
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

A GENERAL SIMULATION ENVIRONMENT FOR IP MOBILITY

Peng Sun
Sam Y. Sung

Department of Computer Science
National University of Singapore
 10 Lower Kent Ridge Crescent

119260 SINGAPORE

ABSTRACT

This paper describes an advanced simulation environment
that has been used to examine, validate, and predict the
performance of Protocols for IP Mobility Support. It over-
comes many limitations found in existing network simula-
tors, and it provides more support on mobile-related issues.
It contains several components that are common to all
evaluations of IP mobility, which can model arbitrary net-
work-topologies, arbitrary movement pattern, and arbitrary
calling patterns. It also provides a set of protocol imple-
mentations that are necessary to simulating the Internet.
The environment offers several desirable features includ-
ing: 1) flexible metrics collection for both predefined and
customized ones, 2) reuse of calling patterns, moving pat-
terns, network topologies, etc. and 3) automatic generation
of mobility pattern. Several research contributions had
been made with the help of this simulation environment,
and it would be useful for refining various aspects of IP
mobility support.

1 INTRODUCTION

The increasing number of portable computers, combined
with the growth of wireless services, makes supporting In-
ternet mobility important. Many researchers have come to
the conclusion that IP is the correct layer to implement the
basic mobility support (Cheshire and Baker 1996). The
greatest challenge for supporting mobility at IP layer is
handling address changes. In other words, it is required to
keep “un-interrupted” connections among nodes when they
change their IP addresses during the movement. Many pro-
tocols have been proposed for IP mobility support, for ex-
ample, Rajagopalan and Badrinath (1995), Chen and Lin
(1996), Wang, Chen and Ho (1997), Ha´c and Huang
(2000) and Perkins (1996).

A high quality simulation environment plays a key
role in understanding existing proposals and evaluating
new designs. This paper presents such a simulation envi-

ronment for the eager needs. Quite a number of research
contributions have been made with the help of this envi-
ronment. Introducing the environment will share the simu-
lation techniques we have used, and make it familiar to
more researchers so that they can save much effort in ex-
periments of IP mobility.

We have several significant contributions in building
this environment. We identified and implemented several
components that are common in almost all evaluations for
IP mobility. We provide methods for reusing time-
consuming and error-prone tasks such as specifying
movements of mobile nodes, activity of source nodes, net-
work topologies, network link properties, and so on. We
use a simple while effective method to allow users model-
ing arbitrary calling patterns, movement patterns, and arbi-
trary network definitions.

The rest of this paper is organized as follows: Section
2 reviews current status for evaluating protocol proposals,
and we show the limitations of existing network simula-
tors. Section 3 presents our simulation environment in de-
tail. We present the system features and their supporting
architecture. Section 4 presents examples and case studies
of the system, and section 5 summarizes this paper.

2 RELATED WORK

Proposal evaluations for IP mobility are far from enough to
understand different aspects of them. The proposals are
evaluated in different environments with different number
of factors neglected. Their behaviors in the situations that
do not conform to their assumptions are left unclear.

2.1 IP Mobility Protocols

IP mobility protocols are used to adapt IP address changes
and make the changes transparent to the transport layers
and higher layer protocols (Perkins 1998).

Although there are many methods and proposals,
they share some common characteristics. Two addresses

Sun and Sung

are assigned to a mobile node. One address is fixed
(called home address), and the other is changeable (called
care-of address). Home address is used to identify the
mobile node on the network wherever they are connected.
Care-of address reflects the current location of the mobile
node, and it implies the geographical location of the mo-
bile node on the network.

The biggest difference among different proposals is
the methods to “map” the home address to care-of address.
Some use mobile agents, some use gateway routers, some
use hierarchy database, and some use broad casting. The
mapping from home address to care-of address is called
mobility binding. Mobility binding is the most difficult
part of IP mobility support.

In general, the mobility binding is achieved through
“search” and “update”. Update is to propagate location in-
formation of mobile nodes into the wired network, while
search is to utilize that information to find those mobile
nodes.

2.2 Current Status of Proposal Evaluations

Little research work has been done on evaluating proposals
for IP mobility support. Some protocols were proposed
without any evaluation, for example, Chen and Lin (1996)
and Prakash and Singhal (1997). Some proposals have
evaluations, but their evaluations depend heavily on spe-
cific analytical models. For example in Wang, Chen and
Ho (1997), the network is modeled as a grid, and the
movement of a mobile node is modeled as purely random
“pop-up” or a directional walk. In Rajagopalan and Badri-
nath (1995), the evaluation is done with the network mod-
eled as a simple hierarchy, and the movement of the mo-
bile node is modeled with random numbers that has
negative exponential distribution. Some evaluations even
impose specific limitations on the evaluations. For exam-
ple, Chen and Lin (1997) limits the number of mobile
agents within 19.

On the other hand, the metrics and self-defined parame-
ters in simulations are quite different from one another, and
the difference makes it difficult to compare two proposals
based on their evaluation results. For example, Ha´c and
Huang (2000) uses traffic models and call to mobility ratios
(CMR) as its parameters, and the average cost savings,
which is self-defined, as its metrics. Ratnam, Matta, and
Rangarajan (1999) uses “average call arrival rate” as its pa-
rameter and “total cost”, which is also self-defined, as its
metrics. In order to compare the two proposals, it is neces-
sary to conduct a certain kind of conversion between their
parameters and metrics; however, the conversion is normally
not easy. It is not trivial to convert “traffic model” into “av-
erage call arrival rate” or convert “total cost” into “average
cost savings” because they are defined in different contexts.

In summary, current evaluations are far from insightful
for us to understand previous proposals and compare them.
They were only evaluated within special contexts, and it is
unclear for a proposal to work in the conditions that do not
conform to its assumptions. Finally, comparing two or
more proposals requires translations among different ana-
lytical models, parameters, and metrics.

2.3 Existing Tools

A network simulator can provide unbiased evaluations if
the simulator can precisely simulating IP packet delivery,
because they do not rely on specific analytic models. Net-
work simulators, in general, provide statistics that can re-
flect performance and other aspects of proposals being
tested. It can avoid the metrics conversions since the statis-
tics value always reflect same meaning regardless of dif-
ferent proposals.

Before we started developing this simulation environ-
ment, we have tried several well-known tools. Our experi-
ence showed that existing tools are not quite suitable for IP
mobility support.

NS-2 (Network Simulator version 2) is a variant based
on REAL (Keshav 1997), which is intended for studying
the dynamic behavior of flow and congestion control
schemes in packet-switched data networks. NS-2 is a pow-
erful network simulator, and it has 60K lines of code plus
40K lines of test suites/examples. NS2 is not specially de-
signed for IP mobility, although it addresses variety issues
in network modeling. It is very difficult to simulate IP mo-
bility, because it requires time-consuming works such as
implementing network topologies. Moreover, it has little
support on specifying mobility patterns, which influence
the performance of routing protocols greatly. It is also dif-
ficult to debug an implementation of user-defined protocol,
which occurs often in IP mobility simulation.

ParSec (PARallel Simulation Environment for Com-
plex systems) is a C-based discrete-event simulation tool.
(Bagrodia, Meyer, Takai, Chen, Zeng, Martin, and Song
1998) It adopts the process interaction approach to dis-
crete-event simulation. It is focused on low-level event
handling and process interaction. It more likes a program-
ming language than a tool for parallel simulation. It is good
at low level processing, however, it leaves a big gap be-
tween parallel processing and IP mobility simulation. It
does not provide support for protocol suit of the Internet,
not to say mobile-related issues.

GloMoSim (Zeng, Bagrodia, and Gerla 1998) is a
scalable simulation environment for wireless and wired
network systems developed on top of ParSec. Currently
(version 2.0), it only support purely wireless network,
which is only part of the simulation for IP mobility support
because IP mobility involves many issues from the wired
network such as router arrangement.

DaSSF (Calvert, Doar and Zegura 1997) is a C++ im-
plementation of SSF (Scalable Simulation Framework) by
Dartmouth University. The purpose of DaSSF is to achieve
three desirable features on modeling very large-scale net-

Sun and Sung

works (e.g., the Internet.), namely capacity, scalability, and
simplicity. It emphasize on handling large-scale networks
rather than mobility modeling. It can simulate large net-
works, but it is difficult to in cooperate mobility patterns.
Moreover, DaSSF requires users to implements the proto-
col suit of the Internet such as TCP, UDP, IP, and so on,
and this requirement makes users frustrating when using it
to simulate IP mobility.

SSF API is a base level API, and it defines five classes
that are analogous to the Internet namely, Entity, Process,
Event, InChannel, and OutChannel. An entity is a con-
tainer of states; a process is the logic to change those states
and handle incoming/outgoing events from InChannels and
OutChannels. The entities are used to model network
nodes, events are used to model data transmissions, and the
InChannels and OutChannels are used to model network
links. Through mapping InChannels and OutChannels and
transmitting events within them, we can produce a similar
effect of packet transmission.

SSFNet (http://ssfnet.org/) is a java-based implementa-
tion of SSF. It is better than DaSSF in sense that it pro-
vides a full set of Internet protocols in addition to the im-
plementation of SSF API. Unfortunately, SSFNet is for
wired networks, and it has little support for mobile net-
works. It does not provide mobile IP implementation, dy-
namically acquiring IP address by mobile nodes, no sup-
port for mobile agents/nodes, and no extension for user
defined protocols.

3 SIMULATION ENVIRONMENT

Our simulation environment is implemented based on
SSFNet 1.3.0 implementation, and it incorporates many
desirable features for IP mobility simulation, which makes
it distinctive from other network simulation environments.

3.1 Features

In general, the features we provided are useful for: 1)
automatic and fast generation of mobility patterns that de-
scribe movement behavior of mobile nodes, 2) easily
split/integrate user-defined protocols from/to the Internet
protocol stack, and 3) reuse of network definitions includ-
ing topology, node configuration, and link properties. Fig-
ure 1 shows a more specific comparison of our simulation
environment and modern simulators.

3.2 System Architecture

Our system adopts a simple input→processing→output
model. The input of our system is the user requirements
and specifications on how to run a simulation. It includes
environment specifications and protocol implementations
(user defined protocols). The output of our system is the
metrics collected from the simulation.
Simulators
 &. tools

Properties &. features N

S2

P
ar

se
c

G
lo

m
si

m

D
aS

SF

SS
fN

et

N
et

ID
E

Tools for mobility/calling pattern !
Multi-level programming !
Multi-level metrics collection ! ! !
User-defined metrics ! ! ! ! ! !
System Protocols (TCP, UDP, IP.) ! ! ! !
Mobile IP Implementation ! !
User-defined protocols ! !
Care-of address acquirement ! ! !
Platform independent ! !
Extensible Network definition ! ! ! !
Mobile related network entities ! ! !
Web-based user interface !

Figure 1: Comparison of Modern Simulators

During the simulation, a memory model is created by
the runtime virtual machine, and the memory model is de-
stroyed after the simulation. Metrics collection is done in
parallel with running the simulation, and it can reflect the
network status along the time line. Simulation time is used
instead of clock time in order to increase the precision of
time related properties such as bit-rate of a link. One simula-
tion second is much smaller than one second in real life, and
they have fixed proportions during the simulation. Their
proportion can be arbitrarily defined before the simulation
starts. Figure 2 illustrates the components in the system.

 Graphical User Interface (GUI)

Timing system

Runtime Virtual Machine

Memory
Model

Metrics
collection

User Inputs

Preprocessing by
system tools and

libraries

Figure 2: System Architecture

We alleviate user’s burdens as much as possible. All

user inputs are specified through a well-designed graphical
user interface. Many works can be finished through mouse
clicks. We also provide predefined system libraries to fa-
cilitate the specification of a given simulation, so that the
user can focus on his design while avoiding as much re-
peating work as possible. For example, users can compose
a large network through combining small networks in the
system library. User can also adapt system source code in
order to finish a protocol implementation faster. With these
helps a user can finish a protocol implementation in as few
as twenty lines source code.

3.3 Runtime Memory Model

The memory model is in fact a miniature of the network in
real life. It contains network nodes, routers, and links be-

http://ssfnet.org/

Sun and Sung

tween them. Each network node has its own protocol stack
and TCP/IP implementations. Each router can make rout-
ing decisions based on real life routing protocols.

Figure 3 shows the memory model at runtime. All enti-
ties in the memory model are coordinated by the timing sys-
tem, which triggers every time sensitive actions that include
generating a call (a connection request from source node to a
mobile node), generating movements of mobile nodes (dy-
namically change the network topology), and transmitting
bit-streams at certain rates specified by the link.

Network traffic simulator

Timing System

H H H H

Generate
Calls

Wait

Metrics Collection

Generate
Movement

Wait

Node (user typing)

User Data

Mobie IP

Other Protocols

Packet
Interceptor

a).Memory Model

b). Node Detail

Network details

Figure 3: Memory Model at Runtime

The network traffic simulator simulates IP packet
routing in real life, and all network nodes participate in the
traffic simulation. Network nodes are autonomous in the
sense that they make routing decisions at its own discre-
tion. If the node is a router, it makes routing decision based
on its knowledge of its surroundings, which is obtained
through routing protocols. If the node is a normal host, it
delivers packet to the default gateway according to its con-
figuration. These actions are identical to real life networks.

Each node has its own protocol stack, which can also
be arbitrarily specified by user before the simulation starts.
The nodes in memory model also have the extra abilities
for simulation purpose. Those abilities are:

1) Assigning type information to each node for mark-

ing purpose. For example if a stationary node fre-
quently contacts a mobile node, the stationary
node might be marked as “partner” of the mobile
node, and it may have special update of location
information from that mobile node. It enables an
extra level of classification with regard to mobil-
ity issues.

2) Allowing packet interceptor. This enables user de-
fined behavior being integrated to a specific pro-
tocol. For example, a packet Interceptor at IP can
affect routing decisions. The interceptor is very
flexible, and it can either employ existing imple-
mentation (e.g., IP) to fulfill normal tasks or
change default behaviors. In other words, through
packet interceptor, a developer can implement his
own protocols for IP mobility support.

3) Extra data storage. This data storage represents the
special knowledge that a node has for mobility
support. For example, a node may remember loca-
tion of certain mobile nodes like binding cache in
mobile IPv6. A node may also record secrete asso-
ciations in a given negotiation. The data storage is
provided for protocol developers to store any in-
formation they feel proper, and the developers are
totally responsible of interpreting the information.

Several techniques are use to reduce the size of memory

model. The first technique is sharing. Sharing is used as
much as possible. For example, although each node may
have IP TCP, and UDP they share the same implementation.
In other words, the routing for protocol processing is shared,
while only data (i.e., input &. output of a protocol layer) are
kept within a node. The second technique is virtual data
packet. Although data packets are really transmitted among
nodes, the data size is not necessarily very big. We only use
several bytes to describe a packet, if the packet content is
“pure data”, which means it contains data that are not inter-
ested for IP mobility support. For example, to simulate a
10KB-packet, we only need to mark this packet size as
10KB, and we need not allocate 10KB in the memory. Dur-
ing the transmission, we simulate the delay for transmitting
certain number of bits from one node to another, and we re-
maining bits that are queued for next frame.

3.4 Modeling Network Details

Define a high quality network is not an easy task. In our
context, network definition has to contain at least two
parts, 1) logical topology of the network node and their
connections, and 2) relationship of network nodes concern-
ing their geographical locations. The first part is necessary
for correct IP routing, and the second part is necessary to
restrict the movement of mobile nodes. The second part is
specific to mobility issues, because the movement of mo-
bile nodes is geographically related.

Although DML (Domain Modeling Language) is an
excellent language for defining network topology, it is not
designed for mobile network. It cannot describe entities in
mobile network such as mobile agents and AAA servers,
and it cannot describe certain properties such as capacity of
a foreign agent and its address pools. Moreover, it cannot
describe the geographical relationships among nodes.

With regard to the limitations of conventional DML
language, we developed our extensions in order to support
mobile-related entities and properties. We defined an ex-
tended DML format based on conventional DML format.

Sun and Sung

Figure 4 illustrates the procedure of producing mem-
ory model from DML files. The procedure accepts two
types of inputs: 1) patches that describe modifications on
existing DML files and 2) enhanced DML files.

Integrator
Our DML

Parser

Memory
Model

Enhanced
DML files

Existing DML
(Conventional
or enhanced) Patches

Figure 4: Extensions to Existing DML Models

The method of producing memory model greatly relieves
burdens of users, while giving them enough freedom of
specifying any details. First of all, describe a network in de-
tails is time consuming and error prone because it involves
too much information. It would be very difficult to describe
a large network from scratch. With patches, we could use
existing tested DML libraries, which are provided by our
simulation environment, to build robust networks with little
effort. Secondly, we give the user full freedom of building
their networks from scratch, because our DML parser can
directly accept “Enhanced DML files”.

3.5 Movements of Mobile Nodes

The movements of mobile nodes are modeled as consecu-
tive moving and staying, as shown by figure 5-a. A single
step of movement of a mobile node is modeled as assign-
ing a new point of attachment to it. A single step of staying
is modeled as assigning a staying time to that step of
movement. A developer can use a plain text file to store the
movements of a mobile node.

 ������

�����

Assign a new point of
attachment

Specify Staying Time

End?

yes

no

Modify Net-Topology

������

�����

Start requests by one
or more sources

Silent for a period

End?

yes

no

b) Connection requests a) Movement of a mobile node

Figure 5: Movements and Calls

The file is composed of lines of text (format is shown
in appendix A). Each line represents a single step of
movement, a control command, or a variable definition. If
it is a single step of movement, then it specifies a point of
attachment with a staying time. If it is a control command,
it will be one of if-goto, stop, offline, and online. “if-goto”
enables a developer reusing a sequence of movements
through specifying a simple logic. Stop will make the mo-
bile stop there until the simulation ends. A stopped mobile
node can still send and receive packets. In contrast, offline
will forbid a mobile node unable from sending and receiv-
ing packets. The node is temporally “disappeared” from
the simulation. Offline takes one parameter as the duration
of offline. An online statement can only appear immedi-
ately after an offline statement. Online takes one parame-
ter, and the parameter specifies a line number. The state-
ment at that line must be a movement line. The point of
attachment in that line specifies where the mobile node is
re-connected to the network.

3.6 Calling Patterns by Source Nodes

The connection requests from source nodes are modeled
from the mobile nodes’ point of view. For a mobile node,
at given time, it may receive zero or more requests from
different source nodes. For each given mobile node, the
connection requests are modeled as consecutive connection
requests followed by a silent period that can be zero sec-
ond, as shown by figure 5-b. During the silent period, no
nodes are sending requests to that mobile node. During the
period of generating requests, one or more source nodes
generate connection requests to the mobile node. These
connections are deemed as happening in the same time.

The connection requests can be stored on hard disk
similar to the storing of movements of a mobile node. We
call the file “calling-pattern file”. The number of calling-
pattern files is equal to the number of mobile nodes in a
given simulation. One mobile node is mapped to one call-
ing-pattern file. In fact, a “calling-pattern file” can also be
a record in a database. When the number of mobile nodes
increases, calling-patterns results in a database with a
number of records.

3.7 Implementing User-Defined Behaviors

IP mobility support can be described as “mobile nodes
propagate location information into the network and sour-
ce nodes utilize that information to locate those mobile
node”. A proposal may contain many modifications on ex-
isting network (Pitoura and Samaras 1998).

In order to support different user defined behaviors we
support the following modifications on the network mem-
ory model: 1) associate user-defined data with a node. It
enables users assign “state”, “conditions” or any informa-
tion that is used for making decision, 2) associate user-

Sun and Sung

defined data with IP packets. It enables the information
propagation, and 3) allow user alter routing decision and
packet content at any node. It gives the freedom of altering
the behavior of IP layer at both network and node level.

In proposals for IP mobility support, it is very com-
mon to develop a new protocol or modify existing proto-
cols. It requires supporting arbitrary modifications on im-
plementations provided by our system. It is achieved
through protocol interceptors. A protocol interceptor alters
the behavior, inputs and outputs of a given protocol, and
interceptors can be dynamically attached or detached. For
example, an interceptor can be attached to mobile IP to al-
ter its routing decisions, as show in figure 3-b. All protocol
implementations provided with our simulation environ-
ment can be attached with interceptors.

3.8 Multi-Level Programming

In order to make users’ implementation as easy as possible,
we provide many predefined routines that hide many de-
tails when programming. For example, when user want to
pass some data to a given node through IP, he can just call-
ing system routine by given the requirement parameters,
i.e., source node, destination node, and the data object. The
user will not be involved in fragmentations and payload
formats. On the other hand, we allow user to directly com-
pose an IP packet, thus it give full freedom to users to de-
fine content in the packets.

The routines are source codes that are automatically
generated by the system with the parameters given by the
user. In other words, the system helps user with some
“coding” tasks. Users have full access to the generated
code, and they can also code everything in details.

The flexibility results in multi-level coding techniques.
When users want to know the details, they can code the de-
tails, when users do not focus the details, they can use sys-
tem routines that helps to generate code. It saves much ef-
fort of user when implementing user-defined behavior.

3.9 Flexible Metrics Collection

The metrics are collected at different levels. We can collect
metrics at network level, for example, the total packets
generated on the network. We can also collect metrics at
node level, such as the number of packets delivered by this
node. We can also collect metrics on a single protocol
layer of a give network node, for example, we might be in-
terested in workload of IP rather than other protocols.

Besides the different level of metrics collection, we also
support user-defined metrics. It is achieved through adding
user-defined monitors. Monitors can read the state of a net-
work, a subnetwork, a node, and a protocol layer within a
node. Monitors are similar to interceptors except that they
cannot modify the behavior of protocols and nodes.
4 EXAMPLE AND CASE STUDIES

In this section we use some examples, and case studies to
show the functionalities of our simulation environment.
Due to page limit, we only show a small fraction of avail-
able examples, and a more comprehensive list can be found
within our software package. We show the efficiency of
time management, reuse of existing components, and a real
test for performance evaluation.

4.1 Advanced Time Management

Our simulation environment uses simulation time rather than
real time. Using simulation time can greatly speed up the
simulation while preserving the same precision of using real
time. For example, transferring 100M bits through a 100Mb
network card will be simulated in 1 simulation second, and 1
simulation second is much smaller than 1 real second.

We also provide advanced synchronizations among
events even the simulation is executed in a one-CPU com-
puter. We assure that in the simulation world, those events
that happened in the same simulation time will be treated
with the same simulation time-line, although actually they
might be generated in order.

Besides the time synchronization, we employed the
parallelism in SSFNet. The time cost of 14 simulations
with different number of events on a Pentium III 450 with
128MB memory is shown in figure 6. The time cost of a
simulation is not greatly affected with a fast increase in the
number of events. On the contrary, the time cost of a simu-
lation is increased rather slowly. The parallelism makes it
not time-consuming.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time cost of a simulation in milliseconds
number of events in a simulation

× 1000

Figure 6: Time Cost with 14 Different Simulations

4.2 Use System Libraries

Using system library can greatly simplify the process of
defining a network. We can compose large network

Sun and Sung

through small networks. The following code combines
three small nets:

Use <simpleNets.dml>
Net [
 Net [id 0 _extends .simpleNets.ring]
 Net [id 1 _extends .simpleNets.star]
 Net [id 2 _extends .simpleNets.tree]
 router [id 3 _extends sys.router.Interface3]
 link [attach 0:0(1) attach 3(0) delay 0.01]
 link [attach 1:0(1) attach 3(1) delay 0.01]
 link [attach 2:0(0) attach 3(2) delay 0.01]
]

We use router 3 combines the three small nets into a bigger
net. The protocol stack of router 3 is directly obtained from
system library. If we specify every node within every sub-
network, we could end up with at least one hundred lines of
DML code.

4.3 Reuse Existing Components

In the above example, we also reused the file “simple-
Nets.dml”, which defines three simple networks named
ring, star, and tree, by a keyword “use” at the beginning of
the network definition.

Reusing an existing DML file not only means we can
reuse network definitions but also enables us to use a con-
ventional network model In conventional network model,
there is no entities to support mobility such as home agent
and foreign agent, but it contains a good definition for a
wired network. We can adapt a conventional model to meet
the requirements with IP mobility support. Here is an ex-
ample that add an home agent (type 0) and foreign agents
to a network defined in “myNet.dml”

Use <myNet.dml >
Assign “3:4” type 0 #home agent
Assign “2:1” type 1 #foreign agent
Assign “2:6” type 1 #foreign agent

Network node 4 in sub network 3 is assigned as a home
agent for a mobile node. Nodes 1 and 6 in sub network 2
have been assigned as foreign agents. By assigning differ-
ent roles, we attach special ability and property to the node.
For example, being a foreign agent will enable the node
with accept mobile node registrations.

The adaptation is equal to directly coding a DML
source. For example, the assign home agent “3:4” is equal
to modify the DML definition of node “3:4”. It equals to
add “mobile_related” section to the router 4 at net 3, as
shown by the following code.

router[id 4 nhi_route
 [dest default
 interface 0 next_hop 0(3)]
 _extends .dictionary.client10Mb
 mobile_related [host_type 0
 host_type_description HomeAgent]
]
Directly modifying the file “myNet.dml” may have
some disadvantages. First, direct modification will damage
the robustness of existing DML files, because it has a high
risk to introduce errors into them. Second, direct modifica-
tion can hardly be “split” from the original source code,
and thus it is hard to “rollback” to original version. Finally,
modify existing DML code here and there increases the
complexity of composing large networks, because the au-
thor cannot have a clear picture of where the DML code
has been changed.

4.4 Fair Comparison

We show a simulation that we have done as an example of
using our simulation environment. More detailed illustra-
tions can be found in Sun, Sung, Li, and Huang (2002). We
simulated mobile IP and static update protocol with identi-
cal network details, calling patterns, and movement pat-
terns. With identical environments, we ensure the two pro-
tocols are compared fairly. The simulation compares the
total cost of the two protocols in terms of traffic load of the
network. Traffic load in the simulation is defined as num-
ber of total hops of all packets.

We change the call-to-mobility ratios (CMR) from 1 to
11, and the results are shown in figure 7. Figure 7-a shows
the total search cost in terms of number-of-hops. It shows
that static update have significant savings in search. In con-
trast, figure 7-b shows the total update cost, and static up-
date has much higher update cost than basic mobile IP. It is
because the protocol updates patron nodes in addition to
the home agent. Although the update cost is quite high, the
total node (search + update) of static update tends to be
much smaller than basic mobile IP when CMR is in-
creased, as shown in figure 7-c. Figure 7-d makes it
clearer that the savings of total cost are quite high.

5 SUMMARY

We have introduced a simulation environment for the
evaluation of the protocols for IP mobility support. We
showed its features and its system architecture that support
those features. It overcomes the limitations that were found
in existing network simulators. It provides modeling meth-
ods of calling patterns and movement patterns, which can
be generated based on their storage format. It provides re-
use of many logical components, and that saves much ef-
fort in performance evaluation. It enables user to avoid be-
ing involved much details while giving them enough
freedom by multilevel programming. It provides flexible
metrics collection method, for they can be done at different
levels, and user can specify the own metrics through proto-
col monitors. We sincerely hope our simulation environ-
ment become a popular tool for protocol developers, espe-
cially for those interested in IP mobility support.

Sun and Sung

Figure 7: Simulations Results of Comparing Two Protocols

REFERENCE

Bagrodia,R., R. Meyer, M. Takai, Y. Chen, X. Zeng, J.
Martin, and H. Y. Song, 1998. Parsec: A Parallel
Simulation Environment for Complex Systems. IEEE
Computer, Vol. 31(10), pp. 77-85.

Calvert, K., M. Doar and E. Zegura, 1997. Modeling Inter-
net Topology, IEEE Communications Magazine.

Chen, W. and E. Lin, 1996. Routing optimization and loca-
tion updates for mobile hosts, In the proceedings of

0

5

10

15

20

25

0 2 4 6 8 10 12

Static Update
Basic Mobile IP

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

Stat ic Update

Basic Mobile IP

-2

-1

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

Static Update Savings

0

5

10

15

20

25

0 2 4 6 8 10 12

Static Update
Basic MobileIP

N
um

be
r

of
 H

op
s

Call to mobility ratio

×108

a) Search Cost

N
um

be
r

of
 h

op
s

N

um
be

r
of

 h
op

s

Call to mobility ratio
b)Update Cost

Call to mobility ratio
d) Static update savings

N
um

be
r

of
 h

op
s

Call to mobility ratio
c) Total Cost

×109

×108

×109
16th IEEE International Conference on Distributed
Computing Systems (ICDCS’96).

Chen, W. and E. Lin, 1997. Dynamic location control for
mobile nodes. Technical Report 97-CSE10, Southern
Methodist University, pp11-16.

Cheshire, S. and M. Baker, 1996, IP Mobility 4x4, In Pro-
ceedings of 1996 SIGCOMM Annual Technical con-
ference (SIGCOMM’96), 218-329.

Ha´c, A. and Y. Huang, 2000. Location Update and routing
scheme for a mobile computing environment, Interna-
tional Journal of Network Management 10:191-214.

Keshav, S., 1997. REAL 5.0 Overview, Online documenta-
tion of REAL network simulator Cornell University,
available online via <http://www.cs.cornell.edu/
skeshav/real/overview.html> [accessed: July 12, 2002]

Liu, J. and D. M. Nicol, 2001. DaSSF 3.0 User’s Manual,
available online via <http://www.cs.dartmouth.edu/
research/DaSSF/papers/dassf-manual-3.0.ps> [ac-
cessed, July 11, 2002]

Perkins, C.E., 1996 Mobile-IP Local Registration with Hi-
erarchical Foreign Agents Internet Draft, Internet En-
gineering Task Force.

Perkins, C.E., 1998. Mobile IP, Design Principles and
Practices. Wireless Communications Series. Addison-
Wesley. ISBN 0-201-63469-4

Pitoura, E. and G. Samaras, 1998. Data Management for
Mobile Computing. The Kluwer International Series
on advances in database systems. Kluwer Academic
Publishers, 1998. ISBN: 0-7923-8053-3

Prakash, R. and M. Singhal, 1997. Dynamic Hashing +
Quorum = Efficient Location Management for Mobile
Computing Systems, In Proceedings of the 6th annual
ACM symposium on Principles of Distributed Com-
puting.

Rajagopalan, S. and B. R. Badrinath, 1995. An adaptive
location management strategy for mobile IP. In Pro-
ceedings of International conference on mobile com-
puting and networking (Mobicom’95), 170-180

Ratnam, K., I. Matta and S. Rangarajan, 1999. A Fully
Distributed Location Management Scheme for large
PCS. Technical Report BU-CS-1999-010, Computer
Science Department, Boston University, Boston, MA
02215

SSF Research Network, 1999. Domain Modeling Lan-
guage Specifications, available online via <http://
www.ssfnet.org/SSFdocs/dmlReference.html> [ac-
cessed July 12, 2002]

Sun, P., S.Y. Sung, Z. Li, and S. Huang, 2002. Perform-
ance Evaluations and Analysis of protocols for IP mo-
bility support: A Quantitative study, In Proceedings of
IEEE 35th Annual Simulation Symposium (SS’02):
219-226

Wang, Y., W. Chen and J.S.M. Ho., 1997 Performance
analysis of mobile IP extended with routing agents.
Technical Report 97-CSE-13, Department of Com-

http://www.cs.cornell.edu/�skeshav/real/overview.html
http://www.cs.cornell.edu/�skeshav/real/overview.html
http://www.cs.dartmouth.edu/research/DaSSF/papers/dassf-manual-3.0.ps
http://www.cs.dartmouth.edu/research/DaSSF/papers/dassf-manual-3.0.ps
http://ssfnet.org/SSFdocs/dmlReference.html
http://ssfnet.org/SSFdocs/dmlReference.html

Sun and Sung

puter Science and Engineering, Southern Methodist
University

Zeng, X., R. Bagrodia and M. Gerla, 1998. GloMoSim: A
Library for the Parallel Simulation of Large Scale
Wireless Networks, In Proceedings of Parallel and
Distributed Simulation Conference (PADS’98).

APPENDIX A: MOBILITY PATTERN FORMAT

Mobility pattern describes the moving behavior of a mobile
node. The pattern is stored as simple plain text file that
support simple control flows. When there are many mobile
nodes, each pattern file can be stored as one record of a da-
tabase. The record or the pattern file shares the same for-
mat, which can be loosely defined by BNF as:

Pattern::= <line> <CRLF>|<lines>
<CRLF>::= char(0D)char(0A)
<lines>::= <line><CRLF>|<line><CRLF><lines>
<line>::= <movement>|<command>|<var_def>
<movement>::= <New attach point>, <time>
<New attach point>::= NHI address
<time>::= <number>
<number> ::= 1,2,3,4,5
<command>::= <if_goto>|stop|
 <offline>|<online>
<if_goto>::= if <exp> goto <line number>
<exp>::= <variable name> <bop> <number>|
 <Random> <bop> <number>
<bop>::= > | = | <| >= | <= | <>
<var_def>::= <variable name><aop><number>|
 <variable name> = <Random>
<aop>::= += | -= | *= | /=
<Random> ::= RND (<from>, <to>,<type>)
<offline>::= Offline (<time>)
<online>::= Online (<line number>)

AUTHOR BIOGRAPHIES

PENG SUN is a Ph.D. candidate at Department of Com-
puter Science, National University of Singapore (NUS);
Singapore. He received his B.Eng and M.Eng from Harbin
Institute of Technology (HIT), P.R.China. He is a member
of ACM, and his research interest includes Next Genera-
tion Networking, Web, and database technology. His
email address is <sunpeng1@comp.nus.edu.sg >.

SAM Y. SUNG is an Associate Professor at Department of
Computer Science, National University of Singapore
(NUS); Singapore. He received B.Sc. from National
Taiwan University in 1973, M.Sc and Ph.D in computer
science from University of Minnesota, in 1979 and 1982,
respectively. He was with University of Oklahoma and
University of Memphis in USA, before joining NUS in
1989. His research interests include information retrievals,
data mining, pictorial databases and mobile computing. He
has published extensively in various conferences and
journals, including IEEE Transaction on Software
Engineering, IEEE Transaction on Knowledge &. Data
Engineering, etc. His email address is
<ssung@comp.nus.edu.sg>, and his web page is
<http://www.comp.nus.edu.sg/~ssung>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 2022
	02: 2023
	03: 2024
	04: 2025
	05: 2026
	06: 2027
	07: 2028
	08: 2029
	09: 2030

