
goals become more ambitious, what you learned from your 
previous experiments can help you decide how to proceed 
with your future experiments. 

3 WHAT ARE THE RELEVANT OUTPUT-
PERFORMANCE MEASURES? 

Most simulation software produces a lot of numerical out-
put by default, and you can usually specify additional out-
put that might not be automatically delivered.  Much of 
this output measures traditional time-based quantities like 
time durations or counts of entities in various locations.  
Increasingly, though, economic-based measures like cost 
or value added are being made available, and are of wide 
interest.  Planning ahead to make sure you get the output 
measures you need is obviously important if the runs are 
time-consuming to carry out. 

One fundamental question relates to the time frame of 
your simulation runs.  Sometimes there is a natural or obvi-
ous way to start the simulation, and an equally natural or ob-
vious way to terminate it.  For instance, a call center might 
be open from 8a.m. to 8p.m. but continue to operate as nec-
essary after 8 p.m. to serve all calls on hold (in queue) at 8 
p.m.  In such a case, often called a terminating simulation, 
there is no design question about starting or stopping your 
simulation — these are part and parcel of the model specifi-
cation itself.  (By the way, you should take care to get this 
part of the modeling just as right as the more obvious aspects 
like logic and input-parameter values, since the manner in 
which a simulation is started and stopped can sometimes 
have important impact on the results.) 

On the other hand, interest may be in the long-run 
(also called infinite-horizon) behavior of the system, in 
which case it is no longer clear how to start or stop the 
simulation (though it seems clear that the run length will 
have to be comparatively long).  Continuing the call-center 
example, perhaps its hours are going to expand to 24 hours 
a day, seven days a week; in this case you would need a 
steady-state simulation to estimate the relevant perform-
ance measures. 
Regardless of the time frame of the simulation, you 
have to decide what aspects of the model’s outputs you 
want.  In a stochastic simulation you’d really like to know 
all about the output probability distributions, but that’s ask-
ing way too much in terms of the number and maybe 
length of the runs.  So you usually have to settle for vari-
ous summary measures of the output distributions.  Tradi-
tionally, people have focused on estimating the expected 
value (or mean) of the output distribution, and this can be 
of great interest.  For instance, knowing something about 
the average hourly production is obviously important. 

But things other than means might be interesting as 
well, like the standard deviation of hourly production, or 
the probability that the machine utilization for the period 
of the simulation will be above 0.80.  In another example 
you might observe the maximum length of the queue of 
parts in a buffer somewhere to plan the floor space; in this 
connection it might be more reasonable to seek a value 
(called a quantile) below which the maximum queue length 
will fall with probability, say, 0.95. 

Even if you want just simple averages, the specifics 
can affect how your model is built.  For instance, if you 
want just the time-average number of parts in a queue, you 
would need to track the length of this queue but not the 
times of entry of parts into the queue.  However, if you 
want the average time parts spend in the queue, you do 
need to note their time of entry in order to compute their 
time in queue. 

So think beforehand about precisely what you’d like to 
get out of your simulation; it’s easier to ignore things you 
have than go back and get things you forgot.  (On the other 
hand, asking for everything out of your run, including the 
kitchen sink, can have unhappy effects on computation 
time.) 

4 HOW SHOULD YOU USE AND ALLOCATE 
THE UNDERLYING RANDOM NUMBERS? 

Most simulations are stochastic, i.e., involve random in-
puts from probability distributions to represent things like 
service times, interarrival times, and pass/fail decisions.  
Simulation software has facilities to generate observations 
from such distributions, which rely at root on a random-
number generator churning out a sequence of values be-
tween 0 and 1 that are supposed to behave as though they 
are independent and uniformly distributed on the interval 
[0, 1].  Such generators are in fact fixed, recursive formu-
las that always give you the same sequence of “random” 
numbers in the same order (provided that you don’t over-
ride the default seeds for these generators).  The challenge 
in developing such generators is that they behave as in-
tended, in a statistical sense, and that they have a long cy-
cle length before they double back on themselves and re-
peat the same sequence over again. 
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Obviously, it is important that a “good” random-
number generator be used.  And, from the experimental-
design viewpoint, you can then dispense with the issue of 
randomizing experimental treatments to cases, which is of-
ten a thorny problem in physical experiments. 

But with such controllable random-number generators, 
the possibility arises in computer-simulation experiments 
to control the basic randomness, which is a fundamentally 
different situation from what you encounter in physical ex-
periments.  Doing so carefully is one way of implementing 
what are known as variance-reduction techniques, which 
can often sharpen the precision of your output estimators 
without having to do more simulating.  The basic question 
in doing so is planning how you are going to allocate the 
underlying random numbers to generating the various ran-
dom inputs to your models. 

Perhaps the first thought along these lines that seems 
like a “good” statistical idea is to ensure that all the ran-
dom-number usage is independent within your models as 
well as between any alternative configurations you might 
run.  This is certainly a statistically valid way to proceed, 
and is statistically the simplest approach.  However, it 
might not be the most efficient approach, where “effi-
ciency” could be interpreted in either its statistical sense 
(i.e., low variance) or in its computational sense (i.e., 
amount of computational effort to produce results of ade-
quate precision).  And at a more practical level, it might 
actually take specific action on your part to accomplish in-
dependence between alternative configurations since most 
simulation software is set up to start a new run (e.g., for the 
next model) with the same random numbers as before. 

But actually, that feature of simulation software can be 
to your advantage, provided that you plan carefully for ex-
actly how the random numbers will be re-used.  By using 
the same random numbers for the same purposes between 
different alternative configurations you are running them 
under the same or similar external conditions, such as ex-
actly what values the service and interarrival times take on.  
In this way, any differences you see in performance can be 
attributed to differences in the model structures or parame-
ter settings rather than to differences in what random num-
bers you happened to get.  This idea is usually called com-
mon random numbers, and can sometimes greatly reduce 
the variance in your estimators of the difference in per-
formance between alternative configurations.  To imple-
ment it properly, though, you need to take deliberate steps 
to make sure that your use of the common random numbers 
is synchronized between the systems, or else the variance-
reducing effect will be diluted or maybe even largely lost.  
Often, using fixed streams of the random-number genera-
tor, which are really just particular subsequences, can fa-
cilitate maintaining proper synchronization. 

There are several other variance-reduction techniques 
that also rely on (carefully) re-using previously used ran-
dom numbers, such as antithetic variates.  Most of these 
techniques also rely on some kind of careful planning for 
synchronization of their use. 

5 HOW SENSITIVE ARE YOUR OUTPUTS  
TO CHANGES IN YOUR INPUTS? 

As part of building a simulation model, you have to specify 
a variety of input factors.  These include quantitative factors 
like the mean interarrival time, the number of servers, and 
the probabilities of different job types.  Other input factors 
are more logical or structural in nature, like whether fail-
ure/feedback loops are present, and whether a queue is proc-
essed first-in-first-out or shortest-job-first.  There can also be 
factors that are somewhere between being purely quantita-
tive and purely logical/structural, like whether the service-
time probability distribution is exponential or uniform. 

Another classification dimension of input factors is 
whether they are (in reality) controllable or not.  However, 
when exercising a simulation model, all input factors are 
controllable, whether or not they can in reality be set or 
changed at will.  For instance, you can’t just cause the arri-
val rate to a call center to double, but you’d have no prob-
lem doing so in your simulation model of that call center. 

In any case, exactly how you specify each input factor 
will presumably have some effect on the output perform-
ance measures.  Accordingly, it is sometimes helpful to 
think of the simulation as a function that transforms inputs 
into outputs: 

 
Output1 = f1(Input1, Input2, ...) 
Output2 = f2(In utp 1, Input2, ...) . . . 

 
where the functions f1, f2, ... represent the simulation model 
itself. 

It is often of interest to estimate how a change in an in-
put factor affects an output performance measure, i.e., how 
sensitive an output is to a change in an input.  If you knew 
the form of the simulation functions f1, f2, ..., this would es-
sentially be a question of finding the partial derivative of the 
output of interest with respect to the input of interest. 

But of course you don’t know the form of the simula-
tion functions — otherwise you wouldn’t be simulating in 
the first place.  Accordingly, there are several different 
strategies for estimating the sensitivities of outputs to 
changes in inputs.  These strategies have their own advan-
tages, disadvantages, realms of appropriate application, and 
extra information they might provide you.  In the remainder 
of this section I’ll mention some of these, describe them in 
general terms, and give references for further details. 

5.1 Classical Experimental Design 

A wide variety of approaches, methods, and analysis tech-
niques, known collectively as experimental design, has 
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been around for many decades and is well documented in 
books like Box, Hunter, and Hunter (1978) or Montgomery 
(1997).  One of the principal goals of experimental design 
is to estimate how changes in input factors affect the re-
sults, or responses, of the experiment. 

While these methods were developed with physical 
experiments in mind (like agricultural or industrial applica-
tions), they can fairly easily be used in computer-
simulation experiments as well, as described in more detail 
in chapter 12 of Law and Kelton (2000).  In fact, using 
them in simulation presents several opportunities for im-
provement that are difficult or impossible to use in physi-
cal experiments. 

As a basic example of such techniques, suppose that 
you can identify just two values, or levels, of each of your 
input factors.  There is no general prescription on how to set 
these levels, but you should set them to be “opposite” in na-
ture but not so extreme that they are unrealistic.  If you have 
k input factors, there are thus 2k different combinations of 
the input factors, each defining a different configuration of 
the model; this is called a 2k factorial design.  Referring to 
the two levels of each factor as the “–” and “+” level, you 
can form what is called a design matrix describing exactly 
what each of the 2k different model configurations are in 
terms of their input factor levels.  For instance, if there are k 
= 3 factors, you would have 23 = 8 configurations, and the 
design matrix would be as in Table 1, with Ri denoting the 
simulation response from the ith configuration. 

 
Table 1:  Design Matrix for a 23 Factorial Experiment 
Run (i) Factor 1 Factor 2 Factor 3 Response 

1 – – – R1 
2 + – – R2 
3 – + – R3 
4 + + – R4 
5 – – + R5 
6 + – + R6 
7 – + + R7 
8 + + + R8 

 
The results from such an experiment can be used in 

many ways.  For instance, the main effect of Factor 2 in the 
above example is defined as the average difference in re-
sponse when this factor moves from its “–” level to its “+” 
level; it can be computed by applying the signs in the Fac-
tor 2 column to the corresponding responses, adding, and 
then dividing by 2k–1 = 4: 
 

(– R1 – R 2 + R 3 + R 4 – R 5 – R 6 + R 7 + R 8)/4. 
 
The main effects of the other factors are computed similarly. 

Further, you can ask whether the effect of one factor 
might depend in some way on the level of one or more 
other factors, which would be called interaction between 
the factors if it seems to be present.  To compute the inter-
actions from the experimental results, you “multiply” the 
columns of the involved factors row by row (like signs 
multiply to “+,” unlike signs multiply to “–”), apply the re-
sulting signs to the corresponding responses, add, and di-
vide by 2k–1 = 4.  For instance, the interaction between Fac-
tors 1 and 3 would be 
 

(+R 1 – R 2 + R 3 – R 4 – R 5 + R 6 – R 7 + R 8)/4. 
 
If an interaction is present between two factors, then the main 
effect of those factors cannot be interpreted in isolation. 

Which brings up the issue of limitations of these kinds 
of designs.  There is a specific linear-regression model un-
derlying designs like these, which have present an inde-
pendent-variable term involving each factor on its own 
(linearly), and then possible cross-products between the 
factor levels, representing interactions.  As suggested, sig-
nificant interactions cloud the interpretation of main ef-
fects, since presence of the cross product causes the main 
effect no longer to be an accurate measure of the effect of 
moving this factor from its “–” level to its “+” level.  One 
way around this limitation is to specify a more elaborate 
and more general underlying regression model, and allow 
for more than just two levels for each input factor.  This 
gives rise to more complex designs, which must be set up 
and analyzed in more sophisticated ways; see the experi-
mental-design references cited earlier. 

Another difficulty with full-factorial designs is that if 
the number of factors becomes even moderately large, the 
number of runs explodes (it is, after all, literally exponen-
tial in the number of factors).  A way around this is to use 
what are known as fractional-factorial designs in which 
only a fraction (sometimes just a small fraction) of all the 
possible factor-combinations are run.  You must take care, 
however, to pick the subset of the runs very carefully, and 
there are specific prescriptions on how to do this in the ref-
erences cited earlier.  The downside of doing only a frac-
tion of the runs is that you have to give up the ability to es-
timate at least some of the potential interactions, and the 
smaller the number of runs the fewer the number of inter-
actions you can estimate. 

A final limitation of these kinds of designs is that the 
responses are random variables, as are all outputs from sto-
chastic simulations.  Thus, your estimates of things like 
main effects and interactions are subject to possibly-
considerable variance.  Unlike physical experiments, 
though, you have the luxury in simulation of replicating 
(independently repeating) the runs many times to reduce 
this variance, or perhaps replicating the whole design many 
times to get many independent and identically distributed 
estimates of main effects and interactions, which could 
then be combined to form, say, a confidence interval on the 
expected main effects and interactions in the usual way.  
This is a good approach for determining whether a main 
effect or interaction is really present — if the confidence 
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interval for it does not contain zero, then it appears that it 
is really present. 

There are certainly many other kinds of more sophisti-
cated factorial designs than what I have described here; see 
the references cited earlier for examples 

5.2 Which Inputs are Important?  Which are Not? 

As mentioned above, if the number of factors is even mod-
erately large, the number of possible factor-level combina-
tions simply explodes far beyond anything remotely practi-
cal.  It is unlikely, though, that all of your input factors are 
really important in terms of having a major impact on the 
outputs.  At the very least, there will probably be big dif-
ferences among your factors in terms of their impact on 
your responses. 

Since it is the number of factors that causes the explo-
sion in the number of combinations, it would be most help-
ful to identify early in the course of experimentation which 
factors are important and which are not.  The unimportant 
factors can then be fixed at some reasonable value and 
dropped from consideration, and further investigation can 
be done on the important factors, which will be fewer in 
number.  There are several such factor-screening designs 
in the literature (see the references cited earlier), and they 
can be extremely helpful in transforming a rather hope-
lessly large number of runs into something that is emi-
nently manageable. 

5.3 Response-Surface Methods and Metamodels 

Most experimental designs, including those mentioned 
above, are based on an algebraic regression-model assump-
tion about the way the input factors affect the outputs.  For 
instance, if there are two factors (X1 and X2, say) that are 
thought to affect an output response Y, you might approxi-
mate this relationship by the regression model 
 

Y = β0 + β1X1 + β2X2 + β3X1X2 + β4X1
2 + β5X2

2 + ε 
 
where the βj coefficients are unknown and must be esti-
mated somehow, and ε is a random error term representing 
whatever inaccuracy such a model might have in approxi-
mating the actual simulation-model response Y.  Since in 
this case the above regression model is an approximation 
to another model (your simulation model), the regression is 
a “model of a model” and so is sometimes called a meta-
model.  And since a plot of the above situation (with two 
independent input variables) would be a three-dimensional 
surface representing the simulation responses, this is also 
called a response surface. 

The parameters of the model are estimated by making 
simulation runs at various input values for the Xj’s, re-
cording the corresponding responses, and then using stan-
dard least-squares regression to estimate the coefficients.  
Exactly which sets of input values are used to make the 
runs to generate the “data” for the regression fit is itself an 
experimental-design question, and there are numerous 
methods in the references cited above.  A more compre-
hensive reference on this subject is Box and Draper (1987). 

In simulation, an estimated response-surface meta-
model can serve several different purposes.  You could 
(literally) take partial derivatives of it to estimate the effect 
of small changes in the factors on the output response, and 
any interactions that might be present as modeled would 
show up naturally.  You could also use the estimated 
metamodel as a proxy for the simulation, and very quickly 
explore many different input-factor-level combinations 
without having to run the simulation.  And you could try to 
optimize (maximize or minimize, as appropriate) the fitted 
model to give you a sense of where the best input-factor-
combinations might be. 

An obvious caution on the use of response surfaces, 
though, is that they are estimated from simulation-
generated data, and so are themselves subject to variation.  
This uncertainty can then have effects on your estimates of 
unsimulated models, derivatives, and optimizers.  Barton 
(1998) and the references cited above discuss these issues, 
which are important in terms of understanding and inter-
preting your results and estimates realistically. 

5.4 Other Techniques 

The discussion above focuses on general approaches that 
originated in physical, non-simulation contexts, but never-
theless can be applied in simulation experiments as well.  
There are a variety of other methods that are more specific 
to simulation, including frequency-domain methods and 
perturbation analysis.  For discussions of these ideas, see 
advanced or state-of-the-art tutorials in this or recent Pro-
ceedings of the Winter Simulation Conference. 

6 WHAT IS THE “BEST”  
COMBINATION OF INPUTS? 

Sometimes you have a single output performance measure 
that is of overriding importance in comparison with the 
other outputs (different outputs can conflict with each 
other, like the desirability of both high machine utilization 
and short queues).  This might be a measure of direct eco-
nomic importance, like profit or cost.  If you have such a 
measure, you would probably like to look for an input-
factor combination that optimizes this measure (e.g., 
maximizes profit or minimizes cost).  Mathematically, this 
can take the form of some kind of search through the space 
of possible factor combinations.  For a review of the under-
lying methods, see Andradóttir (1998); for a comprehen-
sive survey on both the theory and practice, see Fu (2002) 
and the ensuing Commentaries and Rejoinder there. 
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This is a tall order, from any of several perspectives.  If 
there are a lot of input factors, the dimension of the search 
space is high, requiring a lot of simulations at a lot of differ-
ent points.  And in stochastic simulation, the responses are 
subject to uncertainty, which must be taken into account 
when deciding how best to proceed with your search. 

Fortunately, several heuristic search methods have 
been developed that “move” you from one point to a more 
promising one, and make these decisions based on a host 
of information that is available.  And we are now begin-
ning to see some of these methods coded into commercial-
grade software and even integrated in with some simula-
tion-software products.  For example, see Glover, Kelly, 
and Laguna (1999). 

CONCLUSIONS 

My purpose here has been to make you aware of the issues 
in conducting simulation experiments that deserve your 
close attention.  An unplanned, hit-or-miss course of ex-
perimentation with a simulation model can often be frus-
trating, inefficient, and ultimately unhelpful.  On the other 
hand carefully planned simulation studies can yield valu-
able information without an undue amount of computa-
tional effort or (more importantly) your time.  Indeed, I 
would go so far as to say that any simulation study without 
a design-of-experiments aspects has probably squandered 
the probably-considerable effort that went into the model-
ing, since it’s just not that hard to do at least something to 
design and analyze an informative experiment; your com-
puter might need to grind away for a while, but that’s 
cheap compared to the time you put into the modeling, and 
compared to the significance of the decisions that will 
based on what’s learned from the simulation experiments. 
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