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ABSTRACT 

In this paper we discuss verification and validation of simu-
lation models.  Four different approaches to deciding model 
validity are described; two different paradigms that relate 
verification and validation to the model development proc-
ess are presented; various validation techniques are defined; 
conceptual model validity, model verification, operational 
validity, and data validity are discussed; a way to document 
results is given; a recommended procedure for model valida-
tion is presented; and accreditation is briefly discussed.  

1 INTRODUCTION 

Simulation models are increasingly being used in problem 
solving and in decision making.  The developers and users 
of these models, the decision makers using information de-
rived from the results of these models, and the individuals 
affected by decisions based on such models are all rightly 
concerned with whether a model and its results are “correct”.  
This concern is addressed through model verification and 
validation. Model verification is often defined as “ensuring 
that the computer program of the computerized model and 
its implementation are correct” and is the definition adopted 
here.  Model validation is usually defined to mean “substan-
tiation that a computerized model within its domain of ap-
plicability possesses a satisfactory range of accuracy consis-
tent with the intended application of the model” (Schlesinger 
et al. 1979) and is the definition used here. A model some-
times becomes accredited through model accreditation.  
Model accreditation determines if a model satisfies specified 
model accreditation criteria according to a specified process.  
A related topic is model credibility. Model credibility is 
concerned with developing in (potential) users the confi-
dence they require in order to use a model and in the infor-
mation derived from that model.  

A model should be developed for a specific purpose (or 
application) and its validity determined with respect to that 
purpose.  If the purpose of a model is to answer a variety of 
questions, the validity of the model needs to be determined 

 

with respect to each question.  Numerous sets of experimen-
tal conditions are usually required to define the domain of a 
model’s intended applicability.  A model may be valid for 
one set of experimental conditions and invalid in another. A 
model is considered valid for a set of experimental condi-
tions if the model’s accuracy is within its acceptable range, 
which is the amount of accuracy required for the model’s 
intended purpose. This generally requires that the model’s 
output variables of interest (i.e., the model variables used in 
answering the questions that the model is being developed to 
answer) be identified and that their required amount of accu-
racy be specified. The amount of accuracy required should 
be specified prior to starting the development of the model 
or very early in the model development process. If the vari-
ables of interest are random variables, then properties and 
functions of the random variables such as means and vari-
ances are usually what is of primary interest and are what is 
used in determining model validity. Several versions of a 
model are often developed prior to obtaining a satisfactory 
valid model. The substantiation that a model is valid, i.e., 
performing model verification and validation, is generally 
considered to be a process and is usually part of the model 
development process.  

 

It is often too costly and time consuming to determine 
that a model is absolutely valid over the complete domain of 
its intended applicability.  Instead, tests and evaluations are 
conducted until sufficient confidence is obtained that a 
model can be considered valid for its intended application 
(Sargent 1982, 1984). If a test determines that a model does 
not have sufficient accuracy for a set of experimental condi-
tions, then the model is invalid.  However, determining that 
a model has sufficient accuracy for numerous experimental 
conditions does not guarantee that a model is valid every-
where in its applicable domain. The relationships of cost (a 
similar relationship holds for the amount of time) of per-
forming model validation and the value of a model to the 
user as a function of model confidence are shown in Figure 
1.  The cost of model validation is usually significant, espe-
cially when extremely high model confidence is required. 
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Figure 1: Model Confidence 
 
The remainder of this paper is organized as follows: 

Section 2 presents the basic approaches used in deciding 
model validity; Section 3 describes two different para-
digms used in verification and validation; Section 4 defines 
validation techniques; Sections 5, 6, 7, and 8 discuss data 
validity, conceptual model validity, computerized model 
verification, and operational validity, respectively; Section 
9 describes a way of documenting results; Section 10 gives 
a recommended validation procedure; Section 11 contains 
a brief description of accreditation; and Section 12 presents 
the summary.  

2 BASIC APPROACHES 

There are four basic approaches for deciding whether a 
simulation model is valid or invalid.  Each of the ap-
proaches requires the model development team to conduct 
verification and validation as part of the model develop-
ment process, which is discussed below.  One approach, 
and a frequently used one, is for the model development 
team itself to make the decision as to whether a simulation 
model is valid.  A subjective decision is made based on the 
results of the various tests and evaluations conducted as 
part of the model development process. However, it is usu-
ally better to use one of the next two approaches, depend-
ing on which situation applies. 

If the size of the simulation team developing the 
model is not large, a better approach than the one above is 
to have the user(s) of the model heavily involved with the 
model development team in determining the validity of the 
simulation model. In this approach the focus of who de-
termines the validity of the simulation model should move 
from the model developers to the model users.  Also, this 
approach aids in model credibility. 
 Another approach, usually called “independent verifica-
tion and validation” (IV&V), uses a third (independent) 
party to decide whether the simulation model is valid.  The 
third party is independent of both the simulation develop-
ment team(s) and the model sponsor/user(s). This approach 
should normally be used when developing large-scale simu-
lation models, which usually have one large or several teams 
involved in developing the simulation model. Also, this ap-
proach is often used when a large cost is associated with the 
problem the simulation model is being developed for and/or 
to help in model credibility. In this approach the third party 
needs to have a thorough understanding of what the intended 
purpose of the simulation model is. There are two common 
ways that IV&V is conducted by the third party. One way is 
to conduct IV&V concurrently with the development of the 
simulation model. The other way is to conduct IV&V after 
the simulation model has been developed. 

In the concurrent way of conducting IV&V, the model 
development team(s) receives input from the IV&V team 
regarding verification and validation as the model is being 
developed. Thus, the development of a simulation model 
should not progress beyond each stage of development if the 
model is not satisfying the verification and validation re-
quirements. It is the author’s opinion that this is the better of 
the two ways.  In the other way, where IV&V is conducted 
after the model has been completely developed, the evalua-
tion performed can range from simply evaluating the verifi-
cation and validation conducted by the model development 
team to performing a complete verification and validation 
effort. Wood (1986) describes experiences over this range of 
evaluation by a third party on energy models.  One conclu-
sion that Wood makes is that performing a complete IV&V 
effort after the simulation has been completely developed is 
extremely costly and time consuming for what is obtained.  
This author’s view is that if IV&V is going to be conducted 
on a completed simulation model then it is usually best to 
only evaluate the verification and validation that has already 
been performed. 

The last approach for determining whether a model is 
valid is to use a scoring model (see, e.g., Balci (1989), Gass 
(1993), and Gass and Joel (1987)).  Scores (or weights) are 
determined subjectively when conducting various aspects of 
the validation process and then combined to determine cate-
gory scores and an overall score for the simulation model.  A 
simulation model is considered valid if its overall and cate-
gory scores are greater than some passing score(s).  This ap-
proach is seldom used in practice.  

This author does not believe in the use of scoring 
models for determining validity because (1) a model may 
receive a passing score and yet have a defect that needs to 
be corrected, (2) the subjectiveness of this approach tends 
to be hidden and thus this approach appears to be objec-
tive, (3) the passing scores must be decided in some (usu-
ally) subjective way, and (4) the score(s) may cause over 
confidence in a model or be used to argue that one model is 
better than another.  

3 PARADIGMS 

In this section we present and discuss paradigms that relate 
verification and validation to the model development proc-
ess. There are two common ways to view this relationship.  
One way uses a simple view and the other uses a complex 
view. Banks et al. (1988) reviewed work using both of 
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these ways and concluded that the simple way more clearly 
illuminates model verification and validation. We present a 
paradigm of each way that this author has developed. The 
paradigm of the simple way is presented first and is this 
author’s preferred paradigm. 
 Consider the simplified version of the model devel-
opment process in Figure 2 (Sargent 1981). The problem 
entity is the system (real or proposed), idea, situation, pol-
icy, or phenomena to be modeled; the conceptual model is 
the mathematical/logical/verbal  representation (mimic) of  
the problem entity developed for a particular study; and the 
computerized model is the conceptual model implemented 
on a computer. The conceptual model is developed through 
an analysis and modeling phase, the computerized model 
is developed through a computer programming and imple-
mentation phase, and inferences about the problem entity 
are obtained by conducting computer experiments on the 
computerized model in the experimentation phase.  
 We now relate model validation and verification to 
this simplified version of the modeling process. (See Fig-
ure 2.) Conceptual model validation is defined as deter-
mining that the theories and assumptions underlying the 
conceptual model are correct and that the model represen-
tation of the problem entity is “reasonable” for the in-
tended purpose of the model.  Computerized model verifi-
cation is defined as assuring that the computer 
programming and implementation of the conceptual model 
is correct.  Operational validation is defined as determin-
ing that the model’s output behavior has sufficient accu-
racy for the model’s intended purpose over the domain of 
the model’s intended applicability.  Data validity is defined 
as ensuring that the data necessary for model building, 
model evaluation and testing, and conducting the model 
experiments to solve the problem are adequate and correct. 

In using this paradigm to develop a valid simulation 
model, several versions of a model are usually developed 
during the modeling process prior to obtaining a satisfac-
tory valid model.  During each model iteration, model veri-
fication and validation are performed (Sargent 1984). A 
variety of (validation) techniques are used, which are given 
below. No algorithm or procedure exists to select which 
techniques to use.  Some attributes that affect which tech-
niques to use are discussed in Sargent (1984).  
 A detailed way of relating verification and validation to 
developing simulation models and system theories is shown 
in Figure 3.  This paradigm shows the processes of develop-
ing system theories and simulation models and relates verifi-
cation and validation to both of these processes. 
 This paradigm (Sargent 2001b) shows a Real World 
and a Simulation World. We first discuss the Real World. 
There exist some system or problem entity in the real world 
of which an understanding of is desired.  System theories 
describe the characteristics of the system (or problem en-
tity) and possibly its behavior (including data). System data 
and results are obtained by conducting experiments (ex- 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Simplified Version of the Modeling Process 
 

perimenting) on the system. System theories are developed 
by abstracting what has been observed from the system 
and by hypothesizing from the system data and results.  If a 
simulation model exists of this system, then hypothesizing 
of system theories can also be done from simulation data 
and results. System theories are validated by performing 
theory validation. Theory validation involves the compari-
son of system theories against system data and results over 
the domain the theory is applicable for to determine if there 
is agreement.  This process requires numerous experiments 
to be conducted on the real system. 

We now discuss the Simulation World, which shows a 
(slightly) more complicated model development process 
than the other paradigm.  A simulation model should only 
be developed for a set of well-defined objectives.  The 
conceptual model is the mathematical/logical/verbal repre-
sentation (mimic) of the system developed for the objec-
tives of a particular study. The simulation model specifica-
tion is a written detailed description of the software design 
and specification for programming and implementing the 
conceptual model on a particular computer system. The 
simulation model is the conceptual model running on a 
computer system such that experiments can be conducted 
on the model. The simulation model data and results are 
the data and results from experiments conducted (experi-
menting) on the simulation model. The conceptual model is 
developed by modeling the system, where the understand-
ing of the system is contained in the system theories,  for 
the objectives of the simulation study. The simulation 
model is obtained by implementing the model on the speci-
fied computer system, which includes programming the 
conceptual model whose specifications are contained in the 
simulation model specification.  Inferences  about  the sys-
tem  are obtained  by  conducting   computer   experiments 
(experimenting) on the simulation model. Conceptual  
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Figure 3: Real World and Simulation World Relationships with Verification and Validation 

 

model validation is defined as determining that the theories 
and assumptions underlying the conceptual model are con-
sistent with those in the system theories and that the model 
representation of the system is “reasonable” for the intended 
purpose of the simulation model.  Specification verification 
is defined as assuring that the software design and the speci-
fication for programming and implementing the conceptual 
model on the specified computer system is satisfactory. Im-
plementation verification is defined as assuring that the 
simulation model has been implemented according to the 
simulation model specification. Operational validation is 
defined as determining that the model’s output behavior has 
sufficient accuracy for the model’s intended purpose over 
the domain of the model’s intended applicability.   

This paradigm shows processes for both developing 
valid system theories and valid simulation models.  Both 
are accomplished through iterative processes. To develop 
valid system theories, which are usually for a specific pur-
pose, the system is first observed and then abstraction is 
performed from what has been observed to develop pro-
posed system theories. These theories are tested for cor-
rectness by conducting experiments on the system to obtain 
data and results to compare against the proposed system 
theories. New proposed system theories may be hypothe-
sized from the data and comparisons made, and also possi-
bly from abstraction performed on additional system ob-
servation, and these new proposed theories will require 
new experiments to be conducted on the system to obtain 
data to evaluate the correctness of these proposed system 
theories.  This process repeats itself until a satisfactory set 
of validated system theories has been obtained. To develop 
a valid simulation model, several versions of a model are 
usually developed prior to obtaining a satisfactory valid 
simulation model. During every model iteration, model 
verification and validation are performed.  This process is 
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similar to the one for the other paradigm except there is 
more detail given in this paradigm. 

4 VALIDATION TECHNIQUES 

This section describes various validation techniques and 
tests used in model verification and validation.  Most of the 
techniques described here are found in the literature, al-
though some may be described slightly differently.  They 
can be used either subjectively or objectively.  By “objec-
tively,” we mean using some type of statistical test or 
mathematical procedure, e.g., hypothesis tests or confi-
dence intervals. A combination of techniques is generally 
used.  These techniques are used for validating and verify-
ing the submodels and overall model.  

Animation: The model’s operational behavior is dis-
played graphically as the model moves through time.  For 
example the movements of parts through a factory during a 
simulation run are shown graphically. 

Comparison to Other Models: Various results (e.g., out-
puts) of the simulation model being validated are compared 
to results of other (valid) models.  For example, (1) simple 
cases of a simulation model are compared to known results of 
analytic models, and (2) the simulation model is compared to 
other simulation models that have been validated. 

 Degenerate Tests: The degeneracy of the model’s be-
havior is tested by appropriate selection of values of the 
input and internal parameters.  For example, does the aver-
age number in the queue of a single server continue to in-
crease over time when the arrival rate is larger than the 
service rate? 

Event Validity: The “events” of occurrences of the 
simulation model are compared to those of the real system 
to determine if they are similar.  For example, compare the 
number of deaths in a fire department simulation. 

Extreme Condition Tests: The model structure and 
output should be plausible for any extreme and unlikely 
combination of levels of factors in the system.  For exam-
ple, if in-process inventories are zero, production output 
should be zero. 

Face Validity: Asking individuals knowledgeable 
about the system whether the model and/or its behavior is 
reasonable.  For example,  is the logic in the conceptual 
model correct and is the model’s input-output relationships 
reasonable. 

Historical Data Validation: If historical data exist (or 
if data are collected on a system for building or testing a 
model), part of the data is used to build the model and the 
remaining data are used to determine (test) whether the 
model behaves as the system does.  (This testing is con-
ducted by driving the simulation model with either samples 
from distributions or traces (Balci and Sargent 1982a, 
1982b, 1984b).) 

Historical Methods: The three historical methods of 
validation are rationalism, empiricism, and positive eco-
nomics. Rationalism assumes that everyone knows whether 
the underlying assumptions of a model are true.  Logic de-
ductions are used from these assumptions to develop the 
correct (valid) model.  Empiricism requires every assump-
tion and outcome to be empirically validated.  Positive 
economics requires only that the model be able to predict 
the future and is not concerned with a model’s assumptions 
or structure (causal relationships or mechanisms). 

Internal Validity: Several replication (runs) of a sto-
chastic model are made to determine the amount of (inter-
nal) stochastic variability in the model.  A large amount of 
variability (lack of consistency) may cause the model’s re-
sults to be questionable and if typical of the problem entity, 
may question the appropriateness of the policy or system 
being investigated. 

Multistage Validation: Naylor and Finger (1967) pro-
posed combining the three historical methods of rational-
ism, empiricism, and positive economics into a multistage 
process of validation.  This validation method consists of 
(1) developing the model’s assumptions on theory, obser-
vations, and general knowledge, (2) validating the model’s 
assumptions where possible by empirically testing them, 
and (3) comparing (testing) the input-output relationships 
of the model to the real system.  

Operational Graphics: Values of various performance 
measures, e.g., the number in queue and percentage of 
servers busy, are shown graphically as the model runs 
through time; i.e., the dynamical behaviors of performance 
indicators are visually displayed as the simulation model 
runs through time to ensure they are correct. 

Parameter Variability - Sensitivity Analysis: This 
technique consists of changing the values of the input and 
internal parameters of a model to determine the effect upon 
the model’s behavior or output.  The same relationships 
should occur in the model as in the real system.  Those pa-
rameters that are sensitive, i.e., cause significant changes in 
the model’s behavior or output, should be made suffi-
ciently accurate prior to using the model.  (This may re-
quire iterations in model development.) 

Predictive Validation: The model is used to predict 
(forecast) the system’s behavior, and then comparison are 
made between the system’s behavior and the model’s fore-
cast to determine if they are the same. The system data 
may come from an operational system or be obtained by 
conducting experiments on the system, e.g., field tests.  

Traces: The behavior of different types of specific en-
tities in the model are traced (followed) through the model 
to determine if the model’s logic is correct and if the nec-
essary accuracy is obtained. 

Turing Tests: Individuals who are knowledgeable 
about the operations of the system being modeled are 
asked if they can discriminate between system and model 
outputs.  (Schruben (1980) contains statistical tests for use 
with Turing tests.) 
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5 DATA VALIDITY 

We discuss data validity even though it is often not consid-
ered to be part of model validation because it is usually dif-
ficult, time consuming, and costly to obtain sufficient, ac-
curate, and appropriate data, and is the often the reason that 
attempts to valid a model fail.  Data are needed for three 
purposes: for building the conceptual model, for validating 
the model, and for performing experiments with the vali-
dated model.  In model validation we are concerned only 
with data for the first two purposes. 
 To build a conceptual model we must have sufficient 
data on the problem entity to develop theories that can be 
used to build the model, to develop mathematical and logi-
cal relationships for use in the model that will allow the 
model to adequately represent the problem entity for its in-
tended purpose, and to test the model’s underlying assump-
tions.  In additional, behavioral data are needed on the 
problem entity to be used in the operational validity step of 
comparing the problem entity’s behavior with the model’s 
behavior. (Usually, this data are system input/output data.)  
If behavior data are not available, high model confidence 
usually cannot be obtained because sufficient operational 
validity cannot be achieved.     
   The concern with data is that appropriate, accurate, and 
sufficient data are available, and if any data transformations 
are made, such as disaggregation, they are correctly per-
formed.  Unfortunately, there is not much that can done to 
ensure that the data are correct.  The best that can be done is 
to develop good procedures for collecting and maintaining 
data, test the collected data using techniques such as internal 
consistency checks, and screen for outliers and determine if 
they are correct.  If the amount of data is large, a database 
should be developed and maintained. 

6 CONCEPTUAL MODEL VALIDATION 

Conceptual model validity is determining that (1) the theo-
ries and assumptions underlying the conceptual model are 
correct and (2) the model’s representation of the problem 
entity and the model’s structure, logic, and mathematical 
and causal relationships are “reasonable” for the intended 
purpose of the model.  The theories and assumptions un-
derlying the model should be tested using mathematical 
analysis and statistical methods on problem entity data.  
Examples of theories and assumptions are linearity, inde-
pendence of data, and arrivals are Poisson.  Examples of 
applicable statistical methods are fitting distributions to 
data, estimating parameter values from the data, and plot-
ting data to determine if the data are stationary.  In addi-
tion, all theories used should be reviewed to ensure they 
were applied correctly; for example, if a Markov chain is 
used, does the system have the Markov property, and are 
the states and transition probabilities correct? 

Next, every submodel and the overall model must be 
evaluated to determine if they are reasonable and correct 
for the intended purpose of the model.  This should include 
determining if the appropriate detail and aggregate rela-
tionships have been used for the model’s intended purpose, 
and if appropriate structure, logic, and mathematical and 
causal relationships have been used.  The primary valida-
tion techniques used for these evaluations are face valida-
tion and traces.  Face validation has experts on the problem 
entity evaluate the conceptual model to determine if it is 
correct and reasonable for its purpose.  This usually re-
quires examining the flowchart or graphical model, or the 
set of model equations.  The use of traces is the tracking of 
entities through each submodel and the overall model to 
determine if the logic is correct and if the necessary accu-
racy is maintained.   If errors are found in the conceptual 
model, it must be revised and conceptual model validation 
performed again. 

7 COMPUTERIZED MODEL VERIFICATION 

Computerized model verification ensures that the computer 
programming and implementation of the conceptual model 
are correct.  The major factor affecting verification is 
whether a simulation language or a higher level program-
ming language such as FORTRAN, C, or C++ is used.  
The use of a special-purpose simulation language generally 
will result in having fewer errors than if a general-purpose 
simulation language is used, and using a general purpose 
simulation language will generally result in having fewer 
errors than if a general purpose higher level programming 
language is used. (The use of a simulation language also 
usually reduces both the programming time required and 
the amount of flexibility.) 

When a simulation language is used, verification is pri-
marily concerned with ensuring that an error free simulation 
language has been used, that the simulation language has 
been properly implemented on the computer, that a tested 
(for correctness) pseudo random number generator has been 
properly implemented, and the model has been programmed 
correctly in the simulation language.  The primary techniques 
used to determine that the model has been programmed cor-
rectly are structured walk-throughs and traces. 

If a higher level programming language has been used, 
then the computer program should have been designed, de-
veloped, and implemented using techniques found in soft-
ware engineering.  (These include such techniques as ob-
ject-oriented design, structured programming, and program 
modularity.)  In this case verification is primarily con-
cerned with determining that the simulation functions (e.g.,  
the time-flow mechanism, pseudo random number genera-
tor, and random variate generators) and the computer 
model have been programmed and implemented correctly. 

There are two basic approaches for testing simulation 
software: static testing and dynamic testing (Fairley 1976).  
In static testing the computer program is analyzed to de-
termine if it is correct by using such techniques as struc-
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tured walk-throughs, correctness proofs, and examining the 
structure properties of the program.  In dynamic testing the 
computer program is executed under different conditions 
and the values obtained (including those generated during 
the execution) are used to determine if the computer pro-
gram and its implementations are correct.  The techniques 
commonly used in dynamic testing are traces, investiga-
tions of input-output relations using different validation 
techniques, internal consistency checks, and reprogram-
ming critical components to determine if the same results 
are obtained.  If there are a large number of variables, one 
might aggregate some of the variables to reduce the num-
ber of tests needed or use certain types of design of ex-
periments (Kleijnen 1987). 

It is necessary to be aware while checking the correct-
ness of the computer program and its implementation that er-
rors found may be caused by the data, the conceptual model, 
the computer program, or the computer implementation.  

For a detailed discussion on model verification, see 
Whitner and Balci (1989). 

8 OPERATIONAL VALIDITY 

Operational validation is determining whether the simula-
tion model’s output behavior has the accuracy required for 
the model’s intended purpose over the domain of the 
model’s intended applicability.  This is where much of the 
validation testing and evaluation take place. Since the 
simulation model is used in operational validation, any de-
ficiencies found may be caused by what was developed in 
any of the steps that are involved in developing the simula-
tion model including developing the systems theories or 
having invalid data.  

All of the validation techniques discussed in Section 4 
are applicable to operational validity.  Which techniques 
and whether to use them objectively or subjectively must 
be decided by the model development team and the other 
interested parties.  The major attribute affecting operational 
validity is whether the problem entity (or system) is ob-
servable, where observable means it is possible to collect 
data on the operational behavior of the program entity.  
Table 1 gives a classification of the validation approaches  
 

Table 1: Operational Validity Classification 

 

in operational validity. “Comparison” means compar-
ing/testing the model and system input-output behaviors, 
and “explore model behavior” means to examine the output 
behavior of the model using appropriate validation tech-
niques and usually includes parameter variability-
sensitivity analysis.  Various sets of experimental condi-
tions from the domain of  the model’s intended applicability 
should be used for both comparison and exploring model 
behavior. 
 To obtain a high degree of confidence in a model and 
its results, comparisons of the model’s and system’s input-
output behaviors for several different sets of experimental 
conditions are usually required. There are three basic ap-
proaches used: (1) a subjective decision is made based on 
using graphs of model and system behavior data, (2) the 
use confidence intervals, and (3) the use hypothesis tests. It 
is preferable to use confidence intervals or hypothesis tests 
for the comparisons because these allow for objective deci-
sions. However, it is frequently not possible in practice to 
use either of these approaches because (a) the statistical as-
sumptions required cannot be satisfied or only with great 
difficulty (assumptions usually necessary are data inde-
pendence and normality) and/or (b) there is insufficient 
quantity of system data available that causes the statistical 
results not to be “meaningful” (e.g., the length of a confi-
dence interval developed in the comparison of the system 
and model means is to large for any practical usefulness).  
As a result, the use of graphs is the most commonly used 
approach for operational validity.  Each of these three ap-
proaches are discussed in the following subsections.  

8.1 Graphical Comparisons of Data 

The behavior data of the model and the system are graphed 
for various sets of experimental conditions to determine if 
the model’s output behavior has sufficient accuracy for the 
model’s intended purpose.  Three types of graphs are used: 
histograms, box (and whisker) plots, and behavior graphs 
using scatter plots. (See Sargent (1996a, 2001b) for a thor-
ough discussion on the use of these for model validation.)  
Examples of a histogram and a box plot, taken from Low-
ery (1996), are given in Figures 4 and 5, respectively, and 
examples of behavior graphs, taken from Anderson and 
Sargent (1974), are given in Figures 6 and 7.  A variety of 
graphs using different types of (1) measures such as the 
mean, variance, maximum, distribution, and times series of 
a variable, and (2) relationships between (a) two measures 
of a single variable (see Figure 6) and (b) measures of two 
variables (see Figure 7) are required.  It is important that 
appropriate measures and relationships be used in validat-
ing a model and that they be determined with respect to the 
model’s intended purpose.  See Anderson and Sargent 
(1974) and Lowery (1996) for examples of  sets of graphs 
used in the validation of a simulation model. 
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 These graphs can be used in model validation in dif-
ferent ways.  First, the model development team can use 
the graphs in the model development process to make a 
subjective judgment on whether a model posses sufficient 
accuracy for its intend purpose. Second, they can be used 
in face validity technique where experts are asked to make 
subjective judgments on whether a model possesses suffi-
cient accuracy for its intended purpose. Third, the graphs 
can be used in Turing tests and fourth in IV&V. We note 
that independence of data is not required here.  
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Figure 4: Histogram of Hospital Data 
 

Figure 5: Box Plot of Hospital Data 
 

 
 

Figure 6: Reaction Time  
Figure 7: Disk Access 

8.2 Confidence Intervals 

Confidence intervals (c.i.), simultaneous confidence inter-
vals (s.c.i.), and joint confidence regions (j.c.r.) can be ob-
tained for the differences between means, variances, and 
distributions of different model and system output vari-
ables for each set of experimental conditions.  These c.i., 
s.c.i., and j.c.r. can be used as the model range of accuracy 
for model validation. 

To construct the model range of accuracy, a statistical 
procedure containing a statistical technique and a method of 
data collection must be developed for each set of experimen-
tal conditions and for each variable of interest.  The statistical 
techniques used can be divided into two groups: (1) univari-
ate statistical techniques and (2) multivariate statistical tech-
niques.  The univariate techniques can be used to develop c.i., 
and with the use of the Bonferroni inequality (Law and Kel-
ton 2000), s.c.i. The multivariate techniques can be used to 
develop s.c.i. and j.c.r.  Both parametric and nonparametric 
techniques can be used. 

The method of data collection must satisfy the under-
lylng assumptions of the statistical technique being used.  
The standard statistical techniques and data collection 
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methods used in simulation output analysis (Banks et al. 
2000 and Law and Kelton 2000) can be used for develop-
ing the model range of accuracy, e.g., the methods of repli-
cation and (nonoverlapping) batch means. 

It is usually desirable to construct the model range of 
accuracy with the lengths of the c.i. and s.c.i. and the sizes of 
the j.c.r. as small as possible.  The shorter the lengths or the 
smaller the sizes, the more useful and meaningful the model 
range of accuracy will usually be.   The lengths an the sizes 
(1) are affected by the values of confidence levels, variances 
of the model and system output variables, and sample sizes, 
and (2) can be made smaller by decreasing the confidence 
levels or increasing the sample sizes.  A tradeoff needs to be 
made among the sample sizes, confidence levels, and esti-
mates of the length or sizes of the model range of accuracy, 
i.e., c.i., s.c.i. or j.c.r.  Tradeoff curves can be constructed to 
aid in the tradeoff analysis. 

Details on the use of c.i., s.c.i., and j.c.r. for opera-
tional validity, including a general methodology, are con-
tained in Balci and Sargent (1984b).  A brief discussion on 
the use of c.i. for model validation is also contained in Law 
and Kelton (2000). 

8.3 Hypothesis Tests 

Hypothesis tests can  be used in the comparison of means, 
variances, distributions, and time series of the output vari-
ables of a model and a system for each set of experimental 
conditions to determine if the model’s output behavior has 
an acceptable range of accuracy.  An acceptable range of ac-
curacy is the amount of accuracy that is required of a model 
to be valid for its intended purpose. 

The first step in hypothesis testing is to state the hy-
potheses to be tested: 

H0 Model is valid for the acceptable range of accu-
racy under the set of experimental conditions. 

H1 Model is invalid for the acceptable range of accu-
racy under the set of experimental conditions. 

 Two types of errors are possible in testing hypotheses.  
The first, or type I error, is rejecting the validity of a valid 
model and the second, or type II error, is accepting the va-
lidity of an invalid model.  The probability of a type I er-
ror, α, is called model builder’s risk, and the probability of 
type II error, β, is called model user’s risk (Balci and Sar-
gent 1981).  In model validation, the model user’s risk is 
extremely important and must be kept small.  Thus both 
type I and type II errors must be carefully considered when 
using hypothesis testing for model validation.  
 The amount of agreement between a model and a sys-
tem can be measured by a validity measure, λ, which is 
chosen such that the model accuracy or the amount of 
agreement between the model and the system decrease as 
the value of the validity measure increases.  The acceptable 
range of accuracy can be used to determine an acceptable 
validity range, 0 <  λ < λ*. 
 The probability of acceptance of a model being valid, 
Pa, can be examined as a function of the validity measure 
by using an operating characteristic curve (Johnson 1994).  
Figure 8 contains three different operating characteristic 
curves to illustrate how the sample size of observations af-
fect Pa as a function of λ.  As can be seen, an inaccurate 
model has a high probability of being accepted if a small 
sample size of observations is used, and an accurate model 
has a low probability of being accepted if a large sample 
size of observations is used. 

 

 
Figure 8: Operating Characteristic Curves 

 
The location and shape of the operating characteristic 

curves are a function of the statistical technique being 
used, the value of α chosen for λ = 0, i.e. α*, and the sam-
ple size of observations.  Once the operating characteristic 
curves are constructed, the intervals for the model user’s 
risk β(λ) and the model builder’s risk α can be determined 
for a given λ* as follows: 

α* < model builder’s risk α < (1 - β*) 
  0 < model user’s risk β(λ) < β*. 

Thus there is a direct relationship among the builder’s risk, 
model user’s risk, acceptable validity range, and the sam-
ple size of observations.  A tradeoff among these must be 
made in using hypothesis tests in model validation. 
 Details of the methodology for using hypotheses tests 
in comparing  the model’s and system’s output data for 
model validations are given in Balci and Sargent (1981). 
Examples of the application of this methodology in the 
testing of output means for model validation are given in 
Balci and Sargent (1982a, 1982b, 1983).   

9 DOCUMENTATION 

Documentation on model verification and validation is 
usually critical in convincing users of the “correctness” of 
a model and its results, and should be included in the simu-
lation model documentation.  (For a general discussion on 
documentation of computer-based models, see Gass 
(1984).) Both detailed and summary documentation are de-
sired.  The detailed documentation should include specifics 
on the tests, evaluations made, data, results, etc.  The 
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summary documentation should contain a separate evalua-
tion table for data validity, conceptual model validity, 
computer model verification, operational validity, and an 
overall summary.  See Table 2 for an example of an 
evaluation table of conceptual model validity.  (For exam-
ples of two other evaluation tables, see Sargent (1994, 
1996b).)  The columns of Table 2 are self-explanatory ex-
cept for the last column, which refers to the confidence the 
evaluators have in the results or conclusions.  These are of-
ten expressed as low, medium, or high. 

10 RECOMMENDED PROCEDURE 

This author recommends that, as a minimum, the following 
steps be performed in model validation: 

1. Have an agreement made prior to developing the 
model between (a) the model development team 
and (b) the model sponsors and (if possible) the 
users that specifies the basic validation approach 
and a minimum set of specific validation tech-
niques to be used in the validation process. 

2. Specify the amount of accuracy required of the 
model’s output variables of interest for the 
model’s intended application prior to starting the 
development of the model or very early in the 
model development process. 

3. Test, wherever possible, the assumptions and 
theories underlying the model.  

4. In each model iteration, perform at least face va-
lidity on the conceptual model. 

5. In each model iteration, at least explore the 
model’s behavior using the computerized model. 

6. In at least the last model iteration, make compari-
sons, if possible, between the model and system 
behavior (output) data for at least two sets of ex-
perimental conditions, and preferably more. 
 
 

 
Table 2: Evaluation Table for Conceptual Model Validity 

 

7. Develop validation documentation for inclusion in 
the model documentation. 

8. If the model is to be used over a period of time, 
develop a schedule for periodic review of the 
model’s validity. 

Some models are developed for repeated use. A pro-
cedure for reviewing the validity of these models over their 
life cycles needs to be developed, as specified in Step 8. 
No general procedure can be given, as each situation is dif-
ferent. For example, if no data were available on the sys-
tem when a model was initially developed and validated, 
then revalidation of the model should take place prior to 
each usage of the model if new data or system understand-
ing has occurred since the last validation.  

11 ACCREDITATION 

The Department of  Defense (DoD) has moved to accredit-
ing simulation models.  They define accreditation in DoDD 
5000.61 as the “official certification that a model, simula-
tion, or federation of models and simulations is acceptable 
for use for a specific application.”  The evaluation for ac-
creditation is usually conducted by a third (independent) 
party, is subjective, and often includes not only verification 
and validation but items such as documentation and how 
user friendly the simulation is.  The acronym VV&A is 
used for Verification, Validation, and Accreditation. 

12 SUMMARY 

Model verification and validation are critical in the develop-
ment of a simulation model.  Unfortunately,  there is no set of 
specific tests that can easily be applied to determine the “cor-
rectness” of a model.  Furthermore, no algorithm exists to de-
termine what techniques or procedures to use.  Every simula-
tion project presents a new and unique challenge. 
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 There is considerable literature on verification and vali-
dation; see e.g. Balci and Sargent (1984a).  Articles given 
under references, including  several not referenced above, 
can be used to further your knowledge on model verification 
and validation.  Research continues on these topics. 
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