
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

DECISION MAKING OF EMBEDDED I/O BUFFER SIZES USING THE QUEUEING
SIMULATION MODEL FOR A SHARED-MEMORY SYSTEM

Jui-Hua Li
JoAnne Holliday

Computer Engineering Department

Santa Clara University
Santa Clara, CA 95053, U.S.A.

 George Fegan

Applied Mathematics Department

Santa Clara University
Santa Clara, CA 95053, U.S.A

ABSTRACT

This paper presents a methodology of decision-making for
embedded I/O buffer sizes in a single-bus shared-memory
system. The decision is made with the aid of a queuing
model, simulation, and the proposed algorithm. The gener-
alized queueing model is simulated to cover two cases: in-
dependent processing units and pipelined processing units
in a shared-memory environment. The objective is to ob-
tain the best performance with the optimized embedded
buffers in the system. Therefore, an algorithm is developed
to find the optimal solution efficiently by exploring the
correlation between buffers and system performance. The
local optimum is guaranteed. The method can be widely
applied to many applications.

1 INTRODUCTION

In most cases of computational devices, memory is shared
among different processing units (PUs) through a common
bus. For intensive data processing systems such as multi-
media system, MPEG encoder/decoder (Li and Ling 1999)
(Lauzon, Vincent and Wang 1996) and local network, bus
utilization and system performance are very important is-
sues. The factors that affect system performance can be the
number of processing units, memory type and bus struc-
ture, arbitration schemes, and workload (Kornecki and
Zalewski 1998) (Jonkers 1994). In this paper, we focus on
the factor of embedded I/O buffers of the processing units,
which has not been explored in detail in prior works.

In a shared-memory system, the time to access the data
in memory involves waiting time, switching time and data
transfer time. Data transfer time and switching time for one
transfer are determined by the memory and bus structure.
The total switching time is proportional to the number of
bus requests issued during the processing of one task. The
processing unit with smaller I/O buffer requests more data
transfers. The proportion of switching time to total access
time can be significant if the I/O buffer is small. On the

other hand, if the I/O buffer is too big, it causes delay for
other processing units in accessing the bus. To maintain the
system at the highest performance or best utilization of
hardware resources, the buffer sizes need to be properly
chosen.

In this paper, a generalized queueing model is pre-
sented for two scenarios: independent processing units and
pipelined processing units in the system. A simulation pro-
gram, based on this model, was developed to analyze traf-
fic patterns and to evaluate the system performance. The
algorithm searches the decision space for the solution
yielding the best performance, i.e., the best buffer setting.

The approach is outlined as follows:

1. Creating a general queueing model for the real

application.
2. Formulating the problem and constructing a

mathematical generalized model to represent the
system (Hillier and Lieberman 1995). Identifying
the objectives, decision variables/random vari-
ables, and constraints in the problem.

3. Simulating the model and applying the proposed
algorithm to search the decision space, i.e., all the
possible solutions, to yield the optimal solution.

2 QUEUEING MODEL FOR A SINGLE-BUS
SHARED-MEMORY SYSTEM

A generalized shared-memory system is illustrated in Fig-
ure 1. Processing units are independent if data in memory
are not shared among them. In figure 1, the arrows indicate
independent data flows. Processing units are dependent if
processing units cooperate to process data in pipeline man-
ner, as shown by the dashed data flow in figure 1. Each
Processing unit (PU) has its I/O buffer to temporarily store
data from/to memory. A bus request is issued whenever the
buffer is either empty, to receive new data, or when full, to
transmit processed data. The data is transferred from mem-
ory, through a common bus, to the buffers in a fixed size.

Li, Holliday, and Fegan

Memory
Bus arbitrator (Server)

Buffer 1
Processing

unit 1

Buffer 2
Processing

unit 2

Buffer n
Processing

unit n
…..

Bus

Case 1:
Independent
data flow

Case 2:
Dependent
data flow

Figure 1: A Generalized System Model
The amount of data in a transfer is usually the same as the
size of the buffer. The traffic on the bus is determined by
the application and the buffer size is determined by a sys-
tem designer.

In Figure 2, the whole system is presented from the
bus administrator’s point of view. Each arrival represents a
request for the bus. Arrivals can be classified into random
and deterministic types due to the variance of data consum-
ing rates on the buffers. Arrivals are correlated in the case
of pipelined-PU model, otherwise they are independent.
Data transfer is done in the service station. The waiting ca-
pacity for the service is limited. Service time is determinis-
tic. Queueing disciplines include FCFS (First Come First
Served) and priority schemes.

The service time is deterministic for each PU because
it only depends on the buffer size and bandwidth of the
bus, which are both determined by the designer. We con-
sider a queueing system where some of the bus requests
have a deterministic arrival time and some have a random
arrival time. Furthermore, the buffer size is different for
each PU, and therefore the pattern of the service time is no
longer deterministic.

3 FORMULATION

In this section, the system is reviewed to identify the objec-
tive and variables. The objective is to achieve the best sys-
tem performance with the optimal buffer setting. The I/O
buffer sizes are variables which need to be determined.
Thus the system is formulated in a mathematical way for the
optimization. The pattern of bus requests issued from a PU
may be described by a statistical function or a deterministic
type of function. Given the statistics of the bus requests, the
Limited waiting
capacity

Deterministic
arrivals

Random
arrivals

Figure 2: Bus Administrator
exact relation between buffer size, switching time, and wait-
ing time must be determined in order to find the optimal
buffer size and maximum system throughput. For instance,
the waiting time for each PU is affected by the data requests
over the bus from other PUs. The occurrence of each arrival
depends on the data-consuming speed for the buffer. The
consuming speed is determined by the hardware and buffer
size. Hence, we can describe the expected waiting time as a
function of the buffer lengths for the PUs, statistics of data
request patterns and data processing rates.

 W1 = f1(X1, X 2, …, Xn, V1, V2, …, Vn, R1, R2, …, Rn)
 W2 = f2(X1, X 2, …, Xn, V1, V2, …, Vn, R1, R2, …, Rn)
 W3 = f3(X1, X 2, …, Xn, V1, V2, …, Vn, R1, R2, …, Rn)
 :
 Wn = fn(X1, X 2, …, Xn, V1, V2, …, Vn, R1, R2, …, Rn)
 for i=1, …,n (1)

where

Wi is the expected waiting function for PUi.
Xi is the buffer size.
Vi is the characteristics of data described by statistics

distributions.
Ri is the data processing speed for the processing unit.
n is the number of PUs.

Since The total switching time is proportional to the num-
ber of bus requests issued during the processing of one
task, the switching time can be derived easily from defini-
tion. We sum up switching time, data transfer time and
waiting time to gain total memory time. The best perform-
ance is achieved at minimal total time. In other words, we

Li, Holliday, and Fegan

would like to define the objective function as system per-
formance P. P can be the throughput of the system. As-
sume the hardware features like processing rates and statis-
tics of bus requests are determined, then P becomes the
function of “buffer” variables as follows.

 P = f(X1, X2, X3, … Xn)
 where Xi is the buffer size for PUi; i = 1, …, n (2)

Beyond the formulation, a simulation is needed due to the
difficulty of deriving a closed form solution for a complex
system. It is not hard to imagine the complexity of the
generalized model, which involves more random-type arri-
vals and constraints. Determining the appropriate objective
function is also a critical and challenging part of the
model-building process. Therefore, simulation becomes
important and relevant.

4 PROPOSED ALGORITHM: THE
OPTIMAL I/O BUFFER SETTING

Formulation: Given the system above with fixed hardware
configuration. Let P be the throughput of the system;
P= f (x1, x 2, …, xn), and B be the bus utilization; where xi is
the size of the i’th I/O buffer in the system; xi ∈ Si, i=1, ..., n,
and Si is the set of all possible buffer sizes. ε>0 is the stop-
ping criteria.
 Optimize P = f(x1, x 2, …, xn) subject to P > c and B < k
for some constants positive c and k. c is the minimum
throughput required by the system. k is the maximum bus
bandwidth of the system.
 Algorithm: Initialization step: Set all buffers to their
smallest sizes; X0 = (x1, x2 …, xn) = (min(S1), …, min(Sn)),
Initialize iteration variable; i = 1.

Main step:

1. Initialize the selection set; U = {1, 2, …, n}; j=1.
2. Simulate the queueing model to obtain a vector

Pi,j for all j ∈ U. Fix xt to the temporal optimal
values where t ≠ j. Then f becomes a function of
one variable, xj. Evaluate f(xj) for all j and all xj ∈
Sj. Pi,j = f(xj), for j ∈ U.

3. Calculate correlation coefficients, Ci,j = ρ(Pi,j, Sj)
where j ∈ U.

4. Find the correlation coefficient Ci,k with highest
absolute value; |Ci,k| ≥ |Ci,j| for all k ≠ j, k ∈ U.

5. Update xk in Xi to yield the best value of Pi,k. If
there are multiple optimal solutions, pick the
smallest value of xk, i.e., choose the smallest
buffer size.

 If Pi,k = Pi-1,k, then no update.
6. Remove k from set U. If U is not empty, go to 2.
7. If || f(Xi) - f(Xi-1)|| < ε , then stop. Otherwise, i = i +

1, and go to 1.

The local optimal solution is guaranteed. The main idea of
this algorithm is that the buffer with the highest correlation
to the performance is updated in each iteration and the per-
formance is re-evaluated according to the change. The cor-
relation helps to approach the optimal solution faster along
the huge searching space of decision variables.

5 IMPLEMENTATION

Two simulation models were created to analyze traffic pat-
terns for both independent and dependent (pipelined) proc-
essing units in a shared-memory system. These cases are
complex and too difficult to analyze with mathematical
methods. The simulation programs are developed with the
aid of CSIM. CSIM is a process-oriented, discrete-event
simulation package for use by C or C++ programs. In a
CSIM model, a process represents a processing unit. A fa-
cility in CSIM is used to model the bus resource with a
single queue. Processes operate in a simulated environ-
ment, controlled by the execution supervisor with respect
to the passage of simulated time. For the independent proc-
essing model, each process issues bus request independ-
ently from other processes. The request is either pre-
determined or generated randomly by the statistics func-
tion. For the pipelined processing model, processing activi-
ties are synchronized and scheduled. The bus requests is-
sues from two neighboring processing units are highly
correlated. The structure and the flow of the design are
shown in Figure 3.
Queueing model
(CSIM processes)

Optimization

Hardware
Settings

Decision variables

Optimal
solution

Figure 3: The Structure of the Design

Li, Holliday, and Fegan

6 SIMULATION EXPERIMENTS

The experiments are done for both independent PUs and
pipelined PUs. The bus request patterns in the system are
mixed-type, i.e., combining both deterministic and random
types. The tests are to exploit the nature of system response
and find the optimal setting for decision variables, I/O
buffer sizes, with respect to the best system performance.
The buffer size is divided into different levels, numbered
from 1 to n, for the sake of displaying.

Table 1 and Figure 4 are experimental outcomes from
a model with 5 independent PUs. Table 1 shows the opti-
mal buffer solution with respect to different objective func-
tion, listed in the first column. In the example, buffer level
1, 2, 3, … and 8 stand for sizes 8, 16, 32, … and 1024
bytes. For instance, if the objective function is defined as
the best throughput of PU3, then the solution is 1, 1, 8, 7,
and 4 for buffer1, buffer2, … and buffer5, respectively.
The interesting result is that each processing unit tends to
make its buffer biggest to gain the best response, as shown
in the diagonal line of the table. Figure 4 shows the rela-
tionship between total system waiting time and switching
time over all possible configurations of buffers. Bus utili-
zation in this example is 90.7%. As we can see, minimums
of waiting time along the switching time axis linearly
grows with switching time. This can be explained by tak-
ing micro views of the system. When bus utilization
reaches the full state, any PU’s memory access time, in-
cluding switching time, is turned out to be other PUs’ wait-
ing time from their point of view. Thus, the waiting time
increases with the switching time.

For simplicity, the test model for pipelined PUs uses 3
processing units and 4 I/O buffers with 10 buffer levels for
each. Figure 5 shows the results of all possible settings of 4
embedded buffers in the system. The vertical axis, band-
width, represents the percentage of bus utilization. Each
dot represents one outcome of simulation with respect to
one setting. It illustrates the decision space and the multi-
ple solutions to one given performance. Figure 6 shows the
trace of searching algorithm for 5 iterations. The search
started from different points, in this example, both cases
converge into the same optimal solution. However, the al-
gorithm cannot guarantee convergence to the same optimal

Table 1: Optimal Buffer Sizes for Different Objectives
Buffer number Objective

 1 2 3 4 5
Optimal re-
sponse (time

unit/byte)
System 7 8 8 6 5 0.233408

PU1 8 1 3 7 8 0.127541
PU2 3 8 2 6 7 0.131516
PU3 1 1 8 7 4 0.132472
PU4 5 1 1 8 8 0.127698
PU5 5 1 1 6 8 0.127989
Figure 4: Switching Time vs. Waiting Time for 5 Inde-
pendent PU model

Figure 5: Decision Space for I/O Buffers

solution due to the existence of local optimal points. The
local optimal solution is guaranteed.

7 CONCLUSION

The objective function in pipelined PU model is more spe-
cific than that in the independent PU model. From the
hardware point, both physical structures are the same,
whereas, from the bus controller, each processing unit is in
different nature. In this paper, we focused on the effect of
I/O components to system performance under the surveyed
queueing models. A methodology was shown to define the
problem, model the system and find the solution. An algo-
rithm was developed to search for the optimal solution ef-

Li, Holliday, and Fegan

ficiently by exploiting the correlation of decision variables
and the objective function. The optimal solution may not
be unique. It does help the system designers to make
proper decisions and optimize the design.

REFERENCES

Hillier, F. S., and G. J. Lieberman. 1995. Introduction to
Operations Research, ISBN 0-07-841447-4, sixth ed.
Stanford: McGraw Hill.

Jonkers, H. 1994. Queueing Models of Shared-Memory
Parallel Applications. Computer and Telecommunica-
tion Systems Performance Engineering. London: Pen-
tech Press.

Kornecki, and J. Zalewski. 1998. Simulation of Multiproc-
essor Bus Systems for Real-time Applications. Pro-
ceedings of the 1998 Conference on Simulation Meth-
ods and Applications, The Society for Computer
Simulation, pp. 74-81. San Diego.

Lauzon, D., and A. Vincent, and L. Wang. 1996. Perform-
ance Evaluation of MPEG-2 Video Coding for HDTV.
IEEE transactions on Broadcasting, Vol. 42, No. 2.

Li, J. H., and N. Ling. 1999. Architecture and Bus Arbitra-
tion Schemes for MPEG-2 Video Decoder. IEEE
Transactions on Video Technology, Vol.9, No. 5, pp.
727-736. Santa Clara.

AUTHOR BIOGRAPHIES

J. H. LI received her B.S. degree in information and com-
puter engineering from Chun-Yuan Christian University,
Taiwan, in 1988, and her M.S. degree in computer engi-
neering from Santa Clara University, California, U.S.A., in
1996. She worked as an engineer at Matsushita Elec. Ins.
of Tech. Co. from 1988-1990. She has been a research as-
sistant and teaching assistant at Santa Clara University.
She is currently pursuing a Ph.D. degree in computer engi-
neering at Santa Clara University. Her research interests
include queueing theory, operations research, image com-

���������	
�	������
���������	
�	������
���������	
�	������

� ��� � ��� � ��� � ��� �
����

���

����

����

����

����

���

����

�������������������

Figure 6: Trace of Performance
pression, video technology, signal processing, VLSI design
and parallel computing.

J. HOLLIDAY is an Assistant Professor at Santa Clara
University. She received her B.S. at UC Berkeley and her
M.S. at Northeastern University in Boston. Her Ph.D. is
from UC Santa Barbara. Her professional interests include
distributed replicated databases, distributed operating sys-
tems, and multicast, mobile, and ad-hoc networks.

G. FEGAN is an Associate Professor and Chair of the Ap-
plied Mathematics Department at Santa Clara University.
He received his B.S. degree from the University of San
Francisco, an M.A. from San Francisco State University,
an M.A. from San Jose State University, and the Ph.D.
from Oregon State University (1973). He has been a full-
time faculty member at Santa Clara since 1987. He special-
izes in statistics.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 2017
	02: 2018
	03: 2019
	04: 2020
	05: 2021

