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ABSTRACT

Several traffic measurement reports have convincin
shown the presence of self-similarity in modern network
inducing as a result a revolution in the stochastic modeli
of traffic. The use of self-similar processes in performan
analysis has opened new problems and research issue
simulation studies, where the efficient generation of sy
thetic sample paths with self-similar properties is one
the fundamental concerns. In this paper, we present
M/G/∞ generator of self-similar traces, based on a high
efficient simulation model using the decomposition prope
of Poisson processes.

1 INTRODUCTION

Several traffic measurement studies (Leland et al. 19
Garrett and Willinger 1994) have demonstrated the existe
of statistical self-similarity in modern networks, along wit
a closely related property called Long-Range Depende
(LRD), that involves non negligible correlations over arb
trarily large time scales. These findings have contributed
a very important revolution in the stochastic modeling
traffic, since the presence of LRD may have a drastic i
pact on the performance metrics (Likhanov, Tsybakov a
Georganas 1995, Erramilli et al. 1996), and the validity
traditional processes, like Markovian or Autoregressive,
in doubt because modeling LRD through these proces
requires many parameters, whose interpretation becom
difficult.

Because of this, the use of self-similar processes
network traffic modeling purposes is essential, due to th
capability to exhibit LRD over all time scales by makin
use of few parameters (parsimonious modeling).

The application of self-similar processes in netwo
simulation studies has opened a wide range of resea
topics dealing with new problems. One of the most importa
in

,

s
s

issues is the synthetic generation of sample paths of LR
processes, since real traces collected by measurements
of limited length and lack the necessary diversity requir
to make flexible enough simulation studies.

A very interesting self-similar process is the occupan
process of an M/G/∞ queueing model, referred to as M/G/∞
process. It belongs to the class of LRD processes wh
G, the distribution of the service time, is heavy-tailed o
infinite variance.

Apart from its use in analytical studies, the M/G/∞
process has several important advantages for simula
studies, such as the possibility of on-line generation. F
thermore, there exists a trivial method of producing exa
sample paths of the process with complexityO(n), being
n the length of the sample path: it suffices to simulate t
M/G/∞ queue, sampling the occupancy of the system
integer instants.

Varying the service time distribution, G, many forms o
time dependence can be obtained, which makes this proc
a good candidate for modeling many types of correlat
traffic, such as video traffic (Krunz and Makowski 1998). I
Suárez et al. (2002) the authors present a discrete rand
variable whose distribution (S distribution) is heavy-taile
with two parameters, a feature that enables the modeling
both short-term and long-term correlation behavior of th
resulting M/S/∞ process.

Despite its high flexibility, the marginal distribution of
the M/G/∞ process is Poisson, which is not adequate
model the empirical marginal distribution of some real vide
sequences. So, we need to transform the Poisson marg
distribution of the M/G/∞ process into a more appropriat
heavy-tailed form. However, small values of the arriv
rate λ of the Poisson input process are inappropriate f
the transformation process (Poon and Lo 2001) and, on
other hand, the complexity of the generator is an increas
function of λ.
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In order to get a more efficient simulation model, in this
paper we propose the use of the decomposition property
Poisson processes. With the proposed method, we obtai
flexible and efficient M/G/∞ generator able to deal with a
wide range of input parameters.

The remainder of the paper is organized as follows. I
Section 2 we review the main concepts related to LRD an
statistical self-similarity and present the M/G/∞ process.
In Section 3 we present the method that we propose in ord
to improve the efficiency of the generator of samples o
the M/G/∞ process, and evaluate the improved simulatio
model applied to the sample generation of the M/S/∞
process (the S distribution is described in Appendix A
Finally, Section 4 summarizes the conclusions of the pap

2 LRD AND M/G/∞ PROCESS

Let X = {Xk; k = 1,2, . . . } be a stationary stochastic pro-

cess with finite variance and autocorrelation function rk
1=

Cov
[
Xi,Xi+k

]
/Var [X] and letX(m) be the corresponding

aggregated process (with aggregation levelm), obtained by
averaging the original sequenceX over non-overlapping
blocks of sizem, X(m) = {Xi [m]; i = 1,2, . . .

}
, where:

Xi [m] = 1

m
·

i·m∑
j=(i−1)·m+1

Xj .

It is said thatX exhibits LRD when its autocorrela-
tion function is not summable, i.e.,

∑∞
k=1 rk = ∞, like

in those processes whose autocorrelation function deca
hyperbolically:

∃β ∈ (0,1)
∣∣∣∣ lim
k→∞

rk
k−β
= cr ∈ (0,∞) . (1)

The processX is called exactly second-order self-
similar, with self-similarity parameterH (Hurst 1951), if
the aggregated processX(m) scaled bym1−H has the same
variance and autocorrelation asX for all m, that is, if the
aggregated processes possess the same nondegenerate
relation structure as the original stochastic process. T
autocorrelation function of bothX andX(m) is:

rk = gH
k

1= 1

2
·
[
(k + 1)2H − 2k2H + (k − 1)2H

]
∀k ≥ 1

(2)
where for 1/2< H < 1 (Cox 1984):

lim
k→∞

gH
k

k2H−2
= H · (2H− 1),

that is, it decays hyperbolically as in (1), and so the proce
exhibits LRD.
f
a

r

.

s
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If expression (2) is satisfied asymptotically by the auto
correlation function of the aggregated process, r(m)

k , then the
process is called asymptotically second-order self-simila

lim
m→∞ r(m)k = gH

k ∀k ≥ 1.

It has been shown that a covariance stationary pr
cess whose autocorrelation function decays hyperbolica
is asymptotically second-order self-similar (Tsybakov an
Georganas 1997).

A quite interesting self-similar process is the occupanc
process of an M/G/∞ queueing model. In such a queueing
model, customers arrive according to a Poisson process w
rateλ to a pool of infinitely many servers, and their service
times constitute a sequence of continuous i.i.d. rando
variables distributed as the random variableS of finite
mean value.

Cox and Isham (1980) showed that the number o
customers, or busy servers, in the system at any instant ,
{X(t); t ∈ <}, has a Poisson marginal distribution. If the
mean value ofS is finite, it can be demonstrated that the
occupancy process exhibits LRD iff its variance is infinite
as it may happen in heavy-tailed service distributions.

We are interested on the discrete-time version o{
X(t); t ∈ <+}, that is: X

1=
{
Xi

1= X(i); i = 1,2, . . .
}
,

stochastic process referred to as the M/G/∞ process.
The most natural approach to generate an M/G/∞ pro-

cess is to use a discrete-time model, since its simulatio
will be more efficient (Suárez et al. 2002).

2.1 Discrete-Time Model

Let A = {An; n = 1,2, . . . } be a renewal stochastic pro-
cess, whereAn is a Poisson random variable with mean
value λ and represents the number of arrivals at instan
n; let

{{
Sn,i; i = 1, . . . , An

}; n = 1,2, . . .
}

be a renewal
stochastic process whereSn,i is distributed as a positive-
valued discrete random variableS with finite mean value
E[S], and corresponds to the service time of thei-th arrival
at instantn.

If the following conditions hold:

• the initial number of usersX0 is a Poisson random
variable of mean valueλ · E[S];

• the service times of theseX0 initial users{
Ŝj ; j = 1, . . . , X0

}
are mutually independent and

have the same distribution as the residual life ofS,
Ŝ:

Pr
[
Ŝ = k] = Pr[S ≥ k]

E [S]
,

then the stochastic processX = {Xn; n = 1,2, . . . } is strict-
sense stationary and ergodic, and enjoys equivalent prop
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ties to those of the original continuous-time M/G/∞ process
(Parulekar and Makowski 1996):

1. the processX has a Poisson marginal distribution
and mean value:

µ
1= E[X] = λ · E[S] , (3)

2. its autocorrelation function is given by:

rk = 1

E[S]
·
∞∑
i=k

Pr[S > i]

= 1−

k−1∑
i=0

Pr[S > i]

E [S]
∀k = 1,2, . . .

(4)

3. it exhibits LRD⇐⇒ E
[
Ŝ
] = ∞, since:

∞∑
k=0

rk = E
[
Ŝ
]
.

Suárez et al. (2002) propose to use the S distributio
for the service time, since its mean value and the cdf of it
residual life have explicit expressions, given in Appendix A.
Moreover, it is a heavy-tailed distribution with two param-
eters,α andm, a feature that enables the modeling of both
short-term and long-term correlation behavior of the occu
pancy process. Specifically, the autocorrelation function o
the resulting M/S/∞ process is:

rk =


1− α − 1

mα · k ∀k ∈ (0,m]
1
α ·

(
m
k

)α−1 ∀k ≥ m.

Given the three desired parameters of the processX

(mean valueµ, Hurst parameterH and one-lag autocorre-
lation coefficient r1) the parameters of the M/S/∞ model
can be computed as follows:

α = 3− 2H (5)

m =


(αr1)

1
α−1 ∀r1 ∈

(
0, 1
α

]
1− 1

α

1− r1
∀r1 ∈

[
1
α ,1

)

λ =
{
µ · αm−mα

mα ∀m ∈ (0,1]
µ · α−1

mα ∀m ≥ 1.
-
f

3 AN EFFICIENT M/G/ ∞ GENERATOR

The tail of the marginal distribution plays an important role in
performance evaluation (Grossglauser and Bolot 1996). Th
M/G/∞process has Poisson marginal distribution, whose tai
drops faster than that of the empirical marginal distribution
of some real sequences. Therefore, we need to transform
the Poisson marginal distribution of the M/G/∞ process into
a more appropriate one, but this introduces an efficiency
problem. On the one hand, small values of the arrival
rate λ of the Poisson input process are inappropriate for
the transformation operation but, on the other hand, the
complexity of the generator is a linear increasing function
of λ.

In order to improve the efficiency for large mean values
of the M/G/∞ process, which in view of equation (3) implies
also large values ofλ, we propose to use the decomposition
property of Poisson processes.

3.1 Description of the Proposed Method

As we have seen in Section 2, when we use a discrete-tim
simulation model of the M/G/∞ system, every sample value
Xn requires the generation of:

• one sample of the Poisson random variableAn,
with mean valueλ.

• An samples of the random variableS.

We denote byN the mean number of random values that
have to be generated for each sample value of the occupanc
process. In this caseN = λ+ 1. For large values ofλ, the
computational time can be very high.

In order to improve the efficiency, we divide the arrivals
at each instantn into K+1 groups, according to the values
of their service times. The mean number of arrivals at each
group isλ ·Pr[S = i] ; i = 1,2, . . . ,K for theK first groups
andλ · Pr

[
S > K

]
for the last group.

As we can see in Figure 1, using the decomposition
property of Poisson processes we divide the original arrivals
input process intoK + 1 Poisson processes. Hence, it will
produce a statistically identical process if, per sample value
Xn, we only generate one sample of the arrivals random
variable for each one of theK first groups, since the service
times are directlyi = 1,2, . . . ,K.

With this method, each sample valueXn requires the
generation of:

• one sample per Poisson random variableAn,i; i =
1,2, . . . ,K, with mean valueλ · Pr[S = i] for
i = 1,2, . . . ,K,

• one sample of the Poisson random variableAn,K+1,
with mean valueλ · Pr

[
S > K

]
,



Sousa-Vieira, Suárez-González, López-García, Fernández-Veiga, and López-Ardao

ate

ec

on
on

-

io

es

e

h

,

is
a

e

e-
...λ

λ · Pr[S = 1]

λ · Pr[S = 2]

λ · Pr
[
S = K

]
λ · Pr

[
S > K

]
Figure 1: The Arrivals Input Process

• An,K+1 samples of the random variableS|S>K, that
is, of the part ofS greater thanK.

The mean number of random values that have to be gener
for each sample value of the occupancy process isN =
K + 1+ λ · Pr

[
S > K

]
.

Since our aim is to minimize this quantity,N, we
chooseK as the highest value such thatλ ·Pr

[
S = K

]
> 1.

This will ensure the minimumN whenever Pr[S = i] is a
monotonically decreasing function ofi.

3.2 Performance for the M/S/∞ Process

We evaluate this improved simulation model with the M/S/∞
process. In the remaining of this section, we check the eff
of the input parameters (mainly the mean valueµ, but
also the Hurst parameterH and the one-lag autocorrelation
coefficient r1) on both the thresholdK and the mean number
of random values per sample valueXn, N. In the next section
we will measure the real performance of our implementati
of the proposed simulation model (briefly commented
in Appendix B).

In the following, we vary the mean value of the M/S/∞
process in powers of two,µ = 2m (the axis will be in loga-
rithmic scale), and fix one of the two remaining input param
eters to a moderate value (r1 = 0.5, H = 0.7), while using
a set of values for the other one (H ∈ {0.6,0.7,0.8,0.9},
r1 ∈ {0.1,0.5,0.9}): the higher (lower) values for r1 andH
are meant to be representative of strong (weak) correlat
and of strong (weak) LRD behavior.

We have used a logarithmic scale for those figur
showing the effect onN since it quickly takes large values
asµ increases.

First, we show the effect of the mean value of th
M/S/∞ process and the Hurst parameter on bothK and
N in Figures 2 and 3 respectively. With respect toµ, we
observe howK takes moderate values even for quite hig
values ofµ, while N is roughly two orders of magnitude
lower thanµ in the studied interval. On the other hand
we can see thatK and N are neither greatly influenced
d

t

n

by H, nor they are increasing functions ofH for everyµ,
although asymptotically this seems to be the case. Th
fact may seem counterintuitive, since it may appear that
higher K should give rise to a lowerN. Nevertheless, it
is simply the result of the higher dispersion of the servic
time distribution for lowerα (higher H) values while not
varying its mean value E[S]: note from equation (4) that
the same r1 implies the same E[S].
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Figure 2:K (r1 = 0.5)
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Figure 3:N (r1 = 0.5)

As expected, Figures 4 and 5 reproduce the same b
havior of K and N with respect toµ. On the other hand,
the effect of the parameter r1 on K andN is clearly stronger
than that ofH, with bothK andN being increasing functions
of r1 for large values ofµ.
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This behavior is a consequence of a constant dispers
of S —sameH implies sameα, from equation (5)— and:

• E [S] increases with r1, from expression (4),
• λ decreases as E[S] increases, from equation (3)

In Figure 4, we observe howK is mainly driven by the
behavior of E[S] instead of that ofλ.

Figure 5 depicts the shape in whichN increases as
r1 does, for large enoughµ. This is mainly due to the
increasingK, since bothK and the decreasingλ are capable
to compensate the increasing E[S] in λ · Pr

[
S > K

]
.
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n 3.3 Empirical Case Study

In this section we measure the performance of the improve
M/S/∞ simulation model, both absolute and relative to tha
of the previous simulation model (Suárez et al. 2002):

R = running time of previous version

running time of improved version
.

We measured the running times in seconds (using th
Unix commandtime) for the generation of sample paths of
n = 2 · 107 values of the M/S/∞ process in an Athlon XP
1600+ @1.4GHz.

In Figure 6 we observe how the efficiency of the genera
tor based on the improved version is practically equal to tha
of the previous one for small values ofµ, but significantly
better asµ increases. This is mainly due to the reduction
in the number of samples that we have to generate for ea
sample value of the occupancy process:N = λ+1 with the
previous simulation model andN = K+ 1+ λ ·Pr

[
S > K

]
with the improved version.
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× × ×
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Figure 6: CPU Time Improvement

Table 1 shows numerically the improvement factor,R,
for different values ofµ, r1 andH.

Table 1: CPU Time Improvement
M/S/∞ parameters H = 0.6 H = 0.9

µ = 8192 189.74 185.71
r1 = 0.1 µ = 16384 314.89 279.63

µ = 32768 501.69 402.63
µ = 8192 9.375 7.93

r1 = 0.9 µ = 16384 15.08 8.58
µ = 32768 21.55 6.55
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Both the effect ofµ, and that ofH or r1 on the running
time in seconds of the improved M/S/∞model are shown in
Figures 7 and 8 respectively. Comparing them to Figures
and 5, we see how the running time behaves as a funct
of the mean number of random values per sample valueXi ,
N, as expected.
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Figure 7: CPU Time (r1 = 0.5)
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We can see that the time is an increasing function ofµ

(and so ofλ) but the complexity is subO(µ · n), although
it also depends on the other two parameters,H and r1.
n

4 CONCLUSIONS

We have presented in this paper a highly efficient simulation
model to obtain an M/G/∞ generator of self-similar traces
flexible enough to deal with a wide range of input parameters.

The model is based on the use of the decomposition
property of Poisson processes, in order to minimize the
mean number of random values to be generated per sampl
value of the occupancy process.

We have checked both analytically and experimentally
the efficiency of the simulation model applied to the gen-
eration of samples of the M/S/∞ process.

We are currently investigating how to apply the marginal
distribution change technique proposed by Crouse and Bara
niuk (1999) for Gaussian marginal distribution to the Poisson
one, in order to not mess up too much the autocorrelation
structure of the target process.
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APPENDIX A: S DISTRIBUTION

Considering two separate intervals for the parameterm, the
distribution of the S discrete-time random variable Pr[S = k]
(Suárez et al. 2002) is, form ≤ 1 :

• 1+ mα

αm−mα
·
[
(k + 1)1−α − k1−α]

k = 1

•
mα

αm−mα
·
[
(k + 1)1−α − 2 · k1−α + (k − 1)1−α

]
∀k > 1,

and form > 1 :

• 1+ k −m+ mα

α − 1
·
[
(k + 1)1−α −m1−α]

k = bmc
• 1+m− k + mα

α − 1
·
[
(k + 1)1−α − 2k1−α +m1−α]

k = dme
•

mα

α − 1
·
[
(k + 1)1−α − 2k1−α + (k − 1)1−α

]
∀k > dme.

Its mean value is:

E [S] =


αm

αm−mα
∀m ∈ (0,1]

αm
α − 1

∀m ≥ 1.
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As it would be expected, this proposed distributio
satisfies the heavy-tailed condition (Leland et al. 1994):

lim
k→∞

Pr[S > k]

k−α
= ch ∈ (0,∞),

with parameter:

ch =
{

mα · α − 1
αm−mα ∀m ≤ 1

mα ∀m ≥ 1,

The cdf of the residual life ofS is:

Pr
[
Ŝ ≤ k] = FŜ (k) =


α − 1
mα · k ∀k ≤ m

1− 1
α ·

(
m
k

)α−1 ∀k ≥ m.

APPENDIX B: IMPLEMENTATION NOTES

We have developed the C++ classCox, following the inter-
face of the classRandom of the GNU libg++ library as a
guideline. We have attempted to provide an implementati
as efficient as possible, intending to have approximately t
same level of efficiency as in a generator of any random va
able. The source code is available at<ftp://ftp-gris.
det.uvigo.es/pub/LRD/MGinf-src.tgz> .

An object of classCox has the following member
objects:

• servers An object of classListTimes which
stores the number of users in the system, the
departure times (in slots) and the isochronous cloc

• batches An array of K objects of class
IntPoisson which generate samples of Poisso
random variables with mean valuesλ · Pr[S = i]
for i = 1,2, . . . ,K.

• batch An object of classIntPoisson which
generates samples of a Poisson random variab
with mean valueλ · Pr

[
S > K

]
.

• demand An object of class
IntPareto_U_cond which generates samples
of the random variableS|S>K.

IntRandom

Both classesIntPareto_U_cond and IntPoisson
are built from the classIntRandom , which implements
a generic tabular method to invert the cdf F(k) of a non-
negative discrete random variable (Suárez et al. 2002).
this way, the efficiency of theIntPoisson generator is
almost independent of the mean valueλ.
ListTimes

This class stores the number of users in the M/G/∞ system
along with their departure times. Since the simulation clock
is isochronous, we need a set of counters, each one of them
storing the number of departures in a given future time
t = n.

The straightforward way to manage these counters is
through a single-linked list. To process an arrival, we have
to locate in the list the node corresponding to the new user’s
departure time, and increase its counter; or, if it does not
yet exist, to insert a new node in the list in the correct place.

Given that the search in the list for every arrival is
costly, we complete this data structure with a cyclic array
that stores those counters with departure time within the
next V units of time. Thus, if the service time of a new
user is less thanV, the counter associated to its departure
time is directly accessed. By selectingV as a power of two
the code to insert an arrival is:

inline void ListTimes ::In
(unsigned longservice_time ,unsignednum)
{

inside +=num;
if (service_time < V)

next_outs [(idx +service_time ) & Vmask]+=
num;

// Vmask is V-1, andidx is clock & Vmask;
else

InList (service_time ,num);
}

whereInList insertsnumarrivals in the single-linked list
out_jobs in the usual way.

The method to advance and generate the sample is
implemented as:

inline unsigned ListTimes ::Tick ()
{

inside −= next_outs [idx ];
if (out_jobs && out_jobs −>o_time ==

clock +V)
{

Out_jobs *aux = out_jobs ;
out_jobs = out_jobs −>next ;
next_outs [idx ] = aux−>number ;
deleteaux ;

}
else

next_outs [idx ] = 0;
clock ++;
idx = clock & Vmask;
return inside ;

}
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