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ABSTRACT

A reinforcement learning agent has been developed to de
mine optimal operating policies in a multi-part serial line
The agent interacts with a discrete event simulation mod
of a stochastic production facility. This study identifie
issues important to the simulation developer who wishes
optimise a complex simulation or develop a robust operatin
policy. Critical parameters pertinent to ’tuning’ an agen
quickly and enabling it to rapidly learn the system wer
investigated.

1 INTRODUCTION

The field of intelligent agents, using the artificial intelli-
gence learning technique, Reinforcement Learning (RL
has significant potential in advancing parameters and pol
optimisation techniques. Sutton and Barto (1998) provid
excellent background reading in this field. Comprehensi
literature surveys of pre 1996 research have been publish
by Kaelbling et al. (1996) and Mahadevan (1996).

Production systems vary widely in all areas of man
ufacturing, as the body of control literature will attest to
Consequently it is extremely difficult to develop a RL agen
framework that may be rapidly applied to a variety of in
dustrial situations. A second obstacle is the challenge
interfacing an agent with commercial simulation software

In this research a Matlab toolbox has been develop
to allow an RL agent to be rapidly ’tuned’ to optimise a
system. The agent may either reside within the Matla
workspace or the simulation software itself. Critical agen
operating parameters, that are modeller assigned, have b
identified and tools developed to monitor the performanc
of the agent and compare the effects of different age
parameter settings. The impact of changes to parame
values can be analysed, allowing rapid determination
preferred agent parameters.

The effectiveness of Discrete Event Simulation (DES
model optimisation algorithms is limited by the complexity
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of real world simulation environments. DES is a powerfu
tool to perform "What If" analysis of a system, where the
programmer may compare selected configurations. How
ever, the best facility design or operating policy may no
have been considered or tested by the engineer. Mod
optimisation algorithms attempt to overcome this problem
by searching the solution space according to a set of guidi
rules. A high degree of understanding of the system bein
studied is often required, restricting the solutions availabl

Aydin and Oztemel (2000) have successfully applie
RL agents to a dynamic job-shop scheduling problem. Th
agent was trained using a learning stage by coupling it wi
a simulated environment. Other agent based work in the jo
scheduling field has also been completed by Jeong (200
Zhang and Dietterich (1995), Riedmiller and Riedmille
(1999), and Schneider et al. (1998).

Several research groups have recently focused on R
agent applications in manufacturing. Paternina-Arboled
and Das (2001) uses a SMART algorithm on a serial pro
duction line and to optimise the preventative maintenance
a production inventory system (Das and Sarkar 1999). M
hadevan et al (1997) used this same algorithm and touch
upon the integration of intelligent agents using RL algo
rithms with commercial DES packages. Mahadevan an
Theocharous (1998) also examined a manufacturing app
cation. Currently these methods have been applied to only
few of the potential areas of optimisation in manufacturin
and many problems in the application of the algorithm
exist.

2 OVERVIEW OF REINFORCEMENT LEARNING

Reinforcement learning is a simulation based optimisatio
technique. An agent receives information about the sta
of its environment and selects an action. The action caus
the state of the environment to change. The structure
the agent is illustrated in Figure 1.

At predefined decision points, or events, the mode
passes control to the agent and waits for input before co
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Figure 1: Reinforcement Learning Agent Structure

tinuing. The model outputs its current state and the runn
cost of the last production epoch, the time period betwe
events requiring an agent decision. The agent must use
information as a basis of future decisions.

The agent uses a state-action map to associate act
with their affects on the model. The focus of the R
community has been on the use of neural nets to store
accumulated knowledge of the agent. Neural net techniq
are potentially more efficient then tables for efficient da
storage, providing both a generalization technique and co
pact structure, however they, in particular multi-layer pe
ceptrons, are comparatively time consuming to train (Ha
and Samad 2000). Consequently a state space aggreg
technique was used in this study.

A reward is maximised, or a cost minimised, dependi
on the goal function of the agent. The serial-line plant mod
exported a cost function based on inventory storage co
die set up costs, production costs and downstream shor
costs to measure the relative advantage of a decision. M
researchers have considered the best method to attri
reward for a selected action. These methodologies may
broadly broken into average and discount rewards (Sut
and Barto 1998).

The decision logic module must select the most a
propriate action for the model to take. During the learnin
phase its goal is to the explore the model response to act
and populate the action - state map to maximise the lo
term reward of the agent.

3 THE PRODUCTION FACILITY

A stochastic serial line production facility was simulate
with breakdowns that could be repaired on or off line. A
example of such as facility is an automotive stamping lin
operating under an abort-resume production policy.

Simple production lines have been modelled as Mark
processes (Ashkin and Standridge 1993), however the
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cessity of a state probability transition matrix to predict th
next state distribution, limits the application of dynamic
programming techniques. Large, real life problems rapid
become computationally intractable.

A system state defines the status of the system. In t
facility studied the system states are defined as the invent
levels of all parts in the system, adjusted for depletion rat
and set up times.

4 SOFTWARE IMPLEMENTATION

The initial serial-line plant model was implemented in Mat
lab, as a series of inventory level functions. To develo
and test the agent strategy a set of mathematical rules a
probability functions were used to calculate the cost of
particular production run with stochastic breakdowns.

A reinforcement learning agent is not required to op
timise such a problem which is modelled by a series
mathematical functions, as the probability transition matr
ces can be estimated, either mathematically or empirica
(Campbell et al. 2001). The power of RL techniques is i
their application to SMDP problems. Consequently onc
the methods were evaluated using this test bed, the ag
and toolbox was linked to a commercial discrete event sim
ulation package. To enable communication between Matl
and the simulation package, Quest, a Visual Basic serv
was implemented. Figure 2 illustrates the system archite
ture of the Reinforcement Agent Simulation Environmen
(RASE).

The model was generated using Batch Control Langua
(BCL) commands at run time, to allow flexibility in the
models when evaluating the agent’s performance. Once
Visual Basic server had established a link with Quest an
generated the model, it opened a server to listen for a soc
connection from the executing Quest model. It also launch
the agent in the Matlab workspace and communicated us
a DDE connection.

5 TUNING THE AGENT

By analysing the internal components of an agent individ
ually, it is possible to tune the agent parameters to impro
performance. Comparing actual agent progress against
expected behaviour resulting from a parameter set allo
identification of problems or limitations that the agent i
experiencing. A heuristic technique is more effective the
guessing changes to the parameters and decision log
based on the agent’s action-state map.

Components important in tuning the agent include th
"Reward Generator," "Decision Module Logic," "Boundary
Guides," "Model Action Set," and state space aggregati
factors such as the state space mapping technique met
and parameters.



Creighton and Nahavandi
Figure 2: RASE Architecture
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Although the best measure of success is the long te
reward or operating cost achieved by the agent, it is inform
tive to observe the effects of individual actions or mappin
techniques on the agents performance. During the tun
phase of the agent a complete set of data, specify all inf
mation received and exported from the agent is record
The agent’s speed is reduced, but this is a necessary ste
tune the agent to effectively interact with complex system

Most of the analysis functions in the Matlab RL agen
analysis toolbox use colour to differentiate between ou
comes of different actions. This is useful to allow the us
to observe the affect of specific actions in an action set

5.1 Agent Reward Generator

The key issue in reward generator design is termed t
"Temporal Credit Assignment Problem." This involves th
assignment of responsibility of the current state of the syste
on previous actions taken by the agent.

The reward generator utilises a table to store previo
run data. After each iteration all data is shifted up on
position and the latest run information in added to the e
of the list. Once the data reaches the top of the table
average cost of the action is calculated using all run da
listed in the table and some weighting function. The leng
of the table and the weight function may be customise
depending on the system.

A tool was developed to guide the user by predicting th
effect of such customisations. The state space explorat
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n

pattern is influenced by different reward function weighting
The user identifies better possible options and then ne
to test the agent performance on the model.

The costs of producing a large batch size in a syste
state with part inventories close to shortage may initia
produce a good cost advantage. However the subseq
part shortages and higher long term costs will result in
higher long term cost function. The tool generates a plot
show the expected reward accumulated by alternate rew
estimation methods. This allows a visual assessment of
effectiveness of different the methodologies. It shows, f
example, how many decision epochs should be conside
in a reward calculation.

5.2 Decision Module Logic

Real systems have an inherent tendency to become unsta
Such a situation is analogous to training a small robot
search for an item on the table top. If the robot makes
series of incorrect decisions it will end up on the floor an
unable to return to the table and complete its task.

An inexperienced agent may take a series of decisio
that put the system in a non-recoverable position. Options
guide the agent’s decisions include both an internal struct
as a part of the agent’s decision logics or an external s
ondary agent observing the agents operations. Either ag
may make decisions based on either the state informat
of the system, or the previous action sequence selected
the agent.
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Current research has highlighted the inability to ensur
the model remains bounded when randomly selecting action
during the exploration phase. A series of poor decision
results in the inventories running empty, and the agen
is unable to build a stable production schedule. Simple
guides to limit the agent from making inappropriate decision
in boundary cases overcame most observed problems.
specialised behaviour based agent, working in collaboratio
with the RL agent, provided a more robust solution to this
problem. The technique enabled the agent to keep th
serial-line plant facility within an operating region where
recovery from shortages were possible.

One goal of toolbox development was to build a simple
set of tools that allow a simulation developer to quickly
implement and perform complex analysis of DES models
If each possible region of instability must be identified, and
guiding rules provided to the agent, the problem will rapidly
become too difficult for complex DES models.

5.3 State-Action Map

The mapping technique should not reduce the reachabilit
of regions of the state space. In the case of non uniform
state space mapping, the certain system states may be visi
less frequently. The mapping should be structure in a wa
that maximises the reachability of critical states.

Paternina-Arboleda and Das’s (2001) study of a multi-
machine serial line made several assumptions to reduce t
state space, including defining total WIP, rather then indi
vidual buffer levels behind machines, as the system’s stat
The method generated an operating policy that proved t
be better then current heuristics production control policies
including CONWIP, Kanban, EKCS and Basestock. Furthe
optimisation of the policy would require analysis of WIP
at each buffer stage, increasing the state space by orders
magnitude.

5.4 Agent Action Selection

A wide range of actions potentially gives the agent an
opportunity to reach all parts of the state space. After a
simulation run a more refined action set may be selected
A plot of the rewards received in each state, by action, i
invaluable in understanding the parameter interactions.

When multiple similar actions, or batch sizes, were
tested the agent did not readily select the best action. Inste
it selected a stable operating policy utilising a combination
of actions. The agent proved effective in finding a ’ball
park’ batch sizes, but could not differentiate between mino
variations in parameter. This was a consequence of th
variability in the reward due to the stochastic nature of the
system.

With limited alternate actions available the agent se
lected a single best action. However when a second simu
d
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lation is run to "zoom in" on this region the agent failed t
stabilise the system. A broad range of actions was requi
during the learning phase to allow it to get the agent out
trouble following a poor decision. Selection of a continuou
range of q values simplifies the construction of the age
of the changing of values, but reduces the ability to "zoo
in" whilst maintaining an optional large q value to recove
system stability.

5.5 Exploration Technique

The primary goal of the agent, and therefore the explorati
engine of the decision logic, is to generate an accur
action - state map in order to maximise or minimise
cost function. The secondary goal is to achieve this ta
efficiently. A common methodology is to reduce the ra
of exploration over time. This technique shows limite
success in situations where repeated poor decisions re
in the system entering an unrecoverable unstable state. O
in such an unrecoverable state all further data collected
irrelevant. The risk of reaching a poor state is reduc
by initialising the model into a state away from unstab
boundary areas and good selection of the agent’s action

By reducing the exploration rate periodically, as i
lustrated in Figure 3, such that the agent uses acqui
knowledge to shift the system into a preferred state befo
commencing exploration again, the agent performance is
creased. The optimal period of the cycle must be determin
by experimentation.
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Figure 3: Cooling of Agent Exploration Rate

This technique relies on the agent having collected
minimal amount of knowledge during the early stages
exploration. An advantage is that it will explore the impo
tant regions, those most likely to yield optimal solutions o
the state space, more than the less important regions.

The length of the total exploration cycle was determine
through experimentation. Once the exploration rate is coo
to zero the agent and model may reach a stable interact
where the agent selects a cyclic series of actions. A sta
production system resulting from the agent exploiting i
acquired knowledge of the system indicates the agent
developed a possible operating policy. In the system stud
the state cycle period was up to 20 states for a 5 part inventory
system.
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If the system is dynamic an agent needs to be able t
track the process evolution to maintain an optimal operating
policy. Ongoing low level of exploration throughout the
operation may assist if slow changing state-maps do no
result in a timely evolution.

It was observed that there are multiple control policies
that result in a stable production system, with a range in th
number of actions in a cycle, for the facility studied. The
overall measure of success was the operating cost during th
stable time period. However for agents to be used as a contr
mechanism the total cost required to reach this equilibrium
is important. In systems which may occasionally become
unstable or whose control parameters drift slowly requiring
ongoing agent learning. There is also further work here to
determine an effective learning algorithm to track system
drift. That is, does the agent simply maintain a small leve
of experimentation or use a strict greedy policy which is
maintained until an alternative action becomes more cos
effective. (the agent must continuously collect data even
during its production process in this case.) For long time
runs such small changes may be difficult to reflect if using
cost averages as a state which has been visited a lar
number of times will be effected much less by an extreme
value then a state which has only be visited occasionally.

Future enhancements to an intelligent agent might allow
it to determine the point at which to cease or make constan
the level of exploration. Also different ’flavoured’ agents
that possess some extra knowledge or guide to allow them
to have input into the direction of exploration might be
implemented. The most effect agent would then be selecte
from the pool for further tuning.

6 RESULTS

Figures 4 and 5 indicate the possible variation in agen
performance as a result of parameter selection. The avera
cost of actions taken during the agent’s learning phase
A large state space results in slow transitions to lowe
cost operating regions. The exploration-exploitation curve
illustrated in Figure 3, is also observed in the data shape

Both runs identified a stable operating policy, however
the wide band of costs toward the end of the agent’s iteration
indicates a greater variation in return costs. The erratic hig
cost returns in Figure 5 are the result of the production facility
entering unstable regions of the state space. A good actio
set and boundary rules resulted in robust agent performanc
with recovery to a stable region.

7 CONCLUSIONS

An RL agent effectively identified optimal operating policies
of a real production facilities with a large state space. The
Matlab RL agent analysis toolbox was successfully utilised
to select the agent’s action set, decision and state spa
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Figure 4: Average Agent Action Cost - Stable States
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Figure 5: Average Agent Action Cost - Boundary States

abstraction parameters. This reduced the overall time
create and implement an agent. The simulation develope
armed with these tools, can rapidly gain an understandin
of the dependancies between agent parameters and tun
RL agent to optimal performance, with minimal knowledge
of the model itself.

The RASE architecture allows interfacing between RL
agents and commercial simulation products. It has pote
tial to be applied to any programable simulation software
including many commercial packages.
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