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ABSTRACT

We discuss methods for statistically analyzing the outp
from stochastic discrete-event or Monte Carlo simulation
Both terminatingandsteady-statesimulationsareconside

1 INTRODUCTION

So you’ve finally finished developing your simulation mode
You spent countless hours developing an understanding
the underlying processes, collecting data, fitting the d
to various probability distributions, and coding and debu
ging your simulation program. You carefully selected
performance measure you felt was appropriate to evalu
the system, and your program outputs an estimate of t
measure. You then ran the simulation program once, and
results seemed to indicate that if the system design in y
program was actually put into practice, it would perfor
well. You showed your boss the results, who then gave y
the green light to implement this system design. Howev
once the system was in place, it performed poorly, not at
like the results that you obtained from your one simulatio
run. What went wrong?

Many simulations include randomness, which can ar
in a variety of ways. For example, in a simulation o
a manufacturing system, the processing times required
a station may follow a given probability distribution o
the arrival times of new jobs may be stochastic. In
bank simulation, customers arrive at random times and
amount of time spent at a teller is stochastic. Future retu
in financial simulations are random.

Because of the randomness in the components drivin
simulation, its output is also random, so statistical techniqu
must be used to analyze the results. The data-anal
methods in introductory statistics courses typically assu
that the data are independent and identically distribu
(i.i.d.) with a normal distribution, but the output data from
simulations are often not i.i.d. normal. For example, consid
customer waiting times before seeing a teller in a bank.
one customer has an unusually long waiting time, then
next customer probably also will, so the waiting times
t
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the two customers are dependent. Moreover, custom
arriving during the lunch hour will usually have longe
waiting times than customers coming in at other times,
waiting times are not identically distributed throughout th
day. Finally, waiting times are always positive and ofte
skewed to the right, with a possible mode at zero, so waiti
times are not normally distributed. For these reasons o
often cannot analyze simulation output using the classic
statistical techniques developed for i.i.d. normal data.

In this tutorial, we will examine some statistical meth
ods for designing and analyzing simulation experiments.
the next section we begin by distinguishing between tw
types of performance measures: terminating (or transie
and steady-state (or infinite-horizon or long-run). These tw
types of measures require different statistical techniques
analyze the results, and Section 3 reviews methods for a
lyzing output from terminating simulations, while Section
covers techniques for steady-state simulations. In Sectio
we discuss the estimation of multiple performance me
sures, and Section 6 briefly covers other methods useful
analyzing simulation output. Some concluding remarks a
given in Section 7.

2 PERFORMANCE MEASURES

One of the first steps in any simulation study is choosing t
performance measure(s)to calculate. In other words, what
measures will be used to evaluate how “good” the system
For example, the performance of a queueing system m
be measured by its expected number of customers ser
in a day, or we may use the long-run average daily cost
a measure of the performance of a supply chain.

There are primarily two types of performance measur
for stochastic systems, which we now briefly describe:

1. Transient performance measures, also known as
terminating or finite-horizon measures, evaluate
the system’s evolution over a finite time horizon

2. Steady-state performance measuresdescribe how
the system evolves over an infinite time horizon
These are also known aslong-runor infinite-horizon
measures.
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A simulation in which a transient (resp., steady-sta
measure is estimated is called atransient simulation(resp.,
steady-state simulation). We now describe these concep
in more depth.

2.1 Transient Performance Measures

Definition: A terminating simulationis one for which
there is a “natural” eventB that specifies the length of tim
in which one is interested for the system. The eventB

often occurs either at a time point beyond which no use
information is obtained, or when the system is “clean
out.” For example, if we are interested in the performan
of a system during the first 10 time units of operation
a day, thenB would denote the event that 10 time uni
of system time have elapsed. If we want to determine
first time at which a queue has at least 8 customers, t
B is the event of the first time the queue length reaching
(See Law and Kelton 2000, Section 9.3, for more detai

Since we are interested in the behavior of the syst
over only a finite time horizon, the “initial conditions”I
(i.e., conditions under which the system starts) can hav
large impact on the performance measure. For exam
queueing simulations often start with no customers pres
which would be theI in this setting.

In a transient simulation, we have the following.
Goal: To calculate

µ = E(X), (1)

whereX is a random variable representing the (rando
performance of the system over some finite horizon.

We now examine some examples of transient perf
mance measures.

Example 1: Consider a bank vestibule containing a
automatic teller machine (ATM). The vestibule is only op
during normal banking business hours, which is 9:00am
5:00pm, so customers can access the ATM only during th
times. Any customers in the vestibule at 5:00pm will
allowed to complete their transactions, but no new custom
will be allowed in. LetZ be the number of customers usin
the ATM in a day, and we may be interested in determin
the following terminating performance measures:

• E[Z], the expected value ofZ. To put things in
the framework of (1), we setX = Z.

• P {Z ≥ 500} = E[I (Z ≥ 500)], which is the
probability that at least 500 customers use t
ATM in a day, whereI (A) is the indicator function
of an eventA, which takes on the value 1 ifA
occurs, and 0 otherwise. In the notation of (1
X = I (Z ≥ 500) in this case.

The initial conditionsI might be that the system starts o
empty each day, and the terminating eventB is that it is past
5:00pm and there are no more customers in the vestib
)
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Alternatively we might defineZ to be the average
waiting time (in seconds) of the first 50 customers in a da
We can then define the following performance measure

• E[Z], the expected value ofZ. In this case,X = Z
in the notation of (1).

• P {Z ≤ 30} = E[I (Z ≤ 30)], which is the prob-
ability that the average waiting time of the firs
50 customers is no more than 30 seconds. He
X = I (Z ≤ 30) in (1).

In this case we might specify the initial conditionsI to be
that the system starts out empty each day, and the termina
eventB is that 50 customers have finished their waits (
any) in line.

2.2 Steady-State Performance Measures

Now we consider steady-state performance measures.
Y = (Y1, Y2, Y3, . . .) be a (discrete-time) stochastic proces
representing the output of a simulation. For example, if th
vestibule containing the ATM in our previous example i
now open 24 hours a day, thenYi might represent the waiting
time of theith customer since the ATM was installed. Le
Fi(y|I) = P(Yi ≤ y|I) for i = 1,2, . . ., where as before,
I represents the initial conditions of the system at tim
0. Observe thatFi( · |I) is the distribution function ofYi
given the initial conditionsI. We are now interested in the
behavior of the system over an infinite time horizon, and
is often the case that the effects of the initial conditionsI
become negligible after a sufficiently long time has elapse

Definition: If

Fi(y|I)→ F(y) as i →∞ (2)

for all y and for any initial conditionsI, then F(y) is
called thesteady-state distributionof the processY. If Y
is a random variable with distributionF , we say thatY has
the steady-state distribution, and we sometimes write th

asYi
D→ Y as i → ∞, which is read as “Yi converges in

distribution toY .”
The interpretation of (2) is that for alli sufficiently

large,

Fi(y|I) ≈ F(y), for all y. (3)

The value ofi for which the approximation holds depend
very much on the particular system being simulated. No
that (3) does not mean that thevaluesof the Yi are all
the same for largei, but rather that thedistribution of Yi
(given the initial conditionsI) is close toF for large i.
Indeed, the steady-state random variableY (and also theYi
for large i) may still have plenty of variability. WhenY is
a random variable with distributionF , E(Y ) is a steady-
state performance measure. It can be shown under great
generality thatE(Yi |I)→ E(Y ) as i → ∞ for all initial
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conditionsI when (2) holds. Figure 1 gives an example o
density functionsfi approaching some limiting densityf
as i gets larger.

Many systems do not have a steady state. For exam
consider our previous example of an ATM that is accessib
only during business hours. LetYi be the waiting time
of the ith customer to arrive since the ATM was installed
Then, the processY does not have a steady state becau
the first customer of each day always has no wait, wher
other customers may have to wait. For example, supp
500 customers are served on the first day, so day 2 beg
with customer 501, who has no wait since there is no o
ahead of him on that day, so (2) cannot hold. On the oth
hand, if the ATM were accessible 24 a day, then a stea
state may exist.

In the above example where the ATM is only availab
from 9:00am to 5:00pm, we may be able to obtain a proce
Y that does have a steady state if we define theYi differently.
In particular, supposeYi is the average waiting time of all
the customers on theith day since the ATM first became
operational. Then,Y may have a steady state. (It still ma
not if the distribution of the number of customers in a da
depends on the particular day of the week, or if there a
seasonal variations, in which case (2) cannot hold.)

Example 2: Consider the ATM from before, but now
suppose that it accessible all the time. LetYi be the
number of customers served on theith day of operation,
and suppose that over time, the system “settles dow

into steady state; i.e.,Yi
D→ Y as i → ∞. We now

may be interested in determining the following steady-sta
performance measures:

• E[Y ], which is the expected steady-state numb
of customers served in a day;

• P {Y ≥ 400} = E[I (Y ≥ 400)], which is the
steady-state probability that at least 400 custome
are served in a day.

Again, we may let the initial conditionsI denote that the
system begins operations on the first day with no custom
present, and over time, the effects of the initial conditio
“wash away.”

E  Y [   ]

Transient Densities

2010 30 40

fi

i .   .   .

E[Y |I]i

Figure 1: Densitiesfi of an Output Process(Y1, Y2, . . .)
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3 OUTPUT ANALYSIS FOR TRANSIENT
SIMULATIONS

We now discuss how to analyze the output from a transie
simulation. Recall our goal is to calculateµ = E(X), where
X is a random variable representing the performance of th
system over some finite horizon with initial conditionsI.
The basic approach to estimateµ using simulation is as
follows:

Method: Generaten ≥ 2 i.i.d. replicates ofX, say
X1, X2, . . . , Xn, and form the (point) estimator

X̄(n) = 1

n

n∑
i=1

Xi. (4)

We generate i.i.d. replicates ofX by running indepen-
dent simulations of the system under study. We make th
replicates independent by using non-overlapping streams
random numbers from the random-number generator. W
ensure the replicates are identically distributed by startin
each simulation using the same initial conditionsI and
using the same dynamics to govern the evolution of th
system.

If E(|X|) < ∞ (which is almost always the case in
practice), the (strong) law of large numbers guarantee
X̄(n) → µ as n → ∞ with probability 1. Thus, if the
sample sizen is chosen large enough,̄X(n) will be close
to µ. But how close isX̄(n) to µ? The central limit
theorem (CLT) provides an answer. Specifically, letσ 2

denote thevarianceof X, i.e., σ 2 = Var(X), and assume
that 0< σ 2 <∞. We sometimes also refer to thestandard
deviationof X, which isσ = √σ 2. Also, let

S2(n) = 1

n− 1

n∑
i=1

(
Xi − X̄(n)

)2
, (5)

which is the sample varianceof X1, . . . , Xn, and is an
estimator ofσ 2. The sample standard deviationis S(n) =√
S2(n), which is an estimator ofσ . A variant of the

standard CLT asserts that forn large,

n1/2

S(n)

(
X̄(n)− µ) D≈ N(0,1), (6)

whereN(a, b) denotes a normal random variable having

meana and varianceb and
D≈means “has approximately the

same distribution as.” The approximation in (6) is usually
reasonable forn ≥ 50, and it becomes exact asn→∞.

We now use (6) to derive aconfidence intervalfor µ.
First define theconfidence level1−δ; typically, one chooses
δ = 0.1, 0.05 or 0.01. Then, we look up in az-table the
constantz ≡ z1−δ/2 for which P {N(0,1) ≤ z} = 1− δ/2;
e.g., z = 1.65 whenδ = 0.1, z = 1.96 whenδ = 0.05,
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and z = 2.58 whenδ = 0.01. Virtually any introductory
statistics book provides az-table; also see Table T.1 of Law
and Kelton (2000) or Table A.3 of Banks et al. (2001). Th

1− δ = P {−z ≤ N(0,1) ≤ z}
≈ P

{
−z ≤

√
n

S(n)
(X̄(n)− µ) ≤ z

}
(7)

= P

{
µ ∈

[
X̄(n)± zS(n)√

n

]}
, (8)

where the approximation in (7) follows for largen from
(6). Note that (8) implies that whenn is large, the interval[

X̄(n)− zS(n)√
n
, X̄(n)+ zS(n)√

n

]
(9)

has roughly probability 1−δ of containing the true meanµ,
and we call the interval in (9) an approximate 100(1− δ)%
confidence interval forµ. Thus, we arrive at the following:

Procedure to construct confidence intervals for tran-
sient measureµ

1. Specify a confidence level 1− δ and a sample size
n that is large. Also, look up in az-table the
value of z such thatP {N(0,1) ≤ z} = 1− δ/2.
Typically, one choosesδ = 0.1, 0.05 or 0.01, and
one should choosen ≥ 50.

2. Generaten i.i.d. replicatesX1, X2, . . . , Xn.
3. Using then data pointsX1, X2, . . . , Xn, calculate

the sample mean̄X(n) using (4) and the sample
varianceS2(n) using (5).

4. Use (9) to construct an approximate 100(1− δ)%
confidence interval forµ.

An interpretation of the approximate 100(1− δ)% con-
fidence interval forµ in (9) is that we are highly confiden
(i.e., approximately 100(1− δ)% confident) that the true
meanµ lies in the interval (9). Thus, a confidence interv
provides a form of error bounds for our estimatorX̄(n) of
µ. The half widthHn of the confidence interval in (9) is

Hn = zS(n)√
n
, (10)

i.e., the confidence interval in (9) is̄X(n) ± Hn. It can
be shown thatS(n) ≈ σ for large n, so as the sample
sizen increases, the half width decreases at rate 1/

√
n. In

particular, this means that to obtain one additional signific
figure of accuracy (i.e., increase accuracy by a factor of 1
we need to increase the sample sizen by a factor of 100.
Thus, the estimator̄X(n) converges toµ rather slowly.

If we construct the confidence interval (9) using th
above steps, the probability is approximately 1− δ that the
interval will containµ. In other words, if we repeat thes
stepsm independent times, this will give usm different
confidence intervals. Some of them will contain (cover)µ,
t
,

and others will not. The theory says that approximately
(1− δ)m of the m intervals should coverµ. In practice,
though, this does not always happen. The approximation i
our CLT (6) only becomes exact as the sample sizen→∞,
so the coverage is only approximately 1− δ for large but
finite n, i.e.,

P

{
µ ∈

[
X̄(n)− zS(n)√

n
, X̄(n)+ zS(n)√

n

]}
≈ 1− δ. (11)

The true probability thatµ lies in the interval in (9) is
known as thecoverage.

It would be nice to know when the approximation in
(11) is good, and when it is not. It turns out that the quality
of the CLT approximation in (6) is largely influenced by
the value of theskewnessof X, which is defined as

γ ≡ E[(X − µ)3]/σ 3.

If the density ofX is symmetric about its mean, then the
skewnessγ is zero, so we can think of skewness as a
measure of theasymmetryof the distribution ofX. The
more symmetric the density ofX is, the better the CLT
approximation in (6) is, which leads to (11) being more
accurate. If the density ofX is highly asymmetric (as is
typical of queueing simulations), the CLT approximation is
not so good, and the coverage of the confidence interval
(9) may be significantly less than 1− δ. In fact, it is not
unusual for confidence intervals that are supposed to ha
90% coverage to actually only have, say, 75% coverage
See p. 257 of Law and Kelton (2000) for more discussion

3.1 Pre-Specifying Confidence Interval Widths

In the previous section we discussed so-calledfixed-sample-
size methodsfor estimating a transient performance measure
µ = E[X], whereX represents the random performance of
the system over some finite time horizon. These method
are so named because the sample size is fixed before a
simulations are run. However, before executing a simulation
we usually do not know how large the resulting half width
(10) will be since it depends on the output generated. I
many situations, though, we would like to end up with an
estimator with a small prespecified errorε, i.e., we want
the 100(1− δ)% confidence interval to bēX(n)± ε.

Example 3: Suppose we want to estimate the expected
daily withdrawals from an ATM. If we want the estimator
to be within $500 of the correct value with confidence leve
1−δ, then we set the desired (absolute) error to beε = 500.
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To achieve our goal of having a confidence interva
with half width ε, we setHn in (10) equal toε and solve
for n, yielding

n =
(
zS(n)

ε

)2

. (12)

This suggests that if we taken samples, wheren is deter-
mined by (12), then the resulting confidence interval shou
have half width that is approximatelyε. Note thatS(n)
also depends onn, but as we noted earlier,S(n) ≈ σ for
largen, so we takeS(n) to be fixed as an approximation.

We now describe a two-stage procedure to constru
a confidence interval with half width that is roughly a
prespecified valueε. In the first stage we generaten0 trial
runs and compute the sample standard deviationS(n0), and
then we substituteS(n0) into the right-hand side of (12) to
compute the total sample size required. The following is
variation of a procedure developed by Stein (1945).

Two-stage procedure for absolute-precision confi-
dence intervals

1. Selectn0, a sample size for the set of trial runs. (In
practice, one should specifyn0 ≥ 50). Also, select
the desired errorε. (In practice, one should specify
ε to be “small,” the meaning of which depends on
the context.) Also, specify a confidence level 1−δ,
and look up in az-table the value ofz such that
P {N(0,1) ≤ z} = 1− δ/2.

2. Generaten0 (independent) trial runs, yielding sam-
plesX1, X2, . . . , Xn0.

3. Calculate the sample variance

S2
1(n0) = 1

n0 − 1

n0∑
i=1

(Xi − X̄(n0))
2

of X1, X2, . . . , Xn0, whereX̄(n0) =∑n0
i=1Xi/n0.

4. Calculate

Na(ε) =
⌈(

zS1(n0)

ε

)2
⌉
,

wheredxe is the least integer greater than or equa
to x, which is called theceiling of x.

5. GenerateNa(ε) (independent) production runs
that are independent ofX1, X2, . . . , Xn0. The
samples from the production runs are denote
Xn0+1, Xn0+2, . . . , Xn0+Na(ε).

6. Set

X̃(ε) = 1

Na(ε)

n0+Na(ε)∑
j=n0+1

Xj

and

S̃2(ε) = 1

Na(ε)− 1

n0+Na(ε)∑
j=n0+1

(Xj − X̃(ε))2,
t

which are the sample mean and sample varianc
of only the values from the production runs.

7. Then[
X̃(ε)− zS̃(ε)√

Na(ε)
, X̃(ε)+ zS̃(ε)√

Na(ε)

]

is an approximate 100(1−δ)% confidence interval
for µ, the half-width of which should beapproxi-
matelyε.

If ε is small (as is usual in applications), thenNa(ε)�
n0 (i.e.,Na(ε) will be much larger thann0) so that throwing
away the firstn0 observations in forming the estimators
X̃(ε) and S̃2(ε) is not going to affect the procedure much.
One advantage of the above approach is that the estimato
formed in Step 6 are based on only the second-stage rando
variablesXn0+1, . . . , Xn0+Na(ε), which are both identically
distributed and (conditionally) independent. Hence, ou
discussion on fixed sample size procedures basically carri
over to this setting, and the resulting estimatorX̄(ε) has
some desirable statistical properties.

The previous procedure results in an absolute-precisio
confidence interval, but in many contexts, one desire
relative-precision intervals. For example, we may wan
our confidence interval to be±5% of the point estimator.
To achieve this, we change the total sample size fromNa(ε)

to

Nr(ε) =

(
zS̃1(n0)

X̄(n0)ε

)2
 ,

where X̄(n0) is the first-stage sample mean andε is the
desired relative precision. For example, for a confidenc
interval that is±5%, setε = 0.05.

4 OUTPUT ANALYSIS FOR STEADY-STATE
SIMULATIONS

We now discuss the estimation of steady-state performanc
measures. There are two cases to consider:

1. Discrete-time process:Y = (Yi : i = 1,2, . . .)
is an output process with an integer-valued time
index, and our goal is to estimate (and produce
confidence intervals for)ν, whereν is defined such
that

1

m

m∑
i=1

Yi → ν (13)

asm→∞.
2. Continuous-time process:Y = (Y (s) : s ≥ 0) is an

output process with a continuous-valued time index
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and we want to estimate (and produce confiden
intervals for)ν, whereν is defined such that

1

s

∫ s

0
Y (u) du→ ν (14)

as s →∞.
We previously saw in Section 2.2 some examples

steady-state measures for a discrete-time process. For
ample,Yi could be the waiting time of theith customer to a
queueing system, soν represents the steady-state expect
waiting time. We now give an example of a continuous-tim
process.

Example 4 : Suppose that the ATM from before is
accessible 24 hours a day, and letY (s) denote the number
of customers waiting in line at times. We define the
continuous-time stochastic processY = (Y (s) : s ≥ 0),
and assuming thatY has a steady state (which would not b
the case if the distribution of the number of customers waitin
depends on the time of day), then we may be interested
calculatingν defined in (14), which in this case is the long
run time-average number of customers waiting. Anoth
possible measure is

lim
s→∞

1

s

∫ s

0
I (Y (u) ≥ a) du,

which is the long-run fraction of time that at leasta customers
are waiting.

4.1 The Difficulties of Output Analysis of Steady-State
Simulations

We will concentrate on discrete-time processes (continuo
time processes can be handled in a similar manner). O
goal is to estimate and produce confidence intervals for t
steady-state parameterν. First, we examine how to produce
a point estimator forν. As we can see in (13), the paramete
ν can be viewed as the long-run average level ofYi . Thus,
if we set

Ȳ (m) = 1

m

m∑
i=1

Yi,

then Ȳ (m) is a consistentestimator forν, in the sense that

Ȳ (m)→ ν

asm→ ∞. In other words, running a “long” simulation
(i.e., takingm large) will result in an estimator̄Y (m) that
is “close” to ν. Hence, the problem of constructing an
estimator forν is easily solved.

However, the task of constructing a confidence interv
for ν is more delicate. For virtually all reasonably behave
systems possessing a unique steady state, one can show
e

f
x-

d

in

r

s-
r

e

l

a central limit theorem for̄Y (m) is valid; i.e., there exists
a constant̄σ such that

√
m

σ̄
(Ȳ (m)− ν) D≈ N(0,1) (15)

for m sufficiently large.
Definition: The parameter̄σ 2 is called thetime-average

variance constantof the steady-state simulation.
Unfortunately, it is not so straightforward to use the CLT

in (15) to construct a confidence interval forν. The problem
lies in the fact that it is a non-trivial matter to estimateσ̄ (or
equivalentlyσ̄ 2). The sample varianceS2(n) in (5) used to
estimateσ 2 in the transient-simulation setting is only valid
for i.i.d. data. In steady-state simulations,Y1, Y2, . . . are
typically not i.i.d. Thus, we cannot use (5) applied to th
Y1, Y2, . . . to estimateσ̄ 2.

4.2 Method of Multiple Replications

Themethod of multiple replicationsoffers one escape from
this difficulty of estimatingσ̄ . Suppose that rather than
simulating one long replicate of lengthm, we simulater
independentreplications, each of lengthk = m/r. We
should chooser small, say 10≤ r ≤ 30, so thatk is large.
We needk large since we are interested in the long-ru
behavior of the processY. We achieve independence of the
replications by using non-overlapping streams of rando
numbers for the different replications. Because we now ha
r independent observations, we can form a sample varian
across the replications. This is the basic idea underlyin
the method of multiple replications.

For j = 1, . . . , r, let Yj,1, Yj,2, . . . , Yj,k be thek ob-
servations from thej th (independent) replication, and let

X′j =
1

k

k∑
i=1

Yj,i

be the sample mean formed from thej th replication. Then
X′1, X′2, . . . , X′r are i.i.d. observations withE(X′j ) ≈ ν for
eachj = 1,2, . . . , r, if k is sufficiently large by virtue of
(13). So we can use classical statistics to form a poi
estimator and confidence interval using the observatio
X′1, X′2, . . . , X′r . Specifically, let

X̄′(r) = 1

r

r∑
j=1

X′j

and

S′2(r) = 1

r − 1

r∑
j=1

(X′j − X̄′(r))2
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be the sample mean and sample variance, respectively,
the X′j . Then, an approximate 100(1 − δ)% confidence
interval for ν is given by[

X̄′(r)− tS
′(r)√
r
, X̄′(r)+ tS

′(r)√
r

]
,

where t ≡ tr−1,1−δ/2 is chosen such thatP {Tr−1 ≤ t} =
1− δ/2 andTr−1 is a Student-t random variable withr −1
degrees of freedom. Virtually all introductory statistics
books providet-tables giving values oft for various δ
and degrees of freedom; also see Table T.1 of Law an
Kelton (2000) or Table A.5 of Banks et al. (2001). (Here
we use the critical point from at-distribution rather than
a standard normal distribution because the numberr of
replications is often small.)

A major problem with the method of multiple replica-
tions is that, while the technique permits simple estimatio
of the variance, the multiple-replicate estimatorX̄′(r) can be
significantly contaminated by the presence ofinitialization
bias. Specifically, the law of large numbers guarantees tha

X′j =
1

k

k∑
i=1

Yj,i → ν

as k → ∞. However, since each replicate is typically
started with an initial conditionI that is atypical of the
steady state (e.g., queueing simulations are often start
with no customers present), it often follows that for any
finite k,

E

[
1

k

k∑
i=1

Yj,i

]
6= ν.

Thus, we conclude that if the number of replicatesr is large
relative to the run lengthk of each replication, then the
estimatorX̄′(r) may be significantly biased.

A partial solution to this problem is to useinitial-data
deletion, which we now describe. Suppose that we someho
can determine the firstc observations of the simulation are
significantly contaminated, i.e., not very representative o
steady state. Also, suppose all observationsYi with i > c are
not significantly contaminated. Then in each replication
we will delete the firstc observations when calculating
the sample mean of the replication. Specifically, for eac
replicationj = 1,2, . . . , r, let

Xj = 1

k − c
k∑

i=c+1

Yj,i

be the sample mean of the (non-contaminated) observatio
f

t

d

s

Yj,c+1, Yj,c+2, . . . , Yj,k, in replicationj . After simulating
the r replications, compute

X̄(r) = 1

r

r∑
j=1

Xj

and

S2(r) = 1

r − 1

r∑
j=1

(Xj − X̄(r))2,

which are the sample mean and sample variance, resp
tively, of the Xj . Then, an approximate 100(1 − δ)%
confidence interval forν is given by[

X̄(r)− tS(r)√
r
, X̄(r)+ tS(r)√

r

]
.

For more details on initial-data deletion, including som
heuristics to determinec, see Section 9.1 of Law and Kel-
ton (2000).

One problem with initial-data deletion is that in each o
the r replications, we have to deletec observations. Thus,
we are throwing away a total ofrc observations over all
of the replications. If we used asingle-replicate algorithm
(i.e., one withr = 1), then we would only delete a total of
c observations.

4.3 Single-Replicate Methods

Typically in practice, whenp is large, Yi and Yi+p are
almost independent for eachi. For example, supposeYi is
the waiting time of theith customer in a queueing system
Then we would expect that the waiting time of the 100t
customer to be almost independent of the 10th custome
waiting time.

Now suppose that we run a simulation of lengthm,
giving us observationsY1, Y2, . . . , Ym. Suppose we group
them observations inton large, non-overlappingbatches,
each of sizeb (som = nb), where the first batch consists
of the firstb observations, the second batch consists of th
next b observations, and so on. Ifb is chosen to be large,
then most of the observations in one batch should be alm
independent of most of the observations in any other batc
The only dependence that essentially exists is between
servations in two adjacent batches. Observations in batch
that are not adjacent are almost independent. Moreov
if we compute the sample mean of each of the batche
then the sample means should be almost independent w
the batch sizeb is large. Also, each sample mean will be
close to normally distributed for largeb, since it is a sample
mean and so it satisfies a CLT (see (15)). Using the abo
observations, we now present the method of batch mea
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Method of batch means to construct confidence in-
tervals in steady-state simulations

1. Select a total run lengthm, which is large. Also,
select a number of batchesn. (Schmeiser 1982
suggest choosing 10≤ n ≤ 30.)

2. Run a simulation generating a total ofm observa-
tions. This results in observationsY1, Y2, . . . , Ym.

3. Then group them observations inton batches, each
of size b = m/n. For j = 1,2, . . . , n, the j th
batch meanis calculated as

Ȳj (b) = 1

b

jb∑
l=(j−1)b+1

Yl.

Note thatȲj (b) is the sample mean of theb ob-
servations in thej th batch.

4. We then treat̄Y1(b), Ȳ2(b), . . . , Ȳn(b) as i.i.d. ob-
servations (note that they are not, but should
reasonably close for large batch sizesb) and use
classical statistics to construct a confidence inte
val. Specifically, compute

¯̄Y (n, b) = 1

n

n∑
j=1

Ȳj (b) = 1

m

m∑
i=1

Yi,

and

S2(n, b) = 1

n− 1

n∑
j=1

(
Ȳj (b)− ¯̄Y (n, b)

)2

as the sample mean and sample variance, resp
tively, of the n batch means, and an approximat
100(1− δ)% confidence interval forν is[
¯̄Y (n, b)− tS(n, b)√

n
, ¯̄Y (n, k)+ tS(n, b)√

n

]
,

wheret ≡ tn−1,1−δ/2 is chosen such thatP {Tn−1 ≤
t} = 1− δ/2 for Tn−1 a Student-t random variable
with n− 1 degrees of freedom.

It can be shown that in virtually all situations arisin
in practice, the method of batch means will produce va
confidence intervals asb→∞. More specifically,

P

{
ν ∈

[
¯̄Y (n, b)± tS(n, b)√

n

]}
≈ 1− δ

for batch sizeb sufficiently large.
We can easily modify the above procedure to inco

porate initial-data deletion by instead collecting a total
m+ c observations and removing the firstc contaminated
observations. Then apply the method of batch means w
-

the remainingm data points. When using a single-replicate
method such as batch means, we only need to delete a to
of c observations, as opposed torc when using the method
of multiple replications withr replications. Whitt (1991)
provides a mathematical analysis that basically yields th
following:

Rule of Thumb: Single replicate procedures tend to
be better (as measured by the mean square error of t
steady-state estimator) than multiple-replicate procedures

There has been a lot of recent work on improvement
to the batch-means method described above. See Schmei
and Song (1996) for a survey.

4.4 Other Methods

There are numerous other methods for statistically analyzin
simulation output in the steady-state context. These includ
spectral (e.g., Anderson 1994), regenerative (Crane an
Iglehart 1975, Shedler 1993), and standardized time serie
methods (Schruben 1983), but these techniques require mo
sophisticated mathematics to understand and can be som
what more difficult to implement. For an overview of these
other techniques, see Bratley, Fox and Schrage (1987)
Law and Kelton (2000). Finally, Nakayama (1994) present
two-stage procedures for obtaining fixed-width confidence
intervals in steady-state simulations.

5 ESTIMATING MULTIPLE PERFORMANCE
MEASURES

Consider our previous example of an ATM that is accessibl
only between 9:00am and 5:00pm, and suppose that we wa
to calculate

• µ1, the expected number of customers served in
day;

• µ2, the probability that the number served in a day
is at least 1000;

• µ3, the expected amount of money withdrawn from
the ATM in a day.

These are all transient performance measures, and suppo
we use the same simulation to estimate all 3 measures b
running n independent replications. LetX1,i denote the
number of customers served in theith replication. Let
X2,i be 1 if at least 1000 customers are served in theith
replication, and 0 otherwise. LetX3,i be the amount of
money withdrawn on theith replication.

After running n replications, suppose we construct a
95% confidence interval for eachµs , s = 1,2,3. Let Is
denote the 95% confidence interval forµs , so if we ran
a sufficiently large numbern of replications, thenP {µs ∈
Is} ≈ 0.95 for eachs = 1,2,3. But what can we say about
the joint coverage of the 3 confidence intervals; i.e., wha
is P {µs ∈ Is, for all s = 1,2,3}?
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More generally, suppose that we are estimatingq means
µs , s = 1,2, . . . , q, and for eachµs , we construct a
100(1 − δs)% confidence intervalIs . What can we say
aboutP {µs ∈ Is, for all s = 1,2, . . . , q}? Bonferroni’s
inequality provides a lower bound for this probability:

P {µs ∈ Is, for all s = 1,2, . . . , q} ≥ 1−
q∑
s=1

δs.

Thus, in our previous example in which we had three 95
confidence intervals, the Bonferroni inequality implies th
joint probability that all three confidence intervals contai
their respective true means is at least 85%. Therefore, o
joint confidence level for all three intervals is less than th
confidence level for any single interval. If we want the join
confidence to be at least 95%, then we might setδs = 0.01
for eachs. This would yield individual 99% confidence
intervals, with the joint probability being at least 0.97. Thus
in order to have high confidence that all of our individua
confidence intervals contain their respective means, we ne
to construct the individual confidence intervals with eve
higher confidence levels.

Often, one wants to compare different systems to s
which one is the “best.” For example, we may have
possible designs for a manufacturing system, and we wa
to determine which has the highest expected production p
day. There is substantial literature on this topic, much of
in the areas of so-calledselection proceduresandmultiple-
comparison procedures. For an overview of these methods
see Goldsman and Nelson (2001).

6 OTHER USEFUL METHODS

We now briefly discuss some other techniques that c
be useful for simulations.Variance-reduction techniques
(VRTs), which are also known asefficiency-improvement
techniques, can lead to simulation estimators with smalle
error (variance) by typically either collecting additiona
information from the simulation run(s) or changing or con
trolling the way in which the simulation is run. Some o
the more widely used VRTs include the following:

• Common random numbers(e.g., see Section 11.2
of Law and Kelton 2000) can improve simulations
comparing two or more systems by running th
simulations of the various systems using the sam
stream of random numbers. This generally induce
positive correlation among the resulting estimator
which can be advantageous when estimating diffe
ences of performance measures between system

• Antithetic variates(e.g., see Section 11.3 of Law
and Kelton 2000) can improve results from simu
lating a single system by inducing negative corre
lations between pairs of replications.
.

• The method ofcontrol variates(e.g., see Section
11.4 of Law and Kelton 2000) collects additional
data during the simulation, where the mean o
the extra collected data is known. For example
in a queueing simulation, one often knows the
mean of the service-time distribution, and so on
might additionally collect the random service times
that are generated during the simulation. The da
collected typically is correlated with the simulation
output, and this correlation can be exploited to
obtain an estimator with lower variance than the
standard estimator.

• Importance sampling(Hammersley and Hand-
scomb 1964, Glynn and Iglehart 1989) is often
used in rare-event simulations, such as for analy
ing buffer overflows in communication networks
and system failures of fault-tolerant systems. In
these settings, the event of interest, typically som
kind of failure, occurs very rarely, and importance
sampling changes the dynamics of the system
cause the event to occur more frequently. Unb
ased estimators are recovered by multiplying b
a correction factor known as the likelihood ra-
tio. Heidelberger (1995) and Nicola, Shahabuddi
and Nakayama (2001) review importance-samplin
methods for rare-event simulations of queueing an
reliability systems.

Other VRTs include stratified sampling, conditional Monte
Carlo, and splitting. These and other methods are describ
in Chapter 11 of Law and Kelton (2000) and Chapter 2 o
Bratley, Fox and Schrage (1987).

One is often interested in estimating derivatives o
performance measures with respect to system paramete
For example, in a reliability system, one may want to know
the derivative of the mean time to system failure with respe
to a component’s failure rate. This information can be usef
in designing systems by identifying components on whic
to focus to improve overall performance. Also, derivative
information can be used with some simulation-optimizatio
methods (e.g., Andradóttir 1998). Techniques for estimatin
derivatives using simulation include perturbation analys
(Glasserman 1991; Ho and Cao 1991; Fu and Hu 199
and the likelihood-ratio or score-function method (Reima
and Weiss 1989; Rubinstein 1989; Glynn 1990).

7 CONCLUSIONS

We have described some techniques for statistically analy
ing the output from a simulation. It is important to keep in
mind that the methods presented here are allasymptotically
valid, so large run lengths are needed to ensure that va
inferences are drawn.

In addition to the references given throughout the pa
per, other resources covering simulation-output analysis i
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clude Banks (1998), Banks et al. (2001), Fishman (2001
Melamed and Rubinstein (1998), and Ross (2002).
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