
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

THE POSSIBLE ROLE OF A BACKBONE ARCHITECTURE
IN REAL-TIME CONTROL AND EMULATION

Csaba Attila Boer

Erasmus University Rotterdam
Faculty of Economics

Dept. of Computer Science
P.O. Box 1738, 3000 DR Rotterdam

THE NETHERLANDS

 Alexander Verbraeck

Delft University of Technology
Faculty of Technology, Policy and Management

Systems Engineering Department
P.O. Box 5105, 2600 GA Delft

THE NETHERLANDS

Hans P.M. Veeke

Delft University of Technology
Faculty of Design, Engineering and Production

Transport Technology Group
Mekelweg 2, 2628 CD Delft

THE NETHERLANDS

ABSTRACT

The complexity of technical systems that need to be de-
signed and researched is gradually increasing. In order to
be competitive and to satisfy the demands of the market,
thorough analyses and early risk assessment of the systems
are required. System investigation might involve some
changes that might entail the redesigning or even redevel-
oping of some parts of the system. Modifications are usu-
ally expensive, time consuming and risky. Consequently,
there is a need for methods that examine the possible ef-
fects of the modifications before investing in the alteration
of the system. There are four methods that are used to
study the behavior of a system: simulation, emulation, real-
time control and prototyping. In this paper we discuss an
approach for a distributed architecture that supports these
four testing methods and the interaction between them.

1 INTRODUCTION

One of the aims of a simulation study (Zeigler et al 2000)
is to provide performance indicators about real systems be-
fore investing in their development or adaptation. In this
paper, we look at simulation studies for technical systems
with complex control components. Both during simulation
and in reality, the execution process must be controlled and
monitored in order to prevent and solve problems that
might occur. Therefore, next to the equipment (resources)
that provides the services, additional control systems are
needed that control the equipment. In order to fulfill their
role, the equipment and the control systems should col-
laborate and communicate in a well-defined and well-
designed manner.

The development of a complex real system which is
controlled by a separate control system may include one or
more of the following phases, which aim to test the system
during different design stages (Auinger et al. 1999). These
four design stages are also illustrated in figure 1:

1. Full simulation: includes the simulation of both

the equipment and the control systems;
2. Real-time control: uses real equipment and simu-

lates the control systems (Verbraeck et al. 2000);
3. Emulation: simulates the equipment and uses real

control systems (Mueller 2001);
4. Prototyping: involves tests with real equipment

and real control systems.

Full prototyping seems the most realistic testing possi-

bility, although it is quite expensive to build and experi-
ment with the whole prototype system, especially because
it involves the risk of failures if the possibilities of its de-
sign are not tested thoroughly beforehand. Full simulation,
on the other hand, does not involve so high costs, however,
it may disregard some phenomena that are present in the
real system or contain additional factors that might influ-
ence the outcomes. Emulation and real-time control have
the advantage that they can be carried out in a cheaper way

Boer, Verbraeck, and Veeke

Figure 1: The Four Possible Ways of Testing Systems

than full prototyping, and stay closer to reality and are
therefore less time-consuming than full simulation. It is
important to note that both the development of the real sys-
tem and the development of the software control system
are very expensive. Most organizations are reluctant to in-
vest when the system is still in its design stage.

The testing stage (or experimentation in full simula-
tion studies), where the interaction between the control
system and the equipment is studied, is meant to measure
the performance indicators of the system in order to be able
to make changes in the equipment part or the control part
of the system. Testing systems must reflect real situations
as much as possible. For this reason different requirements,
regarding the components of the system and the communi-
cation between them, must be satisfied. First of all the
equipment and the control systems should behave in the
same way as in reality – although it is difficult to indicate
on beforehand on which aspects the similarity should be
maximal. Next, the communication between various soft-
ware and real components must achieve the same perform-
ance independently of the complexity of the system. The
scalability of the system and the bandwidth of the commu-
nication should influence the performance of the whole
system in a similar way as in reality. In addition, interrupt-
ing the execution of the process might entail some difficul-
ties. A well-defined recovery mechanism should be offered
in order to prevent from loosing the information, just like
in reality. Furthermore, the robustness of the system must
enable the continuation of the execution (after interruption)
without any problem and with minimal user interference.
All these requirements must be satisfied in order to achieve
an effective communication, and to have a valid represen-
tation of a ‘real’ technical system.

The main problem we have to deal with when linking
different simulation and real components is to find an ap-
propriate method for connecting these elements together.
The protocols, speed, and recovery mechanisms used in re-
ality might differ from those that are provided by simula-
tion languages, leading to different results in each of the
testing situations of figure 1. In this paper we introduce a
taxonomy of connecting components to the system through
a backbone architecture, and we analyze different possibil-
ities for attaching models and real components. We also
discuss how (new) communication protocols could be used
to solve the communication between various components
developed in different environments.

The paper is structured as follows. In section 2 we in-
troduce the basic concepts and the requirements of the
FAMAS Simulation Backbone project. Section 3 describes
the logical and technical structure of the backbone
architecture. In section 4 we introduce an approach for
backbone for connecting real-time control and emulation
systems. Conclusions can be found in section 5.

2 THE FAMAS PROJECT

The FAMAS (First All Modes All Sizes) project provides
tools for designing the container terminals for the future
Port of Rotterdam (FAMAS 2001). Several simulation
groups develop different functional areas of the new part of
the port that will host the container terminals. Various new
parts will be designed and developed in different simula-
tion environments based on the experience of the modeling
teams. The aim of the FAMAS Simulation Backbone is to
provide a flexible architecture for the interoperability
among various distributed simulation models (Boer et al.
2002). The success of the performance of container han-
dling in the container terminals depends very much on the
performance and functionality of the control strategies and
algorithms. Therefore we have to carry out tests of a com-
plex system, that is composed of a variety of interacting
real and control subsystems, in a comprehensive way.

2.1 The Basic Concepts

This section aims to introduce some indispensable con-
cepts of the harbor processes related to container handling.
We distinguish three important basic processes that use the
container: Storage, Transport and Transfer.

All the processes are defined as functions, which con-
vert the actual state of the system into a new one. The
Storage function (∆S, ∆t) executes a change that leads the

Boer, Verbraeck, and Veeke

physical container into a new state S during a storage time
∆t. The Transport function (∆P, ∆S, ∆t), next to the modi-
fication of the container state and time moment, involves
the change of an additional state, namely the position P of
the container. Finally, the Transfer function (∆M, ∆P, ∆S,
∆t) is an extension of Transport function that entails the
transformation of the involved modalities M (ships, trucks,
trains, AGV’s, cranes, etc.) as well.

The basic processes can be carried out by several re-
sources (R). Resources refer to personnel, equipment or
space. For example, a quay crane performs a transfer func-
tion, an AGV a transport function and a carrier a sequence
of transfer / transport / transfer functions. At the individual
level (one resource) a resource control might be needed.

More instances of the same resource form a so-called
resource system (RS). When more resources are connected, a
resource control is needed that regulates the collaboration of
similar resources. Different resource systems can be com-
bined into multiple resource systems (MRS), with a coordi-
nating and/or hierarchical control function. A special type of
a multiple resource system is the terminal (T), where the sys-
tem is a geographically bound, autonomous organizational
unit with connections to external transport functions.

When we combine a set of terminals to a co-operating
complex of organizational units, we have a terminal com-
plex (TC). In contrast to single terminals TCs require the
presence of some inter-terminal transport functions (ITT)
and usually an overall terminal complex management func-
tion. The ITT system combines at least two terminals,
therefore it is located on the same hierarchical level as the
terminals. Figure 2 sketches the hierarchy of system com-
ponents for the port project.
 Resources can be exchanged at any hierarchical level,
either between resource systems or between terminals. One
resource belongs to one and only one resource system at a
time. When the resource – e.g. an AGV or a quay crane –
moves from one system into another it performs a transfer
from one resource system into the other.
Information that arrives and that is sent by a compo-
nent is defined as a flow. We distinguish two different
types of flows that are handled by the system: control flow
and physical flow. Control flows are commands that regu-
late the functioning of the system and are processed by
control algorithms. Physical flows refer to – information
on – real objects being transferred between two subsystems
(Figure 3). In reality these transfers of real objects or state
changes of components will trigger sensors, which lead to
information being sent to the control algorithms.

2.2 Requirements of the FAMAS Project

The FAMAS Backbone Architecture is designed in a way
as to satisfy the following requirements (Boer et al. 2002):

• Distributed execution: this can be achieved by a

well-defined interoperability between different
simulation components. The interoperability in
the FAMAS Simulation Backbone is provided by
a low-level message passing mechanism.

• Optimal communication: effort is required to at-
tain an effective communication speed.

• Stand-alone and distributed testing: refers to the
possibility to test distributed simulation models
developed by different parties as in standalone as
in distributed environment.

• Package independence: this requirement focuses
on combining simulation models implemented in
different simulation packages (e.g. Arena, eM-
Plant, Enterprise Dynamics) and programming
languages (C++, Java, Delphi, etc.). The charac-
teristics mentioned so far reflect the grade of
flexibility of the architecture and reusability of the
simulation models.

• Structure transparency: aims to give some in-
sights into the architecture for the groups who in-
tend to develop models or support subsystems for

Figure 2: Hierarchical Concepts of the Port Processes

Boer, Verbraeck, and Veeke

Figure 3: The Control and Physical Flows

it, in order to provide interoperability. The trans-
parency helps the modeler to couple the simula-
tion models effortlessly.

• Hierarchical structure allows for modeling, de-
sign, and development in a hierarchical manner.
This feature is essential in the FAMAS project as
the models might be developed at different levels
of detail.

3 CONNECTING COMPONENTS
TO THE FAMAS BACKBONE

This section introduces a taxonomy of connecting different
components to the system. This classification helps to dis-
tinguish between different methods that can be used to at-
tach real systems and simulation components to the back-
bone.

3.1 Connection at Logical Level

During simulation several pieces of equipment and control-
lers are attached to the system. Equipment (resources) and
controllers can be joined separately to the backbone. A re-
source can be linked together with its controller or, at a
higher level equipment and controllers can form a federa-
tion and can be attached to the backbone as a single, com-
pound component. Based on these possibilities we distin-
guish between three methods that can be used to attach
simulation models to the FAMAS Backbone architecture:

• control-based connection;
• function-based connection;
• system-based connection.

 In the control based connection (Figure 4), every sin-
gle control function (system controller) and execution
function (resources or equipment) is separately connected
to the backbone. Consequently, the backbone supports the
communication between a resource (system) and its con-
trol. The grade of reusability of the resources is maximal in
this case as each individual execution and control compo-
nent can be reached separately via the backbone. This
method has however the disadvantage that it overloads the
backbone. Moreover, high demands are put on the devel-

Figure 4: The Control Based Connection Structure

oper, as he/she is required to take care of the connection of
every single component to the backbone. Furthermore, this
joining process might cause difficulties or even impede the
hierarchical structuring (Figure 2), as all components must
be developed as completely separated simulation models,
which is usually not what the modelers want. A quay
model, for instance, includes the quay cranes, while in this
case, each quay crane and each control of a quay crane
would be a separate model or system connected to the
backbone.

The function based connection (Figure 5) supports the
attachment of complete systems (resources together with
their controllers) to the backbone at any level of aggrega-
tion. Control and execution functions (the control system
and the controlled system) are considered as a single sub-
system (federation) that needs to be attached to the back-
bone. The details regarding the connection and communi-
cation protocol between the equipment and controller are
left to the modeler’s decision. Controlled and control ele-
ments might function on the same computer or in a distrib-
uted way. The communication between them is solved in a
direct way, without making use of the backbone channels,
consequently, the extraneous use of the backbone is han-
dled by this approach. The hierarchical structure, however
is still not realizable.

Figure 5: The Function Based Connection Structure

 System based connection (Figure 6) supports the com-
bination of subsystem in a hierarchical way. It is in fact a
restricted version of the function based connection, which
allows for the attachment of systems at the terminal or ter-
minal complex level. During system based connection sets
(federations) of resources and controllers are attached to
the system as one single element. The modeler focusing on
the backbone therefore does not have to bother with the de-
tails regarding the (hierarchical) realization of the subsys-

Boer, Verbraeck, and Veeke

Figure 6: The System Based Connection Structure

tems that are attached to the backbone. In this way stan-
dard, reusable components can be defined and reused in a
simple manner. The disadvantage of this method is that re-
sources (e.g. AGV’s) or controllers that communicate with
a lot of other elements, might have to be included in more
then one subsystem or model, because otherwise the struc-
ture of the subsystem might became too intricate.

The high variety of the questions that needs to be an-
swered by the FAMAS port project requires a very flexible
and transparent architecture. As individual projects might
use models at any level (resource or terminal), the FAMAS
Backbone should support the combination of all three con-
nection structures mentioned above. Although the control
based connection structure provides maximal reusability,
the drawback of this structure design lies in the overload of
communication through the backbone architecture with
real-time testing. Therefore, for the real equipment that
need very frequent communications with other compo-
nents, the function based connection is more advisable.

3.2 The Technical Structure
of the FAMAS Backbone

The FAMAS Simulation Backbone Architecture is repre-
sented by technical and functional components. Whereas
the functional components represent the simulation models
themselves, the technical components provide common
tasks used by the functional components.

In Figure 7 we give a clear picture of the separately
defined functional and technical components. There are
five well-defined subsystems, namely the Run Control
Subsystem, the Backbone Time Manager Subsystem, the
Logging Subsystem and the Visualization Subsystem (Boer
et al. 2002). The overall system consisting of both techni-
cal and functional subsystem is sometimes called a federa-
tion, where the subsystems that connect to the backbone
are the federates.

Figure 7: The Structure of the FAMAS Simulation Back-
bone Architecture

The technical subsystems provide the following func-

tionality

• Run Control controls the experiments: it starts,

stops and periodically monitors the simulation
process;

• Backbone Time Manager (BBTM) synchronizes
the simulation time among different simulation
subsystems’ (Fujimoto 2000);

• Logging aims to collect logging information from
the distributed functional and technical compo-
nents into a central database;

• Visualization provides separate or common visu-
alization views for the different subsystems or the
entire simulation.

4 THE EXTENDED FAMAS
BACKBONE ARCHITECTURE

So far the FAMAS backbone architecture was focused to
connect simulation components. This section aims to ex-
tend the backbone as to accept the attachment of real time-
control and emulation systems as well.

4.1 Connecting Simulation and Real
Components in a Distributed Way

In a complex system, such as a container port, there are
thousands of pieces of equipment and controllers. Testing
of complex systems like a port system might entail several
difficulties, which, beside the general communication
problems discussed in the first section, concern the variety
of simulation environments, variety in the real equipment
and differences between communication protocols.

The simulation models or simulation components are
usually developed by different modelers, using different
concepts and different simulation environments. Thus, the
communication between various environments should be
enabled in order to provide collaboration. Equipment and
simulation models support different communication proto-

Boer, Verbraeck, and Veeke

cols, therefore, different models can communicate only if a
common protocol is worked out or several interfaces are de-
veloped, that allows for communication between any two of
them. Due to the complexity of the system the elaboration of
several interfaces might cause an explosion of the number of
model-model or model-equipment protocols.

Although the primary aim of the FAMAS Simulation
Backbone is to provide a flexible architecture for the inter-
operability between various distributed simulation models,
an extended version of this architecture should support the
interaction with real components as well. The functional
components of the advanced system consist of real control
systems (e.g. PLC’s), and real equipment (e.g. Automated
Guided Vehicle (AGV)), next to the simulation models and
control programs.

Figure 8 depicts the new architecture of the FAMAS
Backbone System, which enables all the testing possibili-
ties illustrated in Figure 1, namely: simulation, emulation,
real-time control and prototyping. The logical structure of
the architecture should also support all the three structure
designs (control based connection, function based connec-
tion and system based connection) as described in section
3.1, in order to couple simulation and real systems at any
abstraction level.

Figure 8: Extended FAMAS Backbone Structure Contain-
ing Real Equipment and Controls

4.2 Defining a Final Protocol for
Effective Communication

Communication between several different types of compo-
nents can be solved in two different ways. As a first ap-
proach one single, common protocol could be developed,
that supports the communication between all the compo-
nents, indifferent of their original communication protocol.
Another solution is to elaborate new protocols between any
two types of components.

Let us take the set of the protocols supported by the
simulation packages (PSIM), real equipment (PREA) and real
control system (PCONT).
We distinguish four situations, regarding the commu-
nication protocols, as illustrated in figure 9:

1. ∃ p∈ PSIM, PREA, PCONT then take p as a common

protocol,
2. ∃ p∈ PSIM, PREA ∧ p∉ PCONT then

• Wrap PCONT in order to support protocol p
• Wrap PSIM and PREA in order to talk a protocol

p’∈ PCONT
3. ∃ p∈ PSIM, PCONT ∧ p∉ PREA then

• Wrap PREA in order to support protocol p
• Wrap PSIM and PCONT in order to talk a proto-

col p’∈ PREA
4. ∃ p∈ PREA, PCONT ∧ p∉ PSIM then

• Wrap PSIM in order to support protocol p
• Wrap PREA and PCONT in order to talk a proto-

col p’∈ PSIM

Figure 9: The Set of
Simulation, Emulation
and Real-Time Proto-
cols

The first situation with the current existing simulation

environment will never occur. Our experience shows that
no standardized communication protocol exists that can be
easily used by any simulation language without wrapping.

In other words we can state that: ∩
n

i
ip

1=

= ∅, where pi rep-

resents the supported protocol set of the ith simulation
package (figure 10).

Figure 10: Using One Protocol p
Without Wrapping

Boer, Verbraeck, and Veeke

Usually we are faced with the last three cases when we
need to wrap either the simulation or the real components.
There are a lot of situations when the real control systems
and the real equipment can communicate with each other
but the COTS simulation packages can not communicate
with them using the same protocol (Figure 11). In this case
we prefer to choose the first solution of the fourth case, be-
cause we need to wrap only the simulation models. We
strive to design and develop a neutral protocol that is sup-
ported by all the participants (both simulated and real) by
minimizing the wrapping procedures.

Figure 11: The Simulation Models do not Support
the Protocol of Real Components

In the FAMAS project we distinguish between two

kinds of protocols, a technical and a functional protocol.
The technical protocol refers to the lower OSI layers,
where the communication between components is realized.
For this purpose the FAMAS project uses low level Win-
sock messages, as most of the simulation packages support
the communication at this level.

The functional protocol is on a higher level than the
technical protocol but it is based on the low level protocol.
The functional protocol refers to information sharing be-
tween simulation models, such as variable exchange, ob-
ject sharing, etc. Currently the commercially available
simulation packages does not support at all the communi-
cation and collaboration at this level. In FAMAS we intro-
duced a message protocol that tries to support high-level
information exchange among simulation components.

In an advanced version of the FAMAS Backbone
structure we aim to reanalyze the protocols that can be
supported by the simulation and real components. Based
on the results the wrappers can be designed and developed.
The technical layer does not need modification, as it is de-
signed at a low level and is supported by most of the simu-
lation and real components. The functional layer is used by
the simulation models and it needs to be extended for the
real controls and equipment.

5 CONCLUSION

In order to improve the performance of a complex techni-
cal system, which consist of a set of subsystems and con-
trol systems, comprehensive experiments and tests are
needed. Currently we can distinguish four types of analyz-
ing and testing methods, namely simulation, emulation,
real-time control and full prototyping. The FAMAS Back-
bone architecture is an approach that enables for the analy-
ses and testing of distributed simulation models. Perform-
ance testing might be more advantageous in some cases, to
test the effects of real control systems and control strate-
gies or to test the effects of control strategies on real com-
ponents. To enable the interaction between simulation
models and real components we described the extension of
the FAMAS backbone architecture in order to support this
combination. We combine therefore all four testing meth-
ods: simulation, emulation, real-time control and proto-
typing, using a logically and technically distributed archi-
tecture. This paper discusses the logical structure of such
an architecture and the problem of communication between
several COTS simulation models and real components. We
introduced a taxonomy that helps to distinguish between
different connection possibilities of the new components to
the backbone. It is also discussed how the communication
problem between different types of components can be
handled. By combining the control based, function based,
and system based connection structures, a very flexible and
multi-protocol interface can be built, in which the simula-
tion models communicate using a neutral protocol, and the
real components can communicate as much as possible us-
ing their ‘normal’ protocols.

ACKNOWLEDGMENTS

The authors would like to thank the Connekt organization
and the TRAIL research school for supporting and funding
the FAMAS Backbone project. They also acknowledge the
large amount of work of the other researchers in the
FAMAS Simulation Backbone project that made it possi-
ble to reach the results.

REFERENCES

Auinger, F., M. Vorderwinkler and G. Buchtela. 1999. In-
terface driven domain-independent modelling architec-
ture for “soft-commissioning” and “reality in the
loop”. In: P.A. Farrington, H.B. Nembhard, D.T. Stur-
rock, and G.W. Evans (eds.). Proceedings of the 1999
Winter Simulation Conference, IEEE, pp. 798-805.

Boer, C. A., A. Verbraeck, and H.P.M. Veeke. 2002. Dis-
tributed Simulation of Complex Systems: Application
in Container Handling. Proceedings of SISO European
Simulation Interoperability Workshop, Harrow, Mid-
dlesex, UK, June 24-27.

FAMAS MV2 Backbone Project. 2001. Research Program
FAMAS Maasvlakte II Project 0.2 - Simulation Back-
bone., Delft, The Netherlands. Available online via
<www.famas.tudelft.nl> [accessed March 30,
2002].

Fujimoto, R. M. 2000. Parallel and Distributed Simulation
Systems. John Wiley & Sons,Inc., New York.

www.famas.tudelft.nl

Boer, Verbraeck, and Veeke

Mueller, G. 2001. Using emulation to reduce commision-

ing costs on a high speed bottling line. In: B.A. Peters,
J.S. Smith, D.J. Medeiros, and M.W. Rohrer, eds.).
Proceedings of the 2001 Winter Simulation Confer-
ence, IEEE.

Verbraeck, A., E. Valentin, and Y.A. Saanen, 2000. Simu-
lation as a Real-time Logistic Control System: AGV
Control with Simple++. The New Simulation in Pro-
duction and Logistics – Prospects, Views and Atti-
tudes. pp. 245-255, Berlin, Germany.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory of
Modeling and Simulation. Academic Press, San Diego.

AUTHOR BIOGRAPHIES

CSABA ATTILA BOER is a Ph.D. student at the De-
partment of Computer Science of the Faculty of Economics
at Erasmus University Rotterdam, The Netherlands. He re-
ceived his M.Sc. degree in Computer Science at the Babes
Bolyai University, Cluj Napoca, Romania. Since April
2001 he has been involved in FAMAS MV2 Simulation
Backbone project. His research focuses on Multi-Level
Distributed Simulation of Complex System. His email ad-
dress is <acboer@few.eur.nl>.

ALEXANDER VERBRAECK is an Associate Professor
in the Systems Engineering Group of the Faculty of Tech-
nology, Policy and Management of Delft University of
Technology, and part-time research professor in supply
chain management at the R.H. Smith School of Business of
the University of Maryland. He is a specialist in discrete
event simulation both real-time analysis and control of
complex transportation systems and for modeling business
systems. His current research focus is on the development
of generic libraries of distributed object oriented simula-
tion building blocks. His email address is <a.ver
braeck@tbm.tudelft.nl>.

HANS P.M. VEEKE is an assistant professor at the De-
partment Design and Manufacturing Technology of the
Faculty of Design, Engineering and Production of Delft
University of Technology, The Netherlands. He received
his M.Sc. degree in Operation Research at Delft University
in 1983. He was involved in the development of simulation
languages (PROSIM, Must, TOMAS) and participated in
advanced technological and organizational projects in in-
dustry. Since April 2001 he was involved in the FAMAS
MV2 Backbone project. His current research concentrates
on the integration of system approach and simulation mod-
eling. His email address is <H.P.M.Veeke@wbmt.
tudelft.nl>.

mailto:acboer@few.eur.nl
mailto:a.ver braeck@tbm.tudelft.nl
mailto:a.ver braeck@tbm.tudelft.nl
mailto:H.P.M.Veeke@wbmt. tudelft.nl
mailto:H.P.M.Veeke@wbmt. tudelft.nl

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1675
	02: 1676
	03: 1677
	04: 1678
	05: 1679
	06: 1680
	07: 1681
	08: 1682

