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ABSTRACT

Most discrete-event simulation models have stochastic e
ments that mimic the probabilistic nature of the system und
consideration. A close match between the input model a
the true underlying probabilistic mechanism associated w
the system is required for successful input modeling. T
general question considered here is how to model an e
ment (e.g., arrival process, service times) in a discrete-ev
simulation given a data set collected on the element of
terest. For brevity, it is assumed that data is available on
aspect of the simulation of interest. It is also assumed th
raw data is available, as opposed to censored data, grou
data, or summary statistics. This example-driven tutor
examines introductory techniques for input modeling. Mo
simulation texts (e.g., Law and Kelton 2000) have a broad
treatment of input modeling than presented here. Nels
and Yamnitsky (1998) survey advanced techniques.

1 DATA COLLECTION

There are two approaches that arise with respect to
collection of data. The first is the classical approach, whe
a designed experiment is conducted to collect the data. T
second is the exploratory approach, where questions
addressed by means of existing data that the modeler
no hand in collecting. The first approach is better in term
of control and the second approach is generally better
terms of cost.

Collecting data on the appropriate elements of the sy
tem of interest is one of the initial and pivotal steps i
successful input modeling. An inexperienced modeler, f
example, collects wait times on a single-server queue wh
waiting time is the measure of performance of interest. A
though these wait times are valuable for model validatio
they do not contribute to the input model. The appropria
data elements to collect for an input model for a singl
server queue are typically arrival and service times. A
analysis of sample data collected on such a queue is gi
in Sections 3.1 and 3.2.
Even if the decision to sample the appropriate eleme
is made correctly, Bratley, Fox, and Schrage (1987) wa
that there are several things that can be “wrong” about t
data set. Vending machine sales will be used to illustra
the difficulties.

• Wrong amount of aggregation. We desire to mod
daily sales, but have only monthly sales.

• Wrong distribution in time. We have sales for thi
month and want to model next month’s sales.

• Wrong distribution in space. We want to mode
sales at a vending machine in location A, but on
have sales figures on a vending machine at locati
B.

• Censored data. We want to modeldemand, but we
only havesalesdata. If the vending machine eve
sold out, this constitutes a right-censored obse
vation. The reliability and biostatistical literature
contains techniques for accommodating censor
data sets (Lawless 1982).

• Insufficient distribution resolution. We want the
distribution of number the of soda cans sold at
particular vending machine, but our data is give
in cases, effectively rounding the data up to th
next multiple of 24.

2 INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy illustrating the scope of pote
tial input models available to simulation analysts. Modele
too often restrict their choice of input models to the top tw
branches. There is certainly no uniqueness in the branch
structure chosen for the taxonomy. The branches un
stochastic processes, for example, could have beenstate
followed by time, rather thantime followed by state, as
presented.
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Figure 1: A Taxonomy for Input Models
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Examples of specific models that could be placed
the branches of the taxonomy appear at the far right
the diagram. Mixed, univariate, time-independent inp
models have “empirical/trace-driven” given as a possib
model. All of the branches include this particular mode
A trace-driveninput model simply generates a process th
is identical to the collected data values so as not to r
on a parametric model. A simple example is a sequen
of arrival times collected over a 24-hour time period. Th
trace-driven input model for the arrival process is genera
by having arrivals occur at the same times as the obser
values.

The upper half of the taxonomy contains models th
are independent of time. These models could have b
referred to asMonte Carlomodels. Models are classified
by whether there is one or several variables of interest, a
whether the distribution of these random variables is d
crete, continuous, or contains both continuous and discr
elements. Examples of univariate discrete models inclu
the binomial distribution and a degenerate distribution w
all of its mass at one value. Examples of continuous dis
butions include the normal distribution and an exponent
distribution with a random parameter3 (see, for example,
Martz and Waller 1982). Bézier curves (Flanigan–Wagn
and Wilson 1993) offer a unique combination of the par
metric and nonparametric approaches. An initial distributi
is fitted to the data set, then the modeler decides whet
differences between the empirical and fitted models re
resent sampling variability or an aspect of the distributio
that should be included in the input model.

Examples ofk-variable multivariate input models (John
son 1987, Wilson 1997) include a sequence ofk independent
binomial random variables, a multivariate normal distrib
tion with meanµ and variance-covariance matrix6 and
a bivariate exponential distribution (Barlow and Prosch
1981).

The lower half of the taxonomy contains stochastic pr
cess models. These models are often used to solve probl
at the system level, in addition to serving as input mode
for simulations with stochastic elements. Models are cla
sified by how time is measured (discrete/continuous), t
state space (discrete/continuous) and whether the mod
stationary in time. For Markov models, the discrete-sta
continuous-state branch typically determines whether
model will be called a “chain” or a “process”, and the sta
tionary/nonstationary branch typically determines wheth
the model will be preceded with the term “homogeneou
or “nonhomogeneous”. Examples of discrete-time stoch
tic processes include homogeneous, discrete-time Mar
chains (Ross 2003) and ARIMA time series models (B
and Jenkins 1976). Since point processes are coun
processes, they have been placed on the continuous-t
discrete-space branch.
s

s

,

In conclusion, modelers are too often limited to un
variate, stationary models since software is typically writte
for fitting distributions to these models. Successful inp
modeling requires knowledge of the full range of possib
probabilistic input models.

3 EXAMPLES

Two simple examples illustrate the types of decisions th
often arise in input modeling. The first example determin
an input model for service times and the second exam
determines an input model for an arrival process.

3.1 Service Time Model

Consider a data set ofn = 23 service times collected to
determine an input model in a discrete-event simulation
a queuing system. The service times in seconds are

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service times come from the life testin
literature (Caroni 2002; Lawless 1982, p. 228), the sam
principles apply to both input modeling and survival ana
ysis.]

The first step is to assess whether the observati
are independent and identically distributed (iid). The da
must be given in the order collected for independence
be assessed. Situations where the iid assumption wouldnot
be valid include:

• A new teller has been hired at a bank and th
23 service times represent a task that has a st
learning curve. The expected service time is like
to decrease as the new teller learns how to perfo
the task more efficiently.

• The service times represent 23 times to completi
of a physically demanding task during an 8-hou
shift. If fatigue is a significant factor, the expecte
time to complete the task is likely to increase wit
time.

If a simple linear regression of the observation numbe
versus the service times shows a significant nonzero slo
then the iid assumption is probably not appropriate.

Assume that there is a suspicion that a learning cu
is present, which makes a modeler suspect that the ser
times are decreasing. One appropriate hypothesis test

H0 : β1 = 0

versus

H1 : β1 < 0
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associated with the linear model (Kutner, Nachtsheim, Ne
Wasserman 2003)

Y = β0 + β1X + ε,

whereX is the observation number,Y is the service time,β0
is the intercept,β1 is the slope, andε is an error term. Fig-
ure 2 shows a plot of the(xi, yi) pairs fori = 1,2, . . . ,23,
along with the estimated regression line. Thep -value asso-
ciated with the hypothesis test is 0.14, which is not enou
evidence to conclude that there is a statistically signific
learning curve present. The negative slope is likely due
sampling variability. Thep -value may, however, be sma
enough to warrant further data collection.
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Figure 2: Service Time vs. Observation Number

There are a number of other graphical and statist
methods for assessing independence. These include ana
of the sample autocorrelation function associated with
observations and a scatterplot of adjacent observations (
and Kelton 2000). The sample autocorrelation functi
(ACF) for the service times is plotted in Figure 3 for th
first ten lags. The sample ACF value at lag 1, for examp
is the sample correlation for adjacent service times. T
sample ACF value at lag 4, for example, is the sam
correlation for service times four customers apart. T
horizontal dotted lines at± 2√

n
are 95% bounds used t

determine whether the spikes in the ACF are statistica
significant. None were statistically significant for the servi
time data. For this particular example, assume that we
satisfied that the observations are truly iid in order to perfo
a classical statistical analysis.

The next step in the analysis of this data set includ
plotting a histogram and calculating the values of so
sample statistics. A histogram of the observations is sho
in Figure 4. Although the data set is small, a skewed b
shaped pattern is apparent. The largest observation lie
the far right-hand tail of the distribution, so care must
,
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Figure 3: Sample Autocorrelation Function
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Figure 4: Histogram of Service Times

taken to assure that it is representative of the population. T
sample mean, standard deviation, coefficient of variatio
and skewness are

x̄ = 72.22 s = 37.49
s

x̄
= 0.52

1

n

n∑
i=1

(
xi − x̄
s

)3

= 0.88.

Examples of interpretations of these sample statistics ar
• A coefficient of variations/x̄ close to 1, along with

the appropriate histogram shape, indicates that t
exponential distribution is a potential input model

• A sample skewness close to 0 indicates that
symmetric distribution (e.g., a normal or uniform
distribution) is a potential input model.
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The next decision that needs to be made is whether
parametric or nonparametric input model should be use
One simple nonparametric model would repeatedly sele
one of the service times with probability 1/23. The small
size of the data set, the tied value, 68.64 seconds, a
the observation in the far right-hand tail of the distribution
173.40 seconds, tend to indicate that a parametric analysis
more appropriate. For this particular data set, a paramet
approach is chosen.

There are dozens of choices for a univariate parametr
model for the service times. These include general fam
ilies of scalar distributions, modified scalar distributions
and commonly-used parametric distributions (see, for e
ample, Schmeiser 1990). Since the data is drawn from
continuous population and the support of the distribution
positive, a time-independent, univariate, continuous inpu
model is chosen. The shape of the histogram indicates th
the gamma, inverse Gaussian, log normal, and Weibull di
tributions (Lawless 1982) are good candidates. Derivatio
of the point and interval estimates for the Weibull distribu
tion are given in detail here. Similar approaches apply t
the other distributions.

Parameter estimates for the Weibull distribution ca
be found by least squares, the method of moments, a
maximum likelihood. Due to desirable statistical proper
ties, maximum likelihood is emphasized here. The Weibu
distribution has probability density function

f (x) = λκκxκ−1e−(λx)κ x ≥ 0,

whereλ is a positive scale parameter andκ is a positive
shape parameter. Letx1, x2, . . . , xn denote the data values.
The likelihood function is

L(λ, κ) =
n∏
i=1

f (xi) = λnκκn
[
n∏
i=1

xi

]κ−1

e−
∑n
i=1(λxi )

κ

.

Since the natural logarithm (log) is a monotone function, th
likelihood function and its logarithm achieve their maximum
at the same values ofλ andκ. The mathematics are typically
more tractable for maximizing a log likelihood function,
which, for the Weibull distribution, is

logL(λ, κ) = n logκ + κn logλ+ (κ − 1)
n∑
i=1

logxi − λκ
n∑
i=1

xκi .

The 2× 1 score vector has elements

∂ logL(λ, κ)

∂λ
= κn

λ
− κλκ−1

n∑
i=1

xκi

and

∂ logL(λ, κ)

∂κ
= n

κ
+ n logλ+

n∑
i=1

logxi −
n∑
i=1

(λxi)
κ logλxi .
s

t

When these equations are equated to zero, the simultane
equations have no closed-form solution for the maximu
likelihood estimatorŝλ and κ̂:

κn

λ
− κλκ−1

n∑
i=1

xκi = 0

n

κ
+ n logλ+

n∑
i=1

logxi −
n∑
i=1

(λxi)
κ logλxi = 0.

To reduce the problem to a single unknown, the first equatio
can be solved forλ in terms ofκ yielding

λ =
(

n∑n
i=1 x

κ
i

)1/κ

.

Law and Kelton (2000, p. 305) give an initial estimate forκ

and Qiao and Tsokos (1994) present a fixed-point algorith
for calculating the maximum likelihood estimatorsλ̂ andκ̂.
Their algorithm is guaranteed to converge for any positiv
initial estimate forκ for a complete data set.

The score vector has a mean of0 and a variance-
covariance matrixI (λ, κ) given by the 2× 2 Fisher infor-
mation matrix

I (λ, κ) =
[
E
[−∂2 logL(λ,κ)

∂λ2

]
E
[−∂2 logL(λ,κ)

∂κ∂λ

] E
[−∂2 logL(λ,κ)

∂λ∂κ

]
E
[−∂2 logL(λ,κ)

∂κ2

] ] .
The observed information matrix

O(λ̂, κ̂) =
[ −∂2 logL(λ̂,κ̂)

∂λ2

−∂2 logL(λ̂,κ̂)
∂κ∂λ

−∂2 logL(λ̂,κ̂)
∂λ∂κ

−∂2 logL(λ̂,κ̂)
∂κ2

]
,

can be used to estimateI (λ, κ).
For the 23 service times, the fitted Weibull distribution

has maximum likelihood estimatorŝλ = 0.0122 andκ̂ =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators is logL(λ̂, κ̂) = −113.691. Figure 5
shows the empirical cumulative distribution function (a ste
function with a step of height 1/23 at each data point) along
with the Weibull fit to the data.

The observed information matrix is

O(λ̂, κ̂) =
[

681,000
875

875
10.4

]
,

revealing a positive correlation between the elements
the score vector. We now consider interval estimators f
λ and κ. Using the fact that the likelihood ratio statistic,
2[logL(λ̂, κ̂)−logL(λ, κ)], is asymptoticallyχ2 distributed
in n with 2 degrees of freedom and thatχ2

2,0.05 = 5.99, a
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Figure 5: Empirical and Fitted Cumulative Distribution
Functions for the Service Times

95% confidence region for the parameters is allλ and κ
satisfying

2[−113.691− logL(λ, κ)] < 5.99.

The maximum likelihood estimators and 95% confidenc
region are shown in Figure 6. The lineκ = 1 is not interior
to the region, indicating that the exponential distribution i
not an appropriate model for this particular data set.

As further proof thatκ is significantly different from
1, the standard errors of the distribution of the paramet
estimators can be computed by using the inverse of t
observed information matrix

O−1(λ̂, κ̂) =
[

0.00000165
−0.000139

−0.000139
0.108

]
.

This is the asymptotic variance-covariance matrix for th
parameter estimatorŝλ and κ̂. The standard errors of the
parameter estimators are the square roots of the diago
elements

σ̂
λ̂
= 0.00128 σ̂κ̂ = 0.329.

Thus an asymptotic 95% confidence interval forκ is

2.10− (1.96)(0.329) < κ < 2.10+ (1.96)(0.329)

or

1.46< κ < 2.74,

sincez0.025= 1.96. Since this confidence interval does no
contain 1, the inclusion of the Weibull shape parameterκ

is justified.
r

al
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Figure 6: 95% Confidence Region Based on the Likeliho
Ratio Statistic

The model adequacy should now be assessed. Since
chi-square goodness-of-fit test has arbitrary interval limi
it should not be applied to small data sets (e.g.,n =
23), such as the service times being considered here.
Kolmogorov–Smirnov, Cramer–von Mises, or Anderson
Darling goodness-of-fit tests (Lawless 1982) are appropri
here. The Kolmogorov–Smirnov test statistic, which is th
maximum vertical difference between the empirical an
fitted cumulative distribution functions, is 0.151 for thi
data set with a Weibull fit. This test statistic correspond
to ap -value of approximately 0.15 (Law and Kelton 2000
p. 366), so the Weibull distribution provides a reasonab
model for these service times. The Kolmogorov–Smirno
test statistic values for several models are shown in Table
including four that are superior to the Weibull with respe
to fit.

Table 1: Kolmogorov–Smirnov Test
Statistics for Models Fitted to Ser-
vice Time Data

Model Test statistic
Exponential 0.307

Weibull 0.151
Gamma 0.123

Arctangent 0.094
Log normal 0.090

Inverse Gaussian 0.088

Many of the discrete-event simulation packages e
hibited at theWinter Simulation Conferencehave the ca-
pability of determining maximum likelihood estimators fo
several popular parametric distributions. If the package a
performs a goodness-of-fit test such as the Kolmogoro
Smirnov or chi-square test, the distribution that best fits t
data set can quickly be determined.
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P–P (probability–probability) and Q–Q (quantile
quantile) plots can also be used to assess model adequ
A P–P plot, for example, is a plot of the fitted cumulativ
distribution function at theith order statisticx(i), F̂ (x(i)),
versus the adjusted empirical cumulative distribution fun
tion, F̃ (x(i)) = i−0.5

n
, for i = 1,2, . . . , n. A plot where

the points fall close to the line passing through the orig
and (1, 1) indicates a good fit. For the 23 service time
a P–P plot for the Weibull fit is shown in Figure 7, alon
with a line connecting (0, 0) and (1, 1). P–P plots shou
be constructed for all competing models.
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Figure 7: A P–P Plot for the Service Times Using the Weibu
Model

3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation
whether a stationary (no time dependence) or nonstation
model is appropriate. Modeling arrivals to a lunch wago
is used to illustrate the decision-making process.

Arrival times to a lunch wagon between 10:00 AM an
2:30 PM are collected on three days. The realizations w
generated from a hypothetical arrival process given by Kle
and Roberts (1984). A total ofn = 150 arrival times were
observed, includingn1 = 56, n2 = 42 andn3 = 52 on the
k = 3 days. Defining(0,4.5] to be the time interval of
interest (in hours) the three realizations are

0.2152 0.3494 0.3943 . . . 4.175 4.248,

0.3927 0.6211 0.7504 . . . 4.044 4.374,

and

0.4499 0.5495 0.6921 . . . 3.643 4.357.

One preliminary statistical issue concerning this data
whether the three days represent processes drawn from
y.

y

e

same population. External factors such as the weather,
of the week, advertisement, and workload should be fix
For this particular example, we assume that these fac
have been fixed and the three processes are represen
of the population of arrival processes to the lunch wago

The input model for the process comes from the low
branch (stochastic processes) of the taxonomy in Figure
Furthermore, the arrival times constitute realizations o
continuous-time, discrete-state stochastic process, so
remaining question concerns whether or not the proces
stationary.

If the process proves to be stationary, the techniqu
from the previous example, such as drawing a histogra
and choosing a parametric or nonparametric model for
interarrival times, are appropriate. This results in a Poiss
or renewal process model. On the other hand, if the proce
nonstationary, a nonhomogeneous Poisson process mig
an appropriate input model. A nonhomogeneous Pois
process is governed by an intensity functionλ(t) which
gives an arrival rate [e.g.,λ(2) = 10 means that the arriva
rate is 10 customers per hour at time 2] that can va
with time. The next paragraph describes a nonparame
procedure for estimating the cumulative intensity functi
3(t) = ∫ t0 λ(τ)dτ from k realizations.

The cumulative intensity function is to be estimate
on (0, S], whereS is a known constant which equals 4.5
in this case. The interval(0, S] may represent the time a
system allows arrivals (e.g., 9 AM to 5 PM at a bank)
one period of a cycle (e.g., one day at an emergency roo
Let ni , i = 1,2, . . . , k be the number of observations in th
ith realization,n = ∑k

i=1 ni , and let t(1), t(2), . . . , t(n) be
the order statistics of the superposition of thek realizations,
t(0) = 0 andt(n+1) = S. The piecewise-linear estimator o
the cumulative intensity function between the time valu
in the superposition is

3̂(t) = in

(n+ 1)k
+
[

n(t − t(i))
(n+ 1)k(t(i+1) − t(i))

]
for t(i) < t ≤ t(i+1); i = 0,1,2, . . . , n, which is given in
Leemis (1991) and extended to nonoverlapping intervals
Arkin and Leemis (2000). Asymptotic confidence interva
and variate generation via inversion are also contained
these references. This estimator (solid line), along with 9
confidence bounds (dashed lines), are given in Figure
The cumulative intensity function estimator at time 4.5
150/3 = 50, the point estimator for the expected numb
of arriving customers per day. If̂3(t) is linear, a stationary
model is appropriate. Since customers are more likely
arrive to the lunch wagon between 12:00 (t = 2) and 1:00
(t = 3) than at other times and the cumulative intens
function estimator has anS-shape, a nonstationary mode
is indicated. More specifically, a nonhomogeneous Pois
process is a reasonable model for the arrival process.
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Figure 8: Point and 95% Confidence Interval Estimators
the Cumulative Intensity Function

The next question to be determined is whether a pa
metric or nonparametric model should be chosen for
process. Figure 8 indicates that the intensity function
creases initially, remains fairly constant during the no
hour, then decreases. This may be difficult to model pa
metrically, so a nonparametric approach, possibly us
3̂(t) in Figure 8 might be appropriate. Process generat
for simulation is straightforward (Leemis 1991).

There are many potential parametric models for no
stationary arrival processes. The next paragraph descr
the procedure for fitting apower law process, where the
intensity function has the same parametric form as the h
ard function for the Weibull distribution. Other models ca
be fit in a similar fashion.

The likelihood function for estimating the vector o
unknown parametersθ = (θ1, θ2, . . . , θp) from a single
realization on(0, S] is

L(θ) =
[
n∏
i=1

λ(ti)

]
exp

[
−
∫ S

0
λ(t)dt

]
.

Maximum likelihood estimators can be determined by ma
imizing L(θ) or its logarithm with respect to all unknow
parameters. Confidence intervals for the unknown para
eters can be found in a similar manner to the service t
example. Owing to the additive property of the intens
function for multiple realizations, the likelihood functio
for the case ofk realizations is

L(θ) =
[
n∏
i=1

kλ(ti)

]
exp

[
−
∫ S

0
kλ(t)dt

]
.

-

s

-

-

The power law process has intensity function

λ(t) = λκκtκ−1 t > 0,

for λ > 0 andκ > 0. Thus the likelihood function fork
realizations is

L(λ, κ) = knλnκκne−k(λS)κ
n∏
i=1

tκ−1
i .

The log likelihood function is

logL(λ, κ) = n log(kκ)− nκ logλ− k(λS)κ + (κ − 1)
n∑
i=1

log ti .

The 2× 1 score vector has elements

∂ logL(λ, κ)

∂λ
= κn

λ
− kSκκλκ−1

and

∂ logL(λ, κ)

∂κ
= n logλ+ n

κ
+

n∑
i=1

log ti − k(λS)κ log(λS) .

When the score is equated to zero, the analytic expressi
for λ andκ are

κ̂ = n

n logS −∑n
i=1 log ti

λ̂ = 1

S

(n
k

)1/κ
.

Substituting the arrival times into these formulas yield
maximum likelihood estimatorŝλ = 4.86 and κ̂ = 1.27.
The cumulative intensity function for the power law proces

3(t) = (λt)κ t > 0,

is plotted along with the nonparametric estimator in Figure
Note that due to the peak in customer arrivals around t
noon hour, the power law process is not an appropria
model since it is not able to adequately approximate t
intensity function.

Since the intensity function is analogous to the haza
function for time-independent models, an appropriate
parameter distribution to consider would be one with
hazard function that increases initially, then decreases.
log-logistic process, for example, with intensity function
(Lawless 1982)

λ(t) = λκ(λt)κ−1

1+ (λt)κ t > 0,

for λ > 0 andκ > 0, would certainly be more appropri-
ate. More generally, the EPTMP (exponential-polynomia
trigonometric function with multiple periodicities) model,
originally given by Lee, Wilson and Crawford (1991) and
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Figure 9: Empirical and Fitted Power Law Estimators fo
the Cumulative Intensity Function

generalized by Kuhl, Damerdji and Wilson (1998) with
intensity function

λ(t) = exp

[
m∑
i=0

αit
i +

p∑
k=1

γk sin(ωkt + φk)
]

t > 0.

can model a nonmonotonic intensity function. Goodnes
of-fit tests are given in Rigdon and Basu (2000).

4 DISCRETE-EVENT SIMULATION MODELING
FRAMEWORK

This section contains a description of a diagram that h
been developed for describing the process of constructin
discrete-event simulation model. The purpose of providin
the description of the diagram here is to:(i) show where
input modeling fits into the simulation modeling process
and(ii) isolate various sources of error involved in simula
tion modeling. The diagram depicting a high-level, abstra
framework of a discrete-event simulation modeling proce
for analyzing an existing or proposed system (labeled “Sy
tem” in the diagram) given in Figure 10 is adapted from
Schmeiser (2001) and Nelson (1987).

The upper-case lettersX0, U , X, Y , θ̂ , θ , and D
denote ordered sets containing one or more numbers.
avoid writing “one or more numbers” in our description
of these sets, we assume that there are multiple number
the sets. The descriptions of these ordered sets follows

• X0 is a set of seeds for a random number generat
one for each stream used in the implementation
the discrete-event simulation model.

• U is a set of random numbers created by using th
random number generatorGr to transform the seeds
in the setX0 to random numbers. The random
X0 U V Y θ̂

System

IGr L S

D

θ

Cr

A

P

Figure 10: A Framework for Discrete-Event Simulation

numbers inU are partitioned by the associate
stream when multiple streams are employed.

• V is a set of input data (“variates”) created b
applying the input modelI to the set of random
numbersU .

• Y is a set of output data generated by applyin
the logic modelL to the set of input dataV . The
output data are typically dependent, although th
probability model for each individual observation
is often identical for a steady-state analysis on
the simulation model warms up.

• θ̂ is a set of point estimators for the unknow
system measures of performanceθ , calculated as
a function of the output dataY . In general, there
is some error present, i.e.,θ̂ 6= θ .

• θ is the corresponding set of measures of perfo
mance associated with the system of interest.

• D is a set of system data values collected o
appropriate elements of the system of interest
order to build an input modelI.

Although Figure 10 conceptually lumps the thousan
or millions of random numbers into a setU , the next-event
approach to simulation allows us to generate them one a
time in order to save memory and CPU time.

The calligraphic lettersGr , I, L, S, Cr , P andA in
Figure 10 are all associated with arrows. These are the se
sources of error associated with the discrete-event simulat
modeling process. These letters denote transformatio
probability models, data collection methods, assumption
etc., as described below.

• Gr is a random number generator used to transfo
the seeds in the setX0 to random numbers in the
setU .

• I is the input model used to transform the set o
random numbersU to the set of input dataV . The
process of transformingU to V is known asran-
dom variate generation. The input model is often
determined by analyzing a set of dataD, although
in rare cases an input model is determined in th
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absence of data using expert opinion, bypassi
the setD entirely.

• L is the logic model that captures assumptio
made about the system into transformations (oft
formulated as algorithms) that are used to transfo
the set of input dataV to the set of output dataY .

• S is a statistical estimation procedure. TheS con-
necting the set of output dataY and the set of
point estimates of the measures of performanceθ̂

involves computing statistics, which are function
of the set of output dataY (e.g., sample mean,
sample median, or sample variance). Confiden
intervals for measures of performance are ofte
times computed to give a sense of the accuracy
the point estimates.

• Cr denotes the data collection procedures fro
the system of interest. It is crucial to collec
the appropriate data elements from the syste
Also, the data should be collected in an appropria
and representative fashion using standard sampl
techniques.

• P involves the process of formulating a proba
bilistic input model that adequately describes th
set of data collected inD. TheP connecting the
set of system data valuesD and the input model
I involves either resampling the data (i.e., th
trace-driven or nonparametric approach) or fittin
a parametric model to the data set. The proce
of formulatingI is the focus of this tutorial.

• A denotes assumptions made on the system
interest. These assumptions are used to cre
the logic modelL describing the operation of the
system. Incorrect or simplifying assumptions lea
to modeling error.

What part of Figure 10 describes the discrete-eve
simulation model? The simulation model consists of t
combination of the probabilistic input modelI and the
logical modelL. Once the simulation model,I and L,
has been determined, the sequence of four arrows lead
from X0 to θ̂ is a sequence of four deterministic function
for a particular random number generatorGr and choice of
sample statistics collectedS. All that is needed to arrive at
θ̂ are the random number seeds in the setX0.

Error can occur in any of the arrows labeled by
calligraphic letter. There is no letter on the arrow attachi
the system of interest to the measures of performancθ
because there is no error associated with this transition. T
values of the measures of performance are unknown, wh
typically necessitates the use of a discrete-event simula
analysis for a complex system. If the model could b
simulated for an infinite length of time and an infinitely larg
data set could be collected on the system of interest, th
the error betweenθ andθ̂ would be a constant value induce
only by “logic-modeling error”. “Sampling error”, on the
g

other hand, stems from the random sampling variabili
inherent inGr andCr . Thus the mean square error:

E[(θ̂ − θ)2] = E[θ̂2− 2θ̂ θ + θ2]
= E[θ̂2] − E[2θ̂ θ ] + E[θ2]
= E[θ̂2] − 2θE[θ̂ ] + θ2

= E[θ̂2] − E[θ̂ ]2+ E[θ̂ ]2− 2θE[θ̂ ] + θ2

= V [θ̂ ] + (E[θ̂ ] − θ)2,

captures the sampling error in the first termV [θ̂ ] and the
modeling error in the second term(E[θ̂ ] − θ)2. The mean
square error can only be computed on simple “toy” system
where the values inθ are known.

The discussion here assumes an ideal system that d
not change with time. Most real-world systems are changi
with time, however, so an infinite sample drawn from th
system is about how the system performed in the past, n
how it will perform in the future.

The r subscript denotes a step in the discrete-eve
modeling process where error from random sampling va
ability is present. Both the random number generatorGr and
the data collection proceduresCr involve random sampling
variability. An “unlucky” single random number seed on a
good generatorGr could, for example, produce a sequenc
of unusually small random numbersU whose average is
significantly less than 1/2. Likewise, an “unlucky” ran-
dom sample on a legitimate data collection procedureCr
could, for example, produce a sequence of unusually lar
data values inD. The error induced by random sampling
variability can be minimized by making numerous lon
simulation replications (in the case ofGr ) and by collecting
large system data sets (in the case ofCr ). Almost universally,
the former is cheaper than the latter.

The other sources of error are associated with the c
ligraphic letters in the diagram are:

• using a poor random number generatorGr ,
• making poor modeling decisions inP resulting in

a poor probabilistic input modelI,
• using incorrect system data sampling procedur
Cr ,

• making incorrect or simplifying assumptions abou
the system inA resulting in a poor logic modelL,

• making poor choices inS when analyzing the set
of output dataY .

Why do we simulate? An “analytic” model is ap-
propriate when mathematics can be used to find the e
act values of the measures of performance inθ . For
many real-world systems, however, the transformation fro
U −→ V −→ Y −→ θ̂ is so mathematically complex that
the axiomatic approach to probability results in mathema
ically intractable expressions for the elements in the setθ .
Equivalently, the numbers in the setY are drawn from an
unknown or mathematically intractable probability mode
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