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ABSTRACT 

This paper presents a methodology of decision-making for 
embedded I/O buffer sizes in a single-bus shared-memory 
system. The decision is made with the aid of a queuing 
model, simulation, and the proposed algorithm. The gener-
alized queueing model is simulated to cover two cases: in-
dependent processing units and pipelined processing units 
in a shared-memory environment. The objective is to ob-
tain the best performance with the optimized embedded 
buffers in the system. Therefore, an algorithm is developed 
to find the optimal solution efficiently by exploring the 
correlation between buffers and system performance. The 
local optimum is guaranteed. The method can be widely 
applied to many applications. 

1 INTRODUCTION 

In most cases of computational devices, memory is shared 
among different processing units (PUs) through a common 
bus. For intensive data processing systems such as multi-
media system, MPEG encoder/decoder (Li and Ling 1999) 
(Lauzon, Vincent and Wang 1996) and local network, bus 
utilization and system performance are very important is-
sues. The factors that affect system performance can be the 
number of processing units, memory type and bus struc-
ture, arbitration schemes, and workload (Kornecki and 
Zalewski 1998) (Jonkers 1994). In this paper, we focus on 
the factor of embedded I/O buffers of the processing units, 
which has not been explored in detail in prior works. 

In a shared-memory system, the time to access the data 
in memory involves waiting time, switching time and data 
transfer time. Data transfer time and switching time for one 
transfer are determined by the memory and bus structure. 
The total switching time is proportional to the number of 
bus requests issued during the processing of one task. The 
processing unit with smaller I/O buffer requests more data 
transfers. The proportion of switching time to total access 
time can be significant if the I/O buffer is small. On the 

 

other hand, if the I/O buffer is too big, it causes delay for 
other processing units in accessing the bus. To maintain the 
system at the highest performance or best utilization of 
hardware resources, the buffer sizes need to be properly 
chosen. 

In this paper, a generalized queueing model is pre-
sented for two scenarios: independent processing units and 
pipelined processing units in the system. A simulation pro-
gram, based on this model, was developed to analyze traf-
fic patterns and to evaluate the system performance. The 
algorithm searches the decision space for the solution 
yielding the best performance, i.e., the best buffer setting. 

The approach is outlined as follows: 
 
1. Creating a general queueing model for the real 

application. 
2. Formulating the problem and constructing a 

mathematical generalized model to represent the 
system (Hillier and Lieberman 1995). Identifying 
the objectives, decision variables/random vari-
ables, and constraints in the problem. 

3. Simulating the model and applying the proposed 
algorithm to search the decision space, i.e., all the 
possible solutions, to yield the optimal solution. 

2 QUEUEING MODEL FOR A SINGLE-BUS 
SHARED-MEMORY SYSTEM 

A generalized shared-memory system is illustrated in Fig-
ure 1. Processing units are independent if data in memory 
are not shared among them. In figure 1, the arrows indicate 
independent data flows. Processing units are dependent if 
processing units cooperate to process data in pipeline man-
ner, as shown by the dashed data flow in figure 1. Each 
Processing unit (PU) has its I/O buffer to temporarily store 
data from/to memory. A bus request is issued whenever the 
buffer is either empty, to receive new data, or when full, to 
transmit processed data. The data is transferred from mem-
ory, through a common bus, to the buffers in a fixed size.  
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Figure 1: A Generalized System Model 
The amount of data in a transfer is usually the same as the 
size of the buffer. The traffic on the bus is determined by 
the application and the buffer size is determined by a sys-
tem designer.  

In Figure 2, the whole system is presented from the 
bus administrator’s point of view. Each arrival represents a 
request for the bus. Arrivals can be classified into random 
and deterministic types due to the variance of data consum-
ing rates on the buffers. Arrivals are correlated in the case 
of pipelined-PU model, otherwise they are independent. 
Data transfer is done in the service station. The waiting ca-
pacity for the service is limited. Service time is determinis-
tic. Queueing disciplines include FCFS (First Come First 
Served) and priority schemes.  

The service time is deterministic for each PU because 
it only depends on the buffer size and bandwidth of the 
bus, which are both determined by the designer. We con-
sider a queueing system where some of the bus requests 
have a deterministic arrival time and some have a random 
arrival time. Furthermore, the buffer size is different for 
each PU, and therefore the pattern of the service time is no 
longer deterministic. 

3 FORMULATION 

In this section, the system is reviewed to identify the objec-
tive and variables. The objective is to achieve the best sys-
tem performance with the optimal buffer setting. The I/O 
buffer sizes are variables which need to be determined.  
Thus the system is formulated in a mathematical way for the 
optimization. The pattern of bus requests issued from a PU 
may be described by a statistical function or a deterministic 
type of function. Given the statistics of the bus requests, the 
Limited waiting  
capacity 

Deterministic 
arrivals 

Random 
arrivals 

Figure 2: Bus Administrator 
exact relation between buffer size, switching time, and wait-
ing time must be determined in order to find the optimal 
buffer size and maximum system throughput. For instance, 
the waiting time for each PU is affected by the data requests 
over the bus from other PUs. The occurrence of each arrival 
depends on the data-consuming speed for the buffer. The 
consuming speed is determined by the hardware and buffer 
size. Hence, we can describe the expected waiting time as a 
function of the buffer lengths for the PUs, statistics of data 
request patterns and data processing rates. 
 
 W1 = f1(X1, X 2, …, Xn, V1, V2, …, Vn, R1, R2, …, Rn) 
 W2 = f2(X1, X 2, …, Xn, V1, V2, …, Vn, R1, R2, …, Rn) 
 W3 = f3(X1, X 2, …, Xn, V1, V2, …, Vn, R1, R2, …, Rn) 
 : 
 Wn = fn(X1, X 2, …, Xn, V1, V2, …, Vn, R1, R2, …, Rn) 
      for i=1, …,n  (1) 
 
where 

 
Wi is the expected waiting function for PUi. 
Xi is the buffer size. 
Vi is the characteristics of data described by statistics 

distributions. 
Ri is the data processing speed for the processing unit. 
n is the number of PUs. 

 
Since The total switching time is proportional to the num-
ber of bus requests issued during the processing of one 
task, the switching time can be derived easily from defini-
tion. We sum up  switching time, data transfer time and 
waiting time to gain total memory time. The best perform-
ance is achieved at minimal total time. In other words, we 
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would like to define the objective function as system per-
formance P. P can be the throughput of the system. As-
sume the hardware features like processing rates and statis-
tics of bus requests are determined, then P becomes the 
function of “buffer” variables as follows. 
 
 P = f(X1, X2, X3, … Xn)  
 where Xi is the buffer size for PUi; i = 1, …, n (2) 

 
Beyond the formulation, a simulation is needed due to the 
difficulty of deriving a closed form solution for a complex 
system.  It is not hard to imagine the complexity of the 
generalized model, which involves more random-type arri-
vals and constraints. Determining the appropriate objective 
function is also a critical and challenging part of the 
model-building process. Therefore, simulation becomes 
important and relevant. 

4 PROPOSED ALGORITHM: THE  
OPTIMAL I/O BUFFER SETTING 

Formulation: Given the system above with fixed hardware 
configuration. Let P be the throughput of the system; 
P= f (x1, x 2, …, xn), and B be the bus utilization; where xi is 
the size of the i’th I/O buffer in the system; xi ∈ Si, i=1, ..., n, 
and Si is the set of all possible buffer sizes. ε>0 is the stop-
ping criteria. 
 Optimize P = f(x1, x 2, …, xn) subject to P > c and  B < k 
for some constants positive c and k. c is the minimum 
throughput required by the system. k is the maximum bus 
bandwidth of the system. 
 Algorithm:  Initialization step: Set all buffers to their 
smallest sizes; X0 = (x1, x2 …, xn) = (min(S1), …, min(Sn)), 
Initialize iteration variable; i = 1. 
 
Main step: 
 

1. Initialize the selection set; U = {1, 2, …, n}; j=1. 
2. Simulate the queueing model to obtain a vector 

Pi,j for all j ∈ U.  Fix xt to the temporal optimal 
values where t ≠ j. Then f becomes a function of 
one variable, xj. Evaluate f(xj)  for all j and all xj ∈ 
Sj.  Pi,j = f(xj), for j ∈ U. 

 

3. Calculate correlation coefficients, Ci,j = ρ(Pi,j, Sj) 
where j ∈ U. 

4. Find the correlation coefficient Ci,k with highest 
absolute value; |Ci,k| ≥ |Ci,j| for all k ≠ j, k  ∈ U. 

5. Update xk in Xi to yield the best value of Pi,k. If 
there are multiple optimal solutions, pick the 
smallest value of xk, i.e., choose the smallest 
buffer size. 

 If Pi,k = Pi-1,k, then no update. 
6. Remove k from set U. If U is not empty, go to 2. 
7. If || f(Xi) - f(Xi-1)|| < ε , then stop. Otherwise, i = i + 

1, and go to 1. 
 
The local optimal solution is guaranteed. The main idea of 
this algorithm is that the buffer with the highest correlation 
to the performance is updated in each iteration and the per-
formance is re-evaluated according to the change. The cor-
relation helps to approach the optimal solution faster along 
the huge searching space of decision variables. 

5 IMPLEMENTATION 

Two simulation models were created to analyze traffic pat-
terns for both independent and dependent (pipelined) proc-
essing units in a shared-memory system. These cases are 
complex and too difficult to analyze with mathematical 
methods. The simulation programs are developed with the 
aid of CSIM. CSIM is a process-oriented, discrete-event 
simulation package for use by C or C++ programs. In a 
CSIM model, a process represents a processing unit. A fa-
cility in CSIM is used to model the bus resource with a 
single queue. Processes operate in a simulated environ-
ment, controlled by the execution supervisor with respect 
to the passage of simulated time. For the independent proc-
essing model, each process issues bus request independ-
ently from other processes. The request is either pre-
determined or generated randomly by the statistics func-
tion. For the pipelined processing model, processing activi-
ties are synchronized and scheduled. The bus requests is-
sues from two neighboring processing units are highly 
correlated. The structure and the flow of the design are 
shown in Figure 3. 
Queueing model 
(CSIM processes) 

Optimization 

Hardware 
Settings 

Decision variables 

Optimal 
solution 

Figure 3: The Structure of the Design 
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6 SIMULATION EXPERIMENTS 

The experiments are done for both independent PUs and 
pipelined PUs. The bus request patterns in the system are 
mixed-type, i.e., combining both deterministic and random 
types. The tests are to exploit the nature of system response 
and find the optimal setting for decision variables, I/O 
buffer sizes, with respect to the best system performance. 
The buffer size is divided into different levels, numbered 
from 1 to n, for the sake of displaying.  

Table 1 and Figure 4 are experimental outcomes from 
a model with 5 independent PUs. Table 1 shows the opti-
mal buffer solution with respect to different objective func-
tion, listed in the first column. In the example, buffer level 
1, 2, 3, … and 8 stand for sizes 8, 16, 32, … and 1024 
bytes. For instance, if the objective function is defined as 
the best throughput of PU3, then the solution is 1, 1, 8, 7, 
and 4 for buffer1, buffer2, … and buffer5, respectively. 
The interesting result is that each processing unit tends to 
make its buffer biggest to gain the best response, as shown 
in the diagonal line of the table. Figure 4 shows the rela-
tionship between total system waiting time and switching 
time over all possible configurations of buffers. Bus utili-
zation in this example is 90.7%. As we can see, minimums 
of waiting time along the switching time axis linearly 
grows with switching time. This can be explained by tak-
ing micro views of the system.  When bus utilization 
reaches the full state, any PU’s memory access time, in-
cluding switching time, is turned out to be other PUs’ wait-
ing time from their point of view. Thus, the waiting time 
increases with the switching time. 

For simplicity, the test model for pipelined PUs uses 3 
processing units and 4 I/O buffers with 10 buffer levels for 
each. Figure 5 shows the results of all possible settings of 4 
embedded buffers in the system. The vertical axis, band-
width, represents the percentage of bus utilization. Each 
dot represents one outcome of simulation with respect to 
one setting. It illustrates the decision space and the multi-
ple solutions to one given performance. Figure 6 shows the 
trace of searching algorithm for 5 iterations. The search 
started from different points, in this example, both cases 
converge into the same optimal solution. However, the al-
gorithm cannot guarantee convergence to the same optimal  
 

Table 1: Optimal Buffer Sizes for Different Objectives 
Buffer number Objective 

 1 2 3 4 5 
Optimal re-
sponse (time 

unit/byte) 
System 7 8 8 6 5 0.233408 

PU1 8 1 3 7 8 0.127541 
PU2 3 8 2 6 7 0.131516 
PU3 1 1 8 7 4 0.132472 
PU4 5 1 1 8 8 0.127698 
PU5 5 1 1 6 8 0.127989 
Figure 4: Switching Time vs. Waiting Time for 5 Inde-
pendent PU model 
 

 

Figure 5: Decision Space for I/O Buffers 
 
solution due to the existence of local optimal points. The 
local optimal solution is guaranteed.  

7 CONCLUSION 

The objective function in pipelined PU model is more spe-
cific than that in the independent PU model. From the 
hardware point, both physical structures are the same, 
whereas, from the bus controller, each processing unit is in 
different nature. In this paper, we focused on the effect of 
I/O components to system performance under the surveyed 
queueing models. A methodology was shown to define the 
problem, model the system and find the solution. An algo-
rithm was developed to search for the optimal solution ef-
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ficiently by exploiting the correlation of decision variables 
and  the objective function. The optimal solution may not 
be unique. It does help the system designers to make 
proper decisions and optimize the design.  
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