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ABSTRACT 

The new portfolio optimization engine, OptFolio™, simul-
taneously addresses financial return goals, catastrophic loss 
avoidance, and performance probability. The innovations 
embedded in OptFolio enable users to confidently design 
effective plans for achieving financial goals, employing 
accurate analysis based on real data.  Traditional analysis 
and prediction methods are based on mean variance analy-
sis -- an approach known to be faulty. OptFolio takes a 
much more sophisticated and strategic direction. State-of-
the-art technology integrates optimization and simulation 
techniques and a new surface methodology based on linear 
programming into a global system that guides a series of 
evaluations to reveal truly optimal investment scenarios.  
OptFolio is currently being used to optimize project portfo-
lio performance in oil and gas applications and in capital 
allocation and budgeting for investments in technology.  

1 INTRODUCTION 

Portfolio optimization for capital investment is often too 
complex to allow for tractable mathematical formulations. 
Nonetheless, many analysts force these problems into stan-
dard forms that can utilize traditional optimization tech-
nologies such as quadratic programming. Unfortunately, 
such formulations omit key aspects of real world settings 
resulting in flawed solutions based on invalid assumptions.  
In this paper we focus on a flexible modeling approach that 
overcomes these limitations. 

2 BACKGROUND 

The customers for OptFolio include C level executives re-
sponsible for deciding capital investments and accountable 
for their performance, finance department analysts charged 
with developing the capital budget analysis and a project 
portfolio management plan, and technology managers re-
sponsible for planning and implementing projects. Their 

 

needs, which provide compelling reasons to buy the tech-
nology, are:  
 

• Technology managers and corporate financial  ex-
ecutives are dissatisfied with current way they ad-
dress risk tolerance.  

• They are under continual pressure to improve 
capital investment performance. 

• They need technology that improves the under-
standing of the analysis and clearly identifies the 
reasons to make specific investment decisions. 

• They are concerned that their competition may be 
adopting a new and more advanced technology. 

 
Capital investment within commercial firms is primar-

ily accomplished with traditional analyses that include net 
present value analysis and mean-variance analysis. Al-
though there are many methods being used to enable capi-
tal decisions, there are certain conventions that have be-
come standardized through implementation practices. 
Consequently, many organizations use similar methods to 
evaluate and select capital spending options and monitor 
their performance.  

Many organizations evaluate their capital projects by 
estimating their “net present value.” Net present value 
(NPV) is calculated by projecting the future cash flows the 
investment is likely to generate, “discounting” the future 
cash flows by the cost of capital, and then subtracting the 
initial investment.  

According to conventional wisdom, it makes eco-
nomic sense to undertake projects if their NPV’s are posi-
tive. But this does not guarantee they will be funded. Or-
ganizations typically take other factors into consideration, 
which incorporate their ability to fund the initial invest-
ment given their debt position, their current operating ex-
penses and cash flow positions, and their strategic consid-
erations including financial performance expectations. 

Determining how to allocate investment capital in or-
der to maximize returns is a ubiquitous challenge where 
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approaches to solutions cover a very wide spectrum. In or-
ganizations both public and private, the decisions of com-
mitting limited resources to a variety of uses can either 
strengthen or deteriorate the very financial foundation of 
the organization itself. On one end of the spectrum, and at 
the core of sophisticated financial manuals, capital budget-
ing procedures many times employ traditional operations 
research theories and techniques to guide and support deci-
sions. On the other end, and anecdotally, many executives 
admit that selections come down to mustering intuition, 
combined with seat-of-the-pants “guestimates”, and pep-
pered with squeaky wheel assignments. 

Typically, however, what is common in this arena is 
building models, which employ pro forma plans centering 
around measures of the benefits of the investments- the re-
turns, time horizons over which the investments are being 
made, and estimates of the risks or uncertainty involved. 
The list of measures expands to include such considera-
tions as cash flow, cost of capital, market share, etc.  

 Evaluations of alternatives are made as well in a vari-
ety of ways. From one-at-a-time comparisons of returns 
and risks to more sophisticated portfolio optimization and 
real option theories, organizations run the gamut in the 
ways they decide to allocate capital.  In the companies us-
ing these sophisticated methods, which go beyond single 
project net present value analysis, many portfolio man-
agement methods include mean variance analysis. 

In a seminal paper in 1952 in the Journal of Finance, 
Harry Markowitz laid down the basis for the modern port-
folio theory (Markowitz, H., 1952). For his path-breaking 
work that has revolutionized investment practice, he was 
awarded the Nobel Prize in 1990.  Markowitz focused the 
investment profession’s attention to mean-variance effi-
cient portfolios.  A portfolio is defined as mean-variance 
efficient if it has the highest expected return for a given 
variance, or, equivalently, a portfolio is defined as mean-
variance efficient if it has smallest variance for a given ex-
pected return. 

In Figure 1, the curve is known as the efficient frontier 
and contains the mean-variance efficient portfolios. The 
area below and to the right of this mean-variance efficient 
frontier contains various risky assets or projects. The 
mean-variance efficient portfolios are combinations of 
these risky projects.  
 Why are mean-variance portfolios important? Deci-
sion makers are risk-averse. They prefer portfolios with 
high expected returns and low risk. Another important 
question: How is the risk of a portfolio measured? If port-
folio returns are normally distributed, then its risk can be 
measured by its variance.  However, a substantial body of 
empirical evidence suggests that actual portfolio returns 
are not normally distributed (McVean, J.R., 2000). 

If actual portfolio returns are not normally distributed, 
then variance is not the appropriate risk measure for a port-
folio.  If not variance, what is an appropriate risk measure 
for a portfolio? Before answering this question, consider an 
alternate paradigm that has been suggested to revive the 
importance of mean-variance efficient portfolios. 
 

 
 
 
 
 
 
 
 
 
 
 
     

 
 
 

Variance of Return 
Figure 1: Efficient Frontier 

 
Instead of taking into account the portfolio returns 

distribution, some finance theorists have suggested that if 
investments have quadratic utility functions, then portfo-
lio risk can still be appropriately measured by its variance 
(even if portfolio returns are not normally distributed). 

Investor utility functions, in general, describe the rate 
at which an investor is willing to exchange a unit of risk 
for a unit of return. In other words, how much additional 
return would be required to bear an additional unit of 
risk? The quadratic utility function has a particular shape; 
it is part of a circle. However, the quadratic utility func-
tion has not received much theoretical or empirical sup-
port in the literature as a realistic depiction of investor 
utility functions. 

In practice, mean-variance efficient portfolios have 
been found to be quite unstable: small changes in the es-
timated parameter inputs lead to large changes in the im-
plied portfolio holdings. The practical implementation of 
the mean-variance efficient paradigm requires determina-
tion of the efficient frontier. This requires three inputs: 
expected returns of the projects, expected correlation 
among these projects, and expected variance of these pro-
jects (individually). Typically, these input parameters are 
estimated using either historical data or forecasts. Re-
searchers have found that estimation errors in these input 
parameters overwhelm the theoretical benefits of the 
mean-variance paradigm. 

Now, as cracks in the foundation are becoming too 
conspicuous to ignore and capital budgeting participants 
have been dedicated to traditional ideas for so long that 
they are not able to pull away, even at the expense of 
policies that severely hamper their financial growth. 

Efforts by more progressive analysts to sound the alert 
about the crumbling structure underlying mainstream capi-

Expected 
Return  Efficient Frontier 

 



April, Glover, and Kelly 

 
tal budgeting and investment strategies have not been lack-
ing.  Still, the best response has been to cobble together 
various ad-hoc measures in an attempt to shore up the 
framework, or erect a makeshift alternative.  Recognition 
that this response is far from ideal has persuaded many to 
cling to the old ways, in spite of their apparent defects.  
The inability to devise a more effective alternative has 
been due in large part to limitations in the technology of 
decision-making and analysis, not only in the area of in-
vestments but in other areas of business alike, which has 
offered no reliable method to conquer the complexity of 
problems attended by uncertainty.  As a result, the goal of 
evaluating investments effectively, and to account appro-
priately for tradeoffs between risk and potential return, has 
remained incompletely realized and ripe for innovation. 

Over the last several years, alternative technologies 
(methods) have emerged for optimizing decisions under 
uncertainty.  The outcome of this development has begun 
to penetrate planning and decision-making in many busi-
ness disciplines, making it possible to study viable solu-
tions to models that are much more flexible and realistic 
than those treated in the past.  In application to the areas of 
capital budgeting and investment, these alternative tech-
nologies are being implemented to create portfolio and as-
set-allocation strategies to improve performance. Included 
in these alternative technologies are agent-based modeling 
for portfolio optimization, genetic algorithms for portfolio 
optimization, and real options analysis for capital spend-
ing. All of these technologies seek to improve on the tradi-
tional methods by introducing more flexible, robust, and 
realistic assumptions and providing more powerful and so-
phisticated analysis and forecasting tools. Companies mar-
keting these alternative technologies include The Bios 
Group, Insightful, Merak, United Management Technolo-
gies, Glomark, and Portfolio Decisions, Inc.   

To date the largest penetration for these technologies 
have been in academic circles while achieving only a 
modicum of success in the marketplace. This indicates that 
commercial applications of alternative technologies are 
still in the early adoption stages.  

3 OPTMIZATION METHODS 

The complexities and uncertainties in complex systems are 
the primary reason that simulation is often chosen as a ba-
sis for handling the decision problems associated with 
those systems.  Consequently, decision makers must deal 
with the dilemma that many important types of real world 
optimization problems can only be treated by the use of 
simulation models, but once these problems are submitted 
to simulation there are no optimization methods that can 
adequately cope with them. 

Advances in the field of metaheuristics—the domain 
of optimization that augments traditional mathematics 
with artificial intelligence and methods based on analogs 
to physical, biological, or evolutionary processes—have 
led to the creation of optimization engines that success-
fully guide a series of complex evaluations with the goal 
of finding optimal values for the decision variables.  One 
of those engines is the search algorithm embedded in the 
OptQuest optimization system.  OptQuest is designed to 
search for optimal solutions to the following class of op-
timization problems: 
 

Max or Min F(x)  
  Subject to 
   Ax < b                (Constraints) 

  gl < G(x) < gu     (Requirements) 
  l < x < u              (Bounds) 
where x can be continuous or discrete. 

 
The objective F(x) may be any mapping from a set of 

values x to a real value.  The set of constraints must be lin-
ear and the coefficient matrix “A” and the right-hand-side 
values “b” must be known.  The requirements are simple 
upper and/or lower bounds imposed on a function that can 
be linear or non-linear.  The values of the bounds “gl” and 
“gu” must be known constants.  All the variables must be 
bounded and some may be restricted to be discrete with an 
arbitrary step size. 

A typical example might be to maximize the net pre-
sent value for a portfolio by judiciously choosing projects 
subject to budget restriction and a limit on risk.  In this 
case, x represents the specific project participation levels 
F(x) is the expected net present value.  The budget restric-
tion is modeled as Ax < b and the limit on risk is 
achieved by a requirement modeled as G(x) < gu where 
G(x) is percentile value.  Each evaluation, of F(x) and 
G(x) requires a Monte Carlo simulation of the portfolio.  
By combining simulation and optimization, a powerful 
design tool results. 

The optimization procedure uses the outputs from the 
system evaluator, which measures the merit of the inputs 
that were fed into the model.  On the basis of both current 
and past evaluations, the optimization procedure decides 
upon a new set of input values (see Figure 2).   

The optimization procedure is designed to carry out a 
special “non-monotonic search,” where the successively 
generated inputs produce varying evaluations, not all of 
them improving, but which over time provide a highly effi-
cient trajectory to the best solutions.  The process contin-
ues until an appropriate termination criterion is satisfied 
(usually based on the user’s preference for the amount of 
time to be devoted to the search).   

4 PROJECT PORTFOLIO OPTIMIZATION  

In many industries, strategic planning requires executives to 
select a portfolio of projects for funding that will likely ad-
vance the corporate goals. In general, there are many more
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Figure 2. Coordination Between Optimization and  
System Evaluation 

 
projects than funding can support so the selection process 
must intelligently choose a subset of projects that meet the 
companies profit goals while obeying budgetary restrictions. 
Additionally, executives wish to manage the overall risk of a 
portfolio of projects and ensure that cash flow and other 
such “accounting” type constraints are satisfied.   

The Petroleum and Energy (P&E) industry uses pro-
ject portfolio optimization to manage its investments in the 
exploration and production of oil and gas.  Each project’s 
proforma is modeled as a simulation capturing the uncer-
tainties of production and sales. 

The application illustrated here involves five potential 
projects with ten year models that incorporate multiple 
types of uncertainty in drilling, production, and market 
conditions. We examined multiple cases to demonstrate the 
flexibility of the software to enable a variety of decision 
alternatives.  We present a standard case and one that util-
izes the power of simulation optimization. 
 
Case 1 
 
In case 1, the decision was to determine participation levels 
[0,1] in each of the five projects with the objective of 
maximizing expected net present value of the portfolio 
while keeping the standard deviation of the net present 
value of the investment below a specified threshold.  This 
is the traditional Markowitz approach.  In this case, all pro-
jects must begin in the first year. 
  

Maximize E(NPV)  
While keeping σ < 10,000 M$ 
All projects must start in year 1 

 
In this case, the best investment decision resulted in an 

expected net present value of approximately $37,400 M 
with a standard deviation of $9,500 M.  Figure 3 shows the 
corresponding non-normal NPV distribution. 
 
Case 2 
 
The goal was to determine participation levels in each pro-
ject where starting times for each project could vary and 
we would maximize the probability of exceeding the ex-
pected net present value of $47,500 M  (which was
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Figure 3. Case 1 NPV Distribution 
 
achieved in a previous analysis).  Risk was controlled by 
limiting the 10th Percentile of NPV. 
 

Maximize Probability(E(NPV) > 47,455 M$)  
While keeping 10th Percentile of NPV > 36,096 
M$All projects may start in year 1, year 2, or year 3 
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Figure 4. Case 2 NPV Distribution 
 

In this case, where starting times could vary, and we 
wanted to maximize the chance of exceeding  the net pre-
sent value of $47,500 M, the best investment decision re-
sulted in an expected net present value of approximately 
$84,000 M with a standard deviation of $18,500 M.  The 
NPV had a 99% probability of exceeding $47,500 M.  This 
case demonstrates that adopting measures of risk other than 
standard deviation can result in superior portfolios.  Simu-
lation optimization is the only technology that can offer 
these types of analyses. 

The integration of simulation with optimization has 
been shown to be a powerful approach for portfolio opti-
mization.  However, the computational cost of multiple 
simulations can be quite high.  To minimize the number of 
simulations required to determine the optimal portfolio, our 
technology utilizes mathematical programming techniques 
to aid in the optimization process.  The layered envelope 
response method is critical to the success of this project. 
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LAYERED ENVELOPE RESPONSE  (LEVER) 

 
To produce a method that goes dramatically beyond past 
efforts to handle problems in the realm we address, a pri-
mary step is to create an effective “externalized representa-
tion” of the problem objective function. 

Many efforts have been undertaken to try to capture an 
objective function for various types of applications by de-
vising a model to fit the outputs of an evaluation process 
used in these applications. Prominent examples include 
linear and quadratic curve fitting, response surface meth-
odology and kriging.  However, each of these approaches 
suffers significant limitations in dealing with the complex 
objective function surfaces implied by outputs that arise in 
the context we face.  The goal of optimizing over mixed 
discrete and nonlinear spaces, where uncertainty enters into 
the picture, can generate structures that popular methods 
are ill-suited to handle. 

The major challenge faced in addressing problems of 
capital investment and budgeting, with applications to ar-
eas such as manufacturing, pharmaceuticals, chemical 
products, and distribution, is to produce a means to derive 
a “map” of the objective function, given that no explicit 
form is provided for the function in advance.  Under the 
condition that the only information about the objective 
function comes from a computer model (such as a simula-
tion or other iterative computational process), whose 
operations cannot be translated into a closed form 
expression, we seek a method to infer an approximation to 
the outputs that can operate as a proxy for the results 
generated by the more complex computer-based process.  
If such a proxy can be reasonably faithful to the results 
produced by the more complete and complex model, then 
an enormous amount of computational effort can be saved, 
and a greatly enhanced search process can be produced. 
The solution mechanisms devised to work with the outputs 
from the general computer-based model can be streamlined 
to work much faster on the proxy model.  In addition, the 
use of the proxy makes it possible to derive trial solutions 
that are pre-conditioned to be closer to optimality (at an 
earlier stage of search) for the original model.  The result is 
an appreciable gain in both the efficiency and effectiveness 
of the search. 

The overriding factor is creating such a proxy model is 
to be able to handle spaces where the objective function 
has multiple local optima, and does not fit any precon-
ceived format or structure.  The need to go beyond limiting 
assumptions about the nature of the objective function cur-
vature -- and still more generally, to be able to include dis-
continuities in the space -- makes it essential to find an al-
ternative to the popular approaches that researchers have 
focused on in the past. 

Our approach, called “Layered Envelope Response” 
(or the LEVER method), is based on the observation that 
any nonlinear function can be approximated to any degree 
of accuracy by a mixed zero-one linear integer program-
ming formulation.  While this fact has been known for 
many years, there has been no method to exploit it.  Previ-
ous efforts to use mixed zero-one formulations to approxi-
mate nonlinear functions have been restricted to very sim-
ple cases, where the details of the approximation can be 
specified by a classical textbook formula, and chiefly 
where the form of the nonlinear objective is known in ad-
vance. In addition, these applications normally involve 
functions of only one or two variables. Upon reaching the 
two-variable case, the difficulty of applying the classical 
representation is already formidable, and the situation be-
comes progressively worse as additional variables are in-
troduced. Thus, recourse to a mixed zero-one representa-
tion is avoided in all but the simplest cases. 

The LEVER approach represents a departure that does 
not depend on the classical rules for generating a mixed 
zero-one formulation. The use of layered envelopes, gener-
ated by successively created linear programs of a special 
form, replaces the classical approach by a dynamic and 
adaptive process which is better suited to handling real 
world complexity.  A key advantage of the LEVER method 
is the ability to avoid identifying in advance the domains of 
the variables over which the approximation operates -- and 
more specifically, to avoid identifying the subdomains that 
characterize regions where the function takes different 
forms.  It is this type of identification that dooms the clas-
sical approach. By contrast, the ability to operate without 
explicitly referring to such subdomains gives rise to a pre-
viously unequalled modeling capability. 

Our work builds upon and extends work by Roy 
(2001), Roy et. al. (1995), and McMillan et. al. (1992) on 
embedding linear programming and symbolic processing in 
neural networks, work by Barr (2000a, 2000b) on nonlin-
ear discrimination, work by Glover and Laguna (1997a, 
1997b) on search methods for mixed integer optimization, 
and work by Glover (1990) on optimizing models for dis-
criminant analysis.  
 
LEVER Method 
 

We denote the problem of interest as 
 

Minimize             xo = F(x) 
    subject to              x ε X 
 
where x ε X imposes bounds and possibly other linear ine-
quality restrictions on the vector x = (x1 x2  … xn), which 
we implicitly treat as a column vector.  (The condition x ε 
X may represent a relaxation of a more complex constrain-
ing condition x ε Xo, which may additionally impose dis-
crete requirements on some of the problem variables, and 
may include other constraints of interest.) 

The function F(x) is not explicitly represented as a 
mathematical function, but is determined by a “black box” 
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(such as a simulation or other iterative process), and the 
goal is to identify a model that gives an approximation to 
the foregoing problem. The model we generate is a zero-
one mixed integer programming problem:  
 
(P)  Minimize         xo 

      subject to               
   xo  + Aix ≥ aio    i ε Io 
   xo  + Aix  + Uizh  ≥ aio    i ε I1h    h ε H 
   xo  + Aix  + Ui(1- zh)  ≥ aio   i ε I2h   h ε H 
   x ε X 
   zh ε {0,1}     h ε H 
 

The vectors Ai are row vectors of constants given by 
Ai = (ai1 ai2 … ain). The scalar constants Ui are “upper 
bounds” determined as subsequently specified so that the 
inequalities over I1h are redundant unless zh = 0 and the 
inequalities over i ε I2h are redundant unless zh = 1. (In the 
non-redundant cases the multiplier of Ui is 0, and hence 
these inequalities take the same form as the inequalities 
over Io.) 

The process for generating (P) is based on having de-
termined the objective function values xo = F(x), or more 
specifically xo(t) = F(x(t)), for  a set of trial solutions x = 
x(t), t ε T, whereupon (P) represents a piecewise linear ap-
proximation to F(x) that likewise yields the values xo = 
xo(t) when x = x(t), t ε T. The zero-one variables zh are re-
quired for the case where the surface generated by the xo(t) 
values is non-convex. We identify the components of x(t) 
by xj(t), j ε N = {1,�,n}.  

Problem (P) is created in iterative stages by solving a 
collection of linear programming problems over nonnega-
tive variables ut, t ε To (a changing subset of T) and unre-
stricted variables ao and aj, j ε N, of the following form: 
 
(LP) Minimize         ∑ (ctut: t ε To) 
      subject to               
   xo(t)  + ∑ (ajxj(t): j ε N)  - ut = ao       t ε To     
   ut  ≥ 0     t ε To 
 

Each solution yields one of the inequalities xo  + Aix ≥ 
aio of (P) by taking aio = ao and Ai = (a1 a2 … an).  The 
LEVER method for determining the full set of inequalities 
of (P) also requires solving additional linear programs of a 
form slightly different from (LP), identified later.  The 
complete method consists of two component routines, 
LEVER-1 and LEVER-2. An important feature of these 
routines is that they can be organized to solve the succes-
sive problems (LP) and their variants by a post-optimizing 
process that allows the collection to be solved much more 
efficiently than by solving each instance in isolation. 

As successive problems (LP) are solved to yield asso-
ciated inequalities xo  + Aix ≥ aio  of (P), we keep track of 
the number n(t) of the hyperplanes xo  + Aix = aio on which 
each given trial solution x(t) lies; i.e., n(t) = |L(t)|, where 
L(t) = {i: xo(t)  + Aix(t) = aio}. Thus, to begin, before any 
inequalities are generated,  n(t) = 0 for all t. The first 
LEVER routine undertakes to generate inequalities that 
correspond to supporting hyperplanes for the convex re-
gion spanned by the points (xo(t), x(t)), t ε To.  The process 
also identifies points that lie in the interior of this region, 
and hence that require a non-convex representation by 
means of the inequalities over Ioh and I1h of (P).  These lat-
ter points are removed from To, thereby accelerating com-
putation and creating conditions that allow additional sup-
porting hyperplanes to be determined more efficiently. 
Finally To consists only of supported points that lie on the 
hyperplanes generated (hence n(t) > 0 for all t ε To) and the 
process terminates after assuring that a sufficient set of hy-
perplanes is generated so that the minimum xo over x ε 
X∩R, where R is the supported region, corresponds to a 
point x(t), t ε To. 

In the complete LEVER method, LEVER-1 also is 
employed as a subroutine in LEVER-2, to generate the 
“conditional inequalities” xo  + Aix  + Uizh  ≥ aio and xo  + 
Aix  + Ui(1- zh)  ≥ aio of (P). An index set I is maintained 
that includes the indexes i for both ordinary and condi-
tional inequalities.  (Because some hyperplanes (and asso-
ciated inequalities) generated in LEVEL-1 will be replaced 
by others generated in LEVEL-2, the ultimate composition 
of I will have gaps in its sequence of i values correspond-
ing to those that have been removed.)  
 
LEVER-1. 
 
 Step 0 (Initialization).  Let To = T, I = Φ, H = Φ, and 
set h* = 0 and i* = 0. (This step applies only to the first 
execution of LEVER-1, and is disregarded when LEVEL-1 
is called as a subroutine by LEVER-2.) 
 Step 1. Create the coefficients ct, t ε To, of the objec-
tive function for (LP) by reference to an ordering [t] of the 
indexes t ε To so that  
 
 c[1] >> c[2] >> … >> c[t΄] = 1,   t΄ = |To|,  
 
where  p < q  is implied by n[p] < n[q] and by  xo[p] < 
xo[q] when n[p] = n[q].  (Hence to begin, when all n(t) = 0, 
the ct values are largest for the smallest xo(t) values, and 
subsequently, the ct values are largest for the smallest n(t) 
values, breaking ties in favor of the smallest xo(t) values.)  
 Step 2. Solve the problem (LP).   
 Step 3. Let r = max(p: u[h] = 0 for all h ≤ p), where r = 
0 if u[1] > 0.  Then if r > 0, remove the indexes [1] to [r] 
from To.  
 Step 4. If the solution vector A = (a1 a2 … an) does not 
duplicate any previously generated vector Ai, i ε I, then set 
i* = i* + 1, add i* to I, record Ai* = A and ai*o = ao, and re-
turn to Step 1.   
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 Step 5. If A duplicates a previously generated vector 
Ai, i ε I, solve the  linear program 
       
  (LP1) Minimize         xo 

       subject to               
    xo  + Aix ≥  aio       i ε I     
    x ε X 
 
 Step 6.  Denote the optimal solution for (LP1) by (xo*, 
x*). If xo* = Min(xo(t):  x(t) ε X,  t ε To), then terminate 
LEVER-1 and proceed to LEVER-2.  Otherwise, solve the 
problem 
       
  (LP2) Minimize         ∑ (ut: t ε To) + Muo 

       subject to               
    xo(t)  + ∑ (ajxj(t): j ε N)  - ut = ao     t ε To 

    xo* +   ∑ (ajxj*: j ε N)  + uo = ao   
    uo, ut  ≥ 0     t ε To 
 
where M >> 1. Record the solution by setting i* = i* + 1, 
adding i* to I,  setting  Ai* = (a1 a2 … an) and ai*o = ao. 
Then return to Step 1.   
 
LEVER-2. 
 
 Step 1. If n(t) > 0 for all t ε T (all points (xo(t),x(t)) are 
supported),  the LEVER method is completed and the 
process of generating (P) terminates. Otherwise, choose a 
currently unsupported point (xo(t*),x(t*)) by the rule 
  
 t* = argmax(xo(t): n(t) = 0, t ε T). 
 
 Step 2. Divide T into two subsets T1 and T2 by deter-
mining a vector A and hyperplane Ax(t*) = 1 and defining  
 

T1 = { t ε T: Ax(t) < 1 or t=t*} and  
T2 = { t ε T: Ax(t) ≥ 1}. 

 
(Note that t* is an element of both sets, but otherwise they 
are disjoint.) 
 Step 3. Remove from I the indexes of all hyperplanes 
xo  + Aix = aio that contain two points (xo(t1), x(t1))  and 
(xo(t2), x(t2)), where t1 ε T1 and t2 ε T2.  Partition the result-
ing I into the two sets 
 
       I1 = {i ε I: hyperplane xo  + Aix = aio contains only 

points (xo(t), x(t))  for t ε T1}   
       I2 = {i ε I: hyperplane xo  + Aix = aio contains only 

points (xo(t), x(t))  for t ε T2}. 
 
Update the values n(t) to reflect the reduction that occurs 
for points (xo(t), x(t)) that lie on the hyperplanes discarded 
as a result of shrinking I.    
 Step 4. Apply LEVER-1 as a subroutine for the two 
cases where To begins as T1 and as T2 (bypassing the ini-
tialization of Step 0) where each reference to I in LEVER-
1 is replaced by reference to I1 and I2, respectively.  Denote 
the final I1 and final I2 produced by LEVER-1 for these two 
cases as I1* and I2*, and set h* = h*+1, adding h* to H. 
Then, for h = h* the sets I1h and I2h for (P) are given by I1h 
= I1* - I and I2h = I2* - I (hence I1h and I2h contain only the 
indexes for the new hyperplanes generated to create I1* and 
I2*.)  The value Ui is given by  
 

Ui = max(aio - Aix(t): t ε T2) for each i ε I1h  
Ui = max(aio - Aix(t): t ε T1) for each i ε I2h. 

 
 Step 5. Let I be updated to be the union of I, I1h and I2h.  
(If I is augmented as specified in Steps 4 and 6 of LEVER-
1, as well as augmenting I1 and I2 in the role of I, then the 
final I will have the correct composition. However, the 
identification of I1h and I2h in Step 4 immediately above 
must be changed so that these sets continue to identify pre-
cisely the new indexes added to create I1* and I2*.) Then 
return to Step 1 of LEVER-2. 

The combination of the LEVER method with the gen-
eral simulation approach  produces an effective and effi-
cient application for solving the portfolio optimization 
problem.  The LEVER method is periodically exercised to 
a produce an approximation of the underlying stochastic 
function being optimized.  A mixed integer program is then 
solved on the approximation producing an excellent solu-
tion for evaluation by the simulator.  The application of the 
LEVER method reduces the number of required simula-
tions by as much as an order of magnitude and makes 
simulation optimization for portfolio selection much more 
approachable from a computational viewpoint. 

5 OPTTEK SYSTEMS, INC. 

OptTek Systems, Inc. is an optimization software and ser-
vices company located in Boulder, Colorado. We are the 
leading optimization software provider to the simulation 
software market and are confident that our products and 
services will add significant value to our customers.  

OptTek software is recognized throughout the simula-
tion and optimization market for its quality, speed, and 
customer service. Independent evaluations of our software 
demonstrate that our technology yields faster and higher 
quality solutions when compared to other optimization 
methods currently on the market. The software integrates 
state-of-the-art metaheuristic procedures, including Tabu 
Search, Neural Networks, and Scatter Search, into a single 
composite method. Some of the differences between 
OptTek’s methods and other methods include: 

 
• The ability to avoid being trapped in locally opti-

mal solutions to problems that contain nonlineari-
ties (which commonly are present in real world 
problems).  
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• The ability to handle nonlinear and discontinuous 
relationships that are not specifiable by the kinds 
of equations and formulas that are used in stan-
dard mathematical programming formulations.  

• The ability to solve problems that involve uncer-
tainties, such as those arising from uncertain sup-
plies, demands, prices, costs, flow rates, queuing 
rates and so forth. 

• The ability to solve decision support problems for 
extremely complex systems. 

 
While other methods currently being applied in com-

plex and highly uncertain environments have value, they ei-
ther identify feasible solutions or locally optimal solutions. 
Both are typically improvements over the status quo but nei-
ther identifies the global optimum or “best” solution.       

OptTek’s methods, which are well known in both the 
simulation and optimization communities, are based on the 
contributions of Professor Fred Glover, one of the founders 
of OptTek and a winner of the von Neumann Theory Prize 
in operations research, who developed the adaptive mem-
ory method called Tabu search, and the evolutionary 
method called Scatter Search, singularly powerful search 
techniques in global optimization. 
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