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ABSTRACT the two customers are dependent. Moreover, customers
arriving during the lunch hour will usually have longer
We discuss methods for statistically analyzing the output waiting times than customers coming in at other times, so
from stochastic discrete-event or Monte Carlo simulations. waiting times are not identically distributed throughout the
Both terminating and steady-state simulations are considered. day. Finally, waiting times are always positive and often
skewed to the right, with a possible mode at zero, so waiting
1 INTRODUCTION times are not normally distributed. For these reasons one
often cannot analyze simulation output using the classical
So you've finally finished developing your simulation model.  statistical techniques developed for i.i.d. normal data.
You spent countless hours developing an understanding of In this tutorial, we will examine some statistical meth-
the underlying processes, collecting data, fitting the data ods for designing and analyzing simulation experiments. In
to various probability distributions, and coding and debug- the next section we begin by distinguishing between two
ging your simulation program. You carefully selected a types of performance measures: terminating (or transient)
performance measure you felt was appropriate to evaluate and steady-state (or infinite-horizon or long-run). These two
the system, and your program outputs an estimate of this types of measures require different statistical techniques to
measure. You then ran the simulation program once, and the analyze the results, and Section 3 reviews methods for ana-
results seemed to indicate that if the system design in your lyzing output from terminating simulations, while Section 4
program was actually put into practice, it would perform covers techniques for steady-state simulations. In Section 5
well. You showed your boss the results, who then gave you we discuss the estimation of multiple performance mea-
the green light to implement this system design. However, sures, and Section 6 briefly covers other methods useful for
once the system was in place, it performed poorly, not at all analyzing simulation output. Some concluding remarks are
like the results that you obtained from your one simulation given in Section 7.
run. What went wrong?
Many simulations include randomness, which can arise 2 PERFORMANCE MEASURES
in a variety of ways. For example, in a simulation of
a manufacturing system, the processing times required at One of the first steps in any simulation study is choosing the
a station may follow a given probability distribution or  performance measure(8) calculate. In other words, what
the arrival times of new jobs may be stochastic. In a measures will be used to evaluate how “good” the system is?
bank simulation, customers arrive at random times and the For example, the performance of a queueing system may
amount of time spent at a teller is stochastic. Future returns be measured by its expected number of customers served
in financial simulations are random. in a day, or we may use the long-run average daily cost as
Because of the randomness in the components driving a a measure of the performance of a supply chain.
simulation, its outputis also random, so statistical techniques There are primarily two types of performance measures
must be used to analyze the results. The data-analysisfor stochastic systems, which we now briefly describe:

methods in introductory statistics courses typically assume 1. Transient performance measureslso known as
that the data are independent and identically distributed terminating or finite-horizon measures, evaluate
(i.i.d.) with a normal distribution, but the output data from the system’s evolution over a finite time horizon.
simulations are often noti.i.d. normal. Forexample, consider 2. Steady-state performance measudescribe how
customer waiting times before seeing a teller in a bank. If the system evolves over an infinite time horizon.
one customer has an unusually long waiting time, then the These are also known Emg-runorinfinite-horizon
next customer probably also will, so the waiting times of measures.
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A simulation in which a transient (resp., steady-state)
measure is estimated is calledransient simulatior(resp.,
steady-state simulation We now describe these concepts
in more depth.

2.1 Transient Performance Measures

Definition: A terminating simulationis one for which
there is a “natural” evenB that specifies the length of time
in which one is interested for the system. The evBnt
often occurs either at a time point beyond which no useful
information is obtained, or when the system is “cleaned
out.” For example, if we are interested in the performance
of a system during the first 10 time units of operation of
a day, thenB would denote the event that 10 time units
of system time have elapsed. If we want to determine the

Alternatively we might defineZ to be the average
waiting time (in seconds) of the first 50 customers in a day.
We can then define the following performance measures:

e E[Z], the expected value &f. InthiscaseX = Z

in the notation of (1).
e P{Z <30} = E[I(Z < 30)], which is the prob-

ability that the average waiting time of the first
50 customers is no more than 30 seconds. Here,
X =1(Z <30 in (1).

In this case we might specify the initial conditiofisto be

that the system starts out empty each day, and the terminating

event B is that 50 customers have finished their waits (if

any) in line.

2.2 Steady-State Performance Measures

first time at which a queue has at least 8 customers, then Now we consider steady-state performance measures. Let
B is the event of the first time the queue length reaching 8. Y = (Y1, Y2, Y3, ...) be a (discrete-time) stochastic process
(See Law and Kelton 2000, Section 9.3, for more details.) representing the output of a simulation. For example, if the

Since we are interested in the behavior of the system
over only a finite time horizon, the “initial conditions

vestibule containing the ATM in our previous example is
now open 24 hours a day, th&nhmight represent the waiting

(i.e., conditions under which the system starts) can have a time of theith customer since the ATM was installed. Let

large impact on the performance measure. For example,
gueueing simulations often start with no customers present,

which would be theZ in this setting.

In a transient simulation, we have the following.

Goal: To calculate

w=E(X), (1)

where X is a random variable representing the (random)
performance of the system over some finite horizon.

We now examine some examples of transient perfor-
mance measures.

Example 1: Consider a bank vestibule containing an
automatic teller machine (ATM). The vestibule is only open
during normal banking business hours, which is 9:00am to

F(y|T) =P; <y|lI)fori=1,2,..., where as before,
7 represents the initial conditions of the system at time
0. Observe that;(-|Z) is the distribution function ofY;
given the initial conditiong. We are now interested in the
behavior of the system over an infinite time horizon, and it
is often the case that the effects of the initial conditidns
become negligible after a sufficiently long time has elapsed.
Definition:  If

Fi(y|T) - F(y) asi — o0 (2
for all y and for any initial conditionsZ, then F(y) is
called thesteady-state distributionf the processy. If Y
is a random variable with distributiof, we say that’ has
the steady-state distribution, and we sometimes write this

: i D S .
5:00pm, so customers can access the ATM only during those ;¢ Y; 3 Y asi — oo, which is read as¥; converges in

times. Any customers in the vestibule at 5:00pm will be

allowed to complete their transactions, but no new customers

will be allowed in. LetZ be the number of customers using
the ATM in a day, and we may be interested in determining
the following terminating performance measures:
* E[Z], the expected value df. To put things in
the framework of (1), we seX = Z.
e P{Z > 500, = E[I(Z > 500], which is the
probability that at least 500 customers use the
ATM in a day, wherel (A) is the indicator function
of an eventA, which takes on the value 1 A
occurs, and 0 otherwise. In the notation of (1),
X = 1(Z = 500 in this case.
The initial conditionsZ might be that the system starts out
empty each day, and the terminating evBris that it is past
5:00pm and there are no more customers in the vestibule.
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distribution toY.”
The interpretation of (2) is that for all sufficiently
large,

F;(y|I) = F(y), forall y. 3

The value ofi for which the approximation holds depends
very much on the particular system being simulated. Note
that (3) does not mean that thaluesof the Y; are all
the same for large, but rather that thelistribution of Y;
(given the initial conditionsZ) is close toF for largei.
Indeed, the steady-state random variabléand also the/;

for largei) may still have plenty of variability. Wheli is

a random variable with distributiod, E(Y) is a steady-
state performance measurdt can be shown under great
generality thatE (Y;|Z) — E(Y) asi — oo for all initial
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conditionsZ when (2) holds. Figure 1 gives an example of
density functionsf; approaching some limiting density
asi gets larger.

Many systems do not have a steady state. For example,

consider our previous example of an ATM that is accessible
only during business hours. Léf be the waiting time

of the ith customer to arrive since the ATM was installed.
Then, the proces¥ does not have a steady state because

3 OUTPUT ANALYSIS FOR TRANSIENT
SIMULATIONS

We now discuss how to analyze the output from a transient
simulation. Recall our goal is to calculate= E(X), where

X is a random variable representing the performance of the
system over some finite horizon with initial conditiofis
The basic approach to estimgte using simulation is as

the first customer of each day always has no wait, whereas follows:

other customers may have to wait. For example, suppose
500 customers are served on the first day, so day 2 begins X1, X», ..

with customer 501, who has no wait since there is no one
ahead of him on that day, so (2) cannot hold. On the other
hand, if the ATM were accessible 24 a day, then a steady
state may exist.

In the above example where the ATM is only available
from 9:00am to 5:00pm, we may be able to obtain a process
Y that does have a steady state if we defineithdifferently.

In particular, suppos€; is the average waiting time of all
the customers on thah day since the ATM first became
operational. ThenY may have a steady state. (It still may
not if the distribution of the number of customers in a day
depends on the particular day of the week, or if there are
seasonal variations, in which case (2) cannot hold.)

Example 2: Consider the ATM from before, but now
suppose that it accessible all the time. L&t be the
number of customers served on tht day of operation,
and suppose that over time, the system “settles down”

into steady state; i.e.y; Z vy asi - co. We now
may be interested in determining the following steady-state
performance measures:

e E[Y], which is the expected steady-state number
of customers served in a day;

e P{Y > 400, = E[I(Y > 400)], which is the
steady-state probability that at least 400 customers
are served in a day.

Again, we may let the initial condition$ denote that the

system begins operations on the first day with no customers

present, and over time, the effects of the initial conditions
“wash away.”

Transient Densitie§

SRR

E[Y]

ELYill]

10 20 30 40 . . . i
Figure 1: Densitiesf; of an Output Proces&1, Y», ...)
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Method: Generaten > 2 i.i.d. replicates ofX, say
., X, and form the (point) estimator

_ 1<
X(n) = - Elx,-.
1=

We generate i.i.d. replicates &f by running indepen-
dent simulations of the system under study. We make the
replicates independent by using non-overlapping streams of
random numbers from the random-number generator. We
ensure the replicates are identically distributed by starting
each simulation using the same initial conditiahsand
using the same dynamics to govern the evolution of the
system.

If E(]X]|) < oo (which is almost always the case in
practice), the (strong) law of large numbers guarantees
X(n) — pn asn — oo with probability 1. Thus, if the
sample size: is chosen large enouglX (n) will be close
to 4. But how close isX(n) to u? The central limit
theorem (CLT) provides an answer. Specifically, det
denote thevarianceof X, i.e., 02 = Var(X), and assume
that 0< 02 < co. We sometimes also refer to te@mndard
deviationof X, which isc = v/o2. Also, let

(4)

1 < .
—= > (X - Xm)”.

i=1

§%(n) =

®)

which is thesample varianceof X1,...,X,, and is an
estimator ofo2. The sample standard deviatiois S(n) =
v/ S2(n), which is an estimator ofr. A variant of the
standard CLT asserts that farlarge,

2172

S(n)

- D
(X(n) — u) = N0, 1), (6)

where N (a, b) denotes a normal random variable having

meana and variance andg means “has approximately the
same distribution as.” The approximation in (6) is usually
reasonable for > 50, and it becomes exact as— oo.

We now use (6) to derive eonfidence intervafor .
First define theonfidence level — §; typically, one chooses
5 = 0.1, 0.05 or 0.01. Then, we look up inzatable the
constantz = z3_s/2 for which P{N(0,1) <z} =1-4§/2;
e.g.,z = 1.65 whens = 0.1, z = 1.96 whens = 0.05,
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and z = 2.58 wheng = 0.01. Virtually any introductory
statistics book provides atable; also see Table T.1 of Law
and Kelton (2000) or Table A.3 of Banks et al. (2001). Then

1-8§ = P{—z<N@O1 <z}
~ P{—zf%(i(n)—u)fz} (7)
B - zS8(n)
= P{MG[X(n)j: ﬁ]} (8)

where the approximation in (7) follows for large from
(6). Note that (8) implies that whenis large, the interval

, X(n) +

9)

|:)_((n)— z8(n) zS(n)i|

N NG

has roughly probability 1§ of containing the true meamn,
and we call the interval in (9) an approximate 106 )%
confidence interval for.. Thus, we arrive at the following:

Procedure to construct confidence intervals for tran-
sient measureu

1. Specify a confidence level-1§ and a sample size
n that is large. Also, look up in ag-table the
value of z such thatP{N(0,1) <z} =1—§/2.
Typically, one choose8 = 0.1, 0.05 or Q01, and
one should choose > 50.

Generater i.i.d. replicatesXq, Xo, ..., X,,.

3. Using then data pointsXy, Xo, ..., X,, calculate
the sample meaX (n) using (4) and the sample
variances?(n) using (5).

4. Use (9) to construct an approximate 106- §)%
confidence interval foy.

An interpretation of the approximate 100- §)% con-
fidence interval fon in (9) is that we are highly confident
(i.e., approximately 10@ — §)% confident) that the true
meanu lies in the interval (9). Thus, a confidence interval
provides a form of error bounds for our estimao¢:) of
w. The half width H,, of the confidence interval in (9) is

N

_z8(n)
=

i.e., the confidence interval in (9) i&(n) & H,. It can

be shown thatS(n) ~ o for large n, so as the sample
sizen increases, the half width decreases at ratgr. In
particular, this means that to obtain one additional significant
figure of accuracy (i.e., increase accuracy by a factor of 10),
we need to increase the sample sizby a factor of 100.
Thus, the estimatok (n) converges tqu rather slowly.

If we construct the confidence interval (9) using the
above steps, the probability is approximately d that the
interval will containu. In other words, if we repeat these
stepsm independent times, this will give ua different
confidence intervals. Some of them will contain (covey)

52

Hn

(10)

~
~

and others will not. The theory says that approximately
(1 - 8)m of the m intervals should cover. In practice,
though, this does not always happen. The approximation in
our CLT (6) only becomes exact as the sample size oo,
so the coverage is only approximately-15 for large but

finite n, i.e.,

(11)

z8(n)
Jn

zS8(n)
Jn

, X(n) +

P{ue[)_((n)—
1-56.

~
~

The true probability thaje lies in the interval in (9) is
known as thecoverage

It would be nice to know when the approximation in
(11) is good, and when it is not. It turns out that the quality
of the CLT approximation in (6) is largely influenced by
the value of theskewnes®f X, which is defined as

y = E[(X — %/03.

If the density ofX is symmetric about its mean, then the
skewnessy is zero, so we can think of skewness as a
measure of theasymmetryof the distribution ofX. The
more symmetric the density of is, the better the CLT
approximation in (6) is, which leads to (11) being more
accurate. If the density ok is highly asymmetric (as is
typical of queueing simulations), the CLT approximation is
not so good, and the coverage of the confidence interval in
(9) may be significantly less than-145. In fact, it is not
unusual for confidence intervals that are supposed to have
90% coverage to actually only have, say, 75% coverage.
See p. 257 of Law and Kelton (2000) for more discussion.

3.1 Pre-Specifying Confidence Interval Widths

In the previous section we discussed so-cdiibeed-sample-
size method®or estimating a transient performance measure
u = E[X], whereX represents the random performance of
the system over some finite time horizon. These methods
are so nhamed because the sample size is fixed before any
simulations are run. However, before executing a simulation,
we usually do not know how large the resulting half width
(10) will be since it depends on the output generated. In
many situations, though, we would like to end up with an
estimator with a small prespecified errori.e., we want
the 10Q@1 — §)% confidence interval to b& (n) + e.

Example 3: Suppose we want to estimate the expected
daily withdrawals from an ATM. If we want the estimator
to be within $500 of the correct value with confidence level
1-6, then we set the desired (absolute) error te be500.
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To achieve our goal of having a confidence interval
with half width ¢, we setH, in (10) equal toe and solve

for n, yielding
(ZS(n))2
n = .
€

This suggests that if we take samples, where is deter-
mined by (12), then the resulting confidence interval should
have half width that is approximately. Note thatS(n)
also depends on, but as we noted earlie§(n) ~ o for
largen, so we takeS(n) to be fixed as an approximation.

(12)

which are the sample mean and sample variance
of only the values from the production runs.
7. Then

~ 28(€)  ~ 28(€)
{X(E) T U@ O \/—Na(e}

is an approximate 1Q@Q— §)% confidence interval
for u, the half-width of which should bapproxi-
matelye.

If € is small (as is usual in applications), th&n(e) >

We now describe a two-stage procedure to construct 70 (i.€., Na(e) will be much larger thamo) so that throwing

a confidence interval with half width that is roughly a
prespecified value. In the first stage we generaig trial
runs and compute the sample standard devidiang), and
then we substitut€(np) into the right-hand side of (12) to
compute the total sample size required. The following is a
variation of a procedure developed by Stein (1945).
Two-stage procedure for absolute-precision confi-
dence intervals
1. Selectig, a sample size for the set of trial runs. (In
practice, one should specifyy > 50). Also, select
the desired errar. (In practice, one should specify
€ to be “small,” the meaning of which depends on
the context.) Also, specify a confidence leveld,
and look up in az-table the value ot such that
P{N@O,1) <z} =1-6/2.
2. Generateg (independent) trial runs, yielding sam-
ples X1, Xo, ..., Xy,-
3. Calculate the sample variance

1 & _
Sf(no) = no——l Z(Xi — X(”O))2
i=1

of X1, Xo, ..
4. Calculate

2
Na(e) = {(Zsle("‘))) l

where[x] is the least integer greater than or equal
to x, which is called theceiling of x.

5. GenerateN,(¢) (independent) production runs
that are independent oKy, Xo, ..., X,,. The
samples from the production runs are denoted

-, Xng, WhereX (ng) = 37°, X;/no.

Xngt+1, Xng+2s - - » Xngt-Ny(e)-
6. Set
- no+Ny(€)
X(e):N(e) Z X;
a j=no+1
and
- no+Ny(€) -
%)= ——— Xi— X(e 2,
© =351 'Z (Xj — X(€))
j=no+1
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away the firstno observations in forming the estimators

X (¢) and $2(¢) is not going to affect the procedure much.
One advantage of the above approach is that the estimators
formed in Step 6 are based on only the second-stage random
variablesX,,o11, . . ., Xno+n, (), Which are both identically
distributed and (conditionally) independent. Hence, our
discussion on fixed sample size procedures basically carries
over to this setting, and the resulting estimalote) has
some desirable statistical properties.

The previous procedure results in an absolute-precision
confidence interval, but in many contexts, one desires
relative-precision intervals. For example, we may want
our confidence interval to b&5% of the point estimator.

To achieve this, we change the total sample size M)

to
3 2
N, (e) = 3 1(no)
X(no)e
where X (ng) is the first-stage sample mean aads the

desired relative precision. For example, for a confidence
interval that is£5%, sete = 0.05.

4 OUTPUT ANALYSIS FOR STEADY-STATE
SIMULATIONS

We now discuss the estimation of steady-state performance
measures. There are two cases to consider:
1. Discrete-time processY = (¥; : i = 1,2,...)
is an output process with an integer-valued time
index, and our goal is to estimate (and produce
confidence intervals fon), wherev is defined such
that

1 m
— Z Y > v (13)
m “
i=1
asm — oo.
2. Continuous-time procesg:= (Y (s) : s > 0)isan
output process with a continuous-valued time index,
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and we want to estimate (and produce confidence
intervals for)v, wherev is defined such that

! /S Y(u)du — v (14)
0

N
ass — oo.
We previously saw in Section 2.2 some examples of

a central limit theorem fo (m) is valid; i.e., there exists
a constant such that

/m - D
V2 (F(m) —v) = N(©O, 1) (15)
o
for m sufficiently large.

Definition: The parametet?is called theéime-average

steady-state measures for a discrete-time process. For ex-variance constanbf the steady-state simulation.

ample,Y; could be the waiting time of th&h customer to a
gueueing system, so represents the steady-state expected
waiting time. We now give an example of a continuous-time
process.

Example 4 : Suppose that the ATM from before is
accessible 24 hours a day, and ¥g&) denote the number
of customers waiting in line at time. We define the
continuous-time stochastic proce¥s= (Y (s) : s > 0),
and assuming thaft has a steady state (which would not be
the case ifthe distribution of the number of customers waiting
depends on the time of day), then we may be interested in
calculatingv defined in (14), which in this case is the long-
run time-average number of customers waiting. Another
possible measure is

1
lim -

§—>00 §

/SI(Y(M)Za)du,
0

which is the long-run fraction of time that at leastustomers
are waiting.

4.1 The Difficulties of Output Analysis of Steady-State
Simulations

We will concentrate on discrete-time processes (continuous-

time processes can be handled in a similar manner). Our

goal is to estimate and produce confidence intervals for the
steady-state parameter First, we examine how to produce

a point estimator for. As we can see in (13), the parameter
v can be viewed as the long-run average leveY,0fThus,

if we set

1 m
Ymy==3 v,
i=1

thenY (m) is aconsistenestimator forv, in the sense that
)?(m) -V

asm — oo. In other words, running a “long” simulation
(i.e., takingm large) will result in an estimatoY (m) that
is “close” to v. Hence, the problem of constructing an
estimator forv is easily solved.

However, the task of constructing a confidence interval
for v is more delicate. For virtually all reasonably behaved

Unfortunately, it is not so straightforward to use the CLT
in (15) to construct a confidence interval far The problem
lies in the fact that it is a non-trivial matter to estimatéor
equivalentlys?). The sample varianc&?(n) in (5) used to
estimates2 in the transient-simulation setting is only valid
for i.i.d. data. In steady-state simulations,, Y, ... are
typically not i.i.d. Thus, we cannot use (5) applied to the
Y1, Yo, ... to estimates2.

4.2 Method of Multiple Replications

The method of multiple replicationsffers one escape from
this difficulty of estimatings. Suppose that rather than
simulating one long replicate of lengih, we simulater
independentreplications, each of length = m/r. We
should choose small, say 10< r < 30, so that is large.
We needk large since we are interested in the long-run
behavior of the procesg. We achieve independence of the
replications by using non-overlapping streams of random
numbers for the different replications. Because we now have
r independent observations, we can form a sample variance
across the replications. This is the basic idea underlying
the method of multiple replications.
Forj=1,...,r,letY;1,Y;,,...,Y;, be thek ob-
servations from thgth (independent) replication, and let

/
ij Y;i

tal

k
i=1

be the sample mean formed from tli replication. Then
X, X5, ..., X, are i.i.d. observations witl (X'.) ~ v for
eachj =1,2,...,r, if k is sufficiently large by virtue of
(13). So we can use classical statistics to form a point
estimator and confidence interval using the observations

X}, X5, ..., X|. Specifically, let
1 r
v/ _ l
Xn=22 X
j=1
and

/. 1 d /7 v/
$%) = — ;(X,- — X'(r))?

systems possessing a unique steady state, one can show that
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be the sample mean and sample variance, respectively, ofY; .1, Y; cy2,..., Y, in replication j. After simulating
the X’.. Then, an approximate 10D— §)% confidence the r replications, compute
interval forv is given by

_ 1<
[’% RGNS or “/m} 0=rn
i Gl
and

wheret = t,_11-5/2 is chosen such thaP{7T,_; < 1} = 5 1 < _ 5

1—8/2 andT7,_; is a Student-random variable withr — 1 §°(r) = — Z(Xj - X)),

degrees of freedom. Virtually all introductory statistics j=1

books provider-tables giving values of for various § which are the sample mean and sample variance, respec-

and degrees of freedom; also see Table T.1 of Law and tively, of the X;. Then, an approximate 10D— §)%
Kelton (2000) or Table A.5 of Banks et al. (2001). (Here confidence interval fop is given by
we use the critical point from adistribution rather than
a standard normal distribution because the numbef 1S(r) - 1S(r)

e — XN+ )
replications is often small.) Jr Jr

A major problem with the method of multiple replica-
tions is that, while the technique permits simple estimation For more details on initial-data deletion, including some

[m -

of the variance, the multiple-replicate estimaxdtr) can be heuristics to determine, see Section 9.1 of Law and Kel-
significantly contaminated by the presencdrofialization ton (2000).
bias Specifically, the law of large numbers guarantees that One problem with initial-data deletion is that in each of

the r replications, we have to deleteobservations. Thus,

1K we are throwing away a total ofc observations over all

X} =% Z Yii—>v of the replications. If we used single-replicate algorithm
i=1 (i.e., one withr = 1), then we would only delete a total of

. _ . . c observations.
as k — oo. However, since each replicate is typically

started with an initial conditiorf that is atypical of the

steady state (e.g., queueing simulations are often started
with no customers present), it often follows that for any Typically in practice, whenp is large, ¥; and
finite k,

4.3 Single-Replicate Methods

Yiy, are
almost independent for ea¢h For example, supposg is

1Kk the waiting time of theth customer in a queueing system.
E |:— > Yj,,} # . Then we would expect that the waiting time of the 100th
k i=1 customer to be almost independent of the 10th customer’s
Thus, we conclude that if the number of replicates large waiting time. : .
. L Now suppose that we run a simulation of lengith
relative to the run lengttk of each replication, then the - .
giving us observationgy, Y, ..., Y,. Suppose we group

estimatorX’(r) may be significantly biased.

A partial solution to this problem is to ugeitial-data
deletion which we now describe. Suppose that we somehow
can determine the firgt observations of the simulation are
significantly contaminated, i.e., not very representative of
steady state. Also, suppose all observatigngithi > ¢ are
not significantly contaminated. Then in each replication,
we will delete the firstc observations when calculating
the sample mean of the replication. Specifically, for each

the m observations inta: large, non-overlappingpatches
each of sizeb (som = nb), where the first batch consists

of the firstb observations, the second batch consists of the
next b observations, and so on. #fis chosen to be large,
then most of the observations in one batch should be almost
independent of most of the observations in any other batch.
The only dependence that essentially exists is between ob-
servations in two adjacent batches. Observations in batches
that are not adjacent are almost independent. Moreover,

replicationj =1,2,...,r, let if we compute the sample mean of each of the batches,
k then the sample means should be almost independent when
o 1 o the batch size is large. Also, each sample mean will be
X;= > v A e
k—c close to normally distributed for large since it is a sample

mean and so it satisfies a CLT (see (15)). Using the above
be the sample mean of the (non-contaminated) observationsobservations, we now present the method of batch means.
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Method of batch means to construct confidence in-
tervals in steady-state simulations

1. Select a total run lengthe, which is large. Also,
select a number of batches (Schmeiser 1982
suggest choosing 18 n < 30.)

2. Run a simulation generating a totalsfobserva-
tions. This results in observations, Ys, ..., Y.

3. Then group the: observations inta batches, each
of sizeb = m/n. Forj =12, ...,n, the jth
batch mearis calculated as

1
S

I=(j—1)b+1

)_’j(b) = Y;.

Note thath(b) is the sample mean of thie ob-
servations in theith batch.

4. We then treal’1(b), Y2(b), ..., Y,(b) as i.i.d. ob-
servations (note that they are not, but should be
reasonably close for large batch siZzgsand use
classical statistics to construct a confidence inter-
val. Specifically, compute

- 1 n _ 1 m
Yby==% Vi) ==3 %,
j=1 i=1

and

S2(n, b) = n—il > (Y,-(b) ~ Y, b))2

j=1

the remainingn data points. When using a single-replicate
method such as batch means, we only need to delete a total
of ¢ observations, as opposedriowhen using the method

of multiple replications withr replications. Whitt (1991)
provides a mathematical analysis that basically yields the
following:

Rule of Thumb: Single replicate procedures tend to
be better (as measured by the mean square error of the
steady-state estimator) than multiple-replicate procedures.

There has been a lot of recent work on improvements
to the batch-means method described above. See Schmeiser
and Song (1996) for a survey.

4.4 Other Methods

There are numerous other methods for statistically analyzing
simulation output in the steady-state context. These include
spectral (e.g., Anderson 1994), regenerative (Crane and
Iglehart 1975, Shedler 1993), and standardized time series
methods (Schruben 1983), but these techniques require more
sophisticated mathematics to understand and can be some-
what more difficult to implement. For an overview of these
other techniques, see Bratley, Fox and Schrage (1987) or
Law and Kelton (2000). Finally, Nakayama (1994) presents
two-stage procedures for obtaining fixed-width confidence
intervals in steady-state simulations.

5 ESTIMATING MULTIPLE PERFORMANCE
MEASURES

Consider our previous example of an ATM that is accessible
only between 9:00am and 5:00pm, and suppose that we want

as the sample mean and sample variance, respec-tq calculate

tively, of the n batch means, and an approximate
100(1 — §)% confidence interval fop is

tS(n, b) tS(n, b)
v Vil

wherer = 1,,_1 15,2 is chosen such tha{7,_1 <
t} = 1—6/2 for T,,_1 a Student- random variable
with n — 1 degrees of freedom.
It can be shown that in virtually all situations arising
in practice, the method of batch means will produce valid
confidence intervals as — oo. More specifically,

i| } ~1-34§
for batch sizeb sufficiently large.

We can easily modify the above procedure to incor-
porate initial-data deletion by instead collecting a total of
m + ¢ observations and removing the fikstcontaminated
observations. Then apply the method of batch means with

Y k) +

[ Y(n,b) —

tS(n, b)

P{ue[?(n,b)i
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e u1, the expected number of customers served in a

day;

*  u2, the probability that the number served in a day

is at least 1000;

*  us, the expected amount of money withdrawn from

the ATM in a day.
These are all transient performance measures, and suppose
we use the same simulation to estimate all 3 measures by
running n independent replications. Lef1; denote the
number of customers served in tli#h replication. Let
X2, be 1 if at least 1000 customers are served inithe
replication, and O otherwise. Letz; be the amount of
money withdrawn on théth replication.

After runningn replications, suppose we construct a
95% confidence interval for eagh, s = 1,2, 3. Let I
denote the 95% confidence interval fag, so if we ran
a sufficiently large numbet of replications, thenP{u; €
I} ~ 0.95 for eachs = 1, 2, 3. But what can we say about
the joint coverage of the 3 confidence intervals; i.e., what
is P{us; € Iy, forall s =1,2, 3}?
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More generally, suppose that we are estimadimgeans
us, s = 1,2,...,¢q, and for eachu,, we construct a
100(1 — 65)% confidence interval;. What can we say
about P{u; € I, foralls = 1,2,...,¢}? Bonferroni's
inequality provides a lower bound for this probability:

q
P{us € I, for aIIs=1,2,...,q}zl—Z5s.
s=1

Thus, in our previous example in which we had three 95%
confidence intervals, the Bonferroni inequality implies the

joint probability that all three confidence intervals contain
their respective true means is at least 85%. Therefore, our
joint confidence level for all three intervals is less than the
confidence level for any single interval. If we want the joint
confidence to be at least 95%, then we mightsset 0.01

for eachs. This would yield individual 99% confidence
intervals, with the joint probability being at least 0.97. Thus,
in order to have high confidence that all of our individual
confidence intervals contain their respective means, we need
to construct the individual confidence intervals with even
higher confidence levels.

Often, one wants to compare different systems to see
which one is the “best.” For example, we may have 5
possible designs for a manufacturing system, and we want
to determine which has the highest expected production per
day. There is substantial literature on this topic, much of it
in the areas of so-callesklection procedureand multiple-
comparison procedured-or an overview of these methods,
see Goldsman and Nelson (2001).

6 OTHER USEFUL METHODS

We now briefly discuss some other techniques that can
be useful for simulations.Variance-reduction techniques
(VRTSs), which are also known asfficiency-improvement
techniquescan lead to simulation estimators with smaller
error (variance) by typically either collecting additional
information from the simulation run(s) or changing or con-
trolling the way in which the simulation is run. Some of
the more widely used VRTSs include the following:
Common random numbe(s.g., see Section 11.2
of Law and Kelton 2000) can improve simulations
comparing two or more systems by running the
simulations of the various systems using the same
stream of random numbers. This generally induces
positive correlation among the resulting estimators,
which can be advantageous when estimating differ-
ences of performance measures between systems.
Antithetic variateg(e.g., see Section 11.3 of Law
and Kelton 2000) can improve results from simu-
lating a single system by inducing negative corre-
lations between pairs of replications.
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The method ofcontrol variates(e.g., see Section
11.4 of Law and Kelton 2000) collects additional
data during the simulation, where the mean of
the extra collected data is known. For example,
in a queueing simulation, one often knows the
mean of the service-time distribution, and so one
might additionally collect the random service times
that are generated during the simulation. The data
collected typically is correlated with the simulation
output, and this correlation can be exploited to
obtain an estimator with lower variance than the
standard estimator.

Importance sampling(Hammersley and Hand-
scomb 1964, Glynn and Iglehart 1989) is often
used in rare-event simulations, such as for analyz-
ing buffer overflows in communication networks
and system failures of fault-tolerant systems. In
these settings, the event of interest, typically some
kind of failure, occurs very rarely, and importance
sampling changes the dynamics of the system to
cause the event to occur more frequently. Unbi-
ased estimators are recovered by multiplying by
a correction factor known as the likelihood ra-
tio. Heidelberger (1995) and Nicola, Shahabuddin
and Nakayama (2001) review importance-sampling
methods for rare-event simulations of queueing and
reliability systems.

Other VRTs include stratified sampling, conditional Monte
Carlo, and splitting. These and other methods are described
in Chapter 11 of Law and Kelton (2000) and Chapter 2 of
Bratley, Fox and Schrage (1987).

One is often interested in estimating derivatives of
performance measures with respect to system parameters.
For example, in a reliability system, one may want to know
the derivative of the mean time to system failure with respect
to a component’s failure rate. This information can be useful
in designing systems by identifying components on which
to focus to improve overall performance. Also, derivative
information can be used with some simulation-optimization
methods (e.g., Andradoéttir 1998). Techniques for estimating
derivatives using simulation include perturbation analysis
(Glasserman 1991; Ho and Cao 1991; Fu and Hu 1997)
and the likelihood-ratio or score-function method (Reiman
and Weiss 1989; Rubinstein 1989; Glynn 1990).

7 CONCLUSIONS

We have described some techniques for statistically analyz-
ing the output from a simulation. It is important to keep in
mind that the methods presented here aragtmptotically
valid, so large run lengths are needed to ensure that valid
inferences are drawn.

In addition to the references given throughout the pa-
per, other resources covering simulation-output analysis in-
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clude Banks (1998), Banks et al. (2001), Fishman (2001), Law, A. M. and W. D. Kelton. 2000Simulation Modeling

Melamed and Rubinstein (1998), and Ross (2002). and Analysis3rd ed. New York: McGraw-Hill.
Melamed, B. and Rubinstein, R.Y. 1998lodern Simulation
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