
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

ENHANCED QUASI-MONTE CARLO METHODS WITH DIMENSION REDUCTION

Junichi Imai

Iwate Prefectural University,
Faculty of Policy Studies,

152-52, Takizawa-aza-sugo,
Takizawa, Iwate, JAPAN.

Ken Seng Tan

University of Waterloo,
Department of Statistics and Actuarial Science,

University Avenue West,
Waterloo, Ontario, CANADA.

ing
el
nt
d t
In

ion
arlo
qu
fo
is
r

a-
ly

can
in
rlo
A
th
th

can
de

on
d

n-
,

w
ing

a
on
lled
h-
arly

le,
ults
u-

ent
of

C
r
-

ge
2
r-
ive
t

t
y
in

,

s
es

er.
5

he

ve
e
,

)
r

ABSTRACT

In recent years, the quasi-Monte Carlo approach for pric
high-dimensional derivative securities has been used wid
relative to other competitive approaches such as the Mo
Carlo methods. Such success can be, in part, attribute
the notion of effective dimension of the finance problems.
this paper, we provide additional insight on the connect
between the effective dimension and the quasi-Monte C
method. We also propose a dimension reduction techni
which further enhances the quasi-Monte Carlo method
derivative pricing. The efficiency of the proposed method
illustrated by applying it to high-dimensional multi-facto
path-dependent derivative securities.

1 INTRODUCTION AND MOTIVATION

Since the introduction of the Monte Carlo method to deriv
tive pricing by Boyle in 1977, this method has been wide
used. The prices of many complex derivative securities
be written as very high dimensional integrals and only
rare cases explicit solutions exist. Hence the Monte Ca
method (MC) becomes the only viable numerical tool.
typical example is mortgage-backed securities where
value can depend on the monthly interest rates over
next 30 years. The dimensions of such a problem
be of several hundreds. Other exotic instruments inclu
multi-factor path-dependent options where the dimensi
can be several thousands since these derivatives depen
the trajectories of multiple factors.

Despite its wide applicability and the fact that its co
vergence rateO(N−1/2) is independent of the dimension
the Monte Carlo method is often criticized for its slo
rate of convergence. Different techniques for increas
its efficiency have been proposed. These approaches
known as variance reduction techniques which include c
trol variates and antithetic variates. More recently, so-ca
quasi-Monte Carlo (QMC) or low discrepancy (LD) met
ods have been introduced to finance applications. E
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applications of these methods are discussed in Joy, Boy
and Tan (1996) and Paskov and Traub (1995). These res
have presented something of a puzzle in the fields of comp
tational finance and numerical analysis due to the appar
conflicting conclusion. QMC attains a convergence rate
O(N−1 logs N) in dimensions, which is better than MC
only if N grows exponentially with dimensions. Hence
the theoretical higher asymptotic convergence rate of QM
is not achievable for practical applications, particularly fo
larges. This is supported by the empirical evidence in non
finance applications that QMC offers no practical advanta
over MC even for problems with dimensions as low as 1
(see e.g. Bratley, Fox, and Niederreiter (1992)). Neve
theless when the same method is used to price derivat
securities, it is superior to MC, even for dimensions tha
are of several hundreds!

The goal of this paper is to provide further insigh
on the superior rate of convergence of QMC exhibited b
the finance problems. One plausible explanation lies
the distinction between thenominalandeffective dimension
of an integrand. Due to the inherence feature of QMC
this method is particularly well suited for problems with
low effective dimensions. We explore these relationship
in Section 2. Section 3 discusses the simulation techniqu
used to price the type of options considered in this pap
Section 4 describes the proposed method and Section
provides numerical examples. Section 6 concludes t
paper.

2 EFFECTIVE DIMENSIONS

In this section we describe the concept related to effecti
dimension. We discuss its implication to QMC as well as th
motivation for our proposed method. Caflisch, Morokoff
and Owen (1997) give two formal definitions of effective
dimensions through the “analysis of variance" (ANOVA
decomposition of a function. The relevant definition for ou
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analysis is the effective dimension in the truncation sen
and is stated as follows:

Definition 1 The effective dimension off , in the
truncation sense, is the smallest integerdT such that∑
u∈{1,2, ...,dT } σ

2(fu) ≥ 0.99σ 2(f ).

Herefu is a function which depends on the componen
of x in the setu and σ 2(f ) denotes the variance of the
function f . An integrand is said to have low effective
dimension if it can be captured predominantly by the su
of lower-dimensional integrands.

Low effective dimension occurs naturally in financ
problems. For example, mortgage-backed securities dep
on the contingent cash flows each month over the next
years, leading to a 360 nominal dimensional problem.
effective dimension, however, is much smaller due to tw
factors: (i) the time value of money, a dollar in 30 years
worth a lot less than the same dollar in 1 year; (ii) empiric
evidence indicates that majority of the cash flows occur
the initial few years. Thus the cash flows in the first fe
years are most important for pricing of mortgage-back
securities, implying a relatively small effective dimension

The connection between the effective dimension and t
efficiency of QMC can be explained as follows: QMC relie
on specially constructed sequences known as low discr
ancy sequences. These sequences are deterministic an
designed to have greater uniformity than random sequenc
Sobol′ (1967) is an example of a low discrepancy sequenc
The left and right panels in Figure 1 give the orthogon
projection (second and third coordinates) of 2048 Sob′
and random points, respectively. Clearly, the Sobol′ points
are more regularly and uniformly distributed over the un
square than the random points which exhibit both clusteri
and relative sparsity. It is this enhanced uniformity of th
points that leads to higher rate of convergence. However
we increase the dimension, the orthogonal projection of t
Sobol′ points can yield extremely poor uniform regularity a
demonstrated in Figure 2. The left panel of Figure 2 depic
the orthogonal projection of the 27-th and 28-th dimension
Although it has the same number of points as Figure 1, t
points are far from uniformly distributed, exhibiting regula
and rigid structures. When we subsequently increase
points to 4096 (as shown in the right panel of Figure 2
the additional points gradually fill up the gaps. Howeve
for these higher dimensional set of points, the uniformi
is achieved at a much slower rate. In fact, for these poin
to have the same degree of uniformity as the Sobol′ points
in Figure 1, the number of points need to be increased
a very large number!

The deterioration of the uniformity of Sobol′ points
as we increase the dimension is unfortunately typical
most low discrepancy sequences. This implies that f
practical sample sizes, the uniformity of high dimension
low discrepancy sequences is no better than the rand
sequences. Hence if the problem of interest is trulys-
e
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dimensional, then for larges we should not expect QMC
to significantly outperform MC in practical application. On
the other hand, if the problem of interest has low effectiv
dimension (in the truncation sense) relative to the nomin
dimension, then the lower but more important dimension
structures are evaluated at the much higher precision rate
QMC. Consequently, problem with low effective dimensio
can recover the QMC rate. This in part accounts for th
success of the finance applications of QMC, even for ve
high dimensional problems.

The above analysis implies that if integrandsf andg
are such that

∫
[0,1)s f (x)dx =

∫
[0,1)s g(x)dx anddT (f ) >

dT (g) wheredT (·) denotes the effective dimension in the
truncation sense, then QMC achieves a better rate of c
vergence when applied tog instead off . For example,
consider the functions

f (x) =
s∑
i=1

2i−1xi (1)

and

g(x) =
s∑
i=1

2s−ixi (2)

where x ∈ [0,1)s . Since the coefficients in these two
functions are permutations, their values of the integral mu
be identical. However, we havedT (f ) = s, but dT (g) = s
for s = 1,2,3 anddT (g) = 4 for s ≥ 4. Hence for large
s, a greater precision can be expected when applying QM
to g than tof since the earlier dimensions ofg contribute
most to the value of the integral.

The above example also suggests one way of enhanc
QMC for estimating an integral value. Suppose the integra
of interest, sayf in (1). Rather than applying QMC directly
to f , the argument above suggests that we should perfo
an appropriate transformation onf so as to obtain an
integrand such asg in (2) while preserving the value of
the integral. Through the transformation, if the effectiv
dimension (in the truncation sense) of the resulting integra
g is reduced substantially, then QMC will have greate
success when applied tog than tof . Formally, an optimum
application of QMC can be formulated as an optimizatio
algorithm which seeks a transformationψ(·) within the set
of “all possible transformations", say9, that minimizes
the effective dimension (in the truncation sense) of th
transformed integrandfψ while also preserving the integral
values. The constraint of preserving the value of the integ
is to ensure that the problem of interest is not distorted af
the transformation.

The functiong in (2) demonstrates one possible trans
formation which merely re-orders the coefficients ofxi .
While it is very difficult to obtain the optimum transforma-
tion in general, two types of “transformations" have bee
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Figure 1: Two-Dimensional Projection of Sobol and Random Sequences
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considered in connection with Brownian path generation
These are based on the Brownian bridge (see Moskowitz an
Caflisch (1996) and Caflisch, Morokoff, and Owen (1997))
and principal component analysis constructions (see Ac
worth, Broadie, and Glasserman (1998)). These transfo
mations demonstrate that the efficiency of QMC can be
enhanced further. Motivated by these results, this pape
confines9 to a class of transformation which we denote as
“linear transformation". Our objective is to find an optimum
transformation over this class so that the effective dimen
sion (in the truncation sense) of the problem of interes
is minimized. We describe the proposed transformation in
greater details in the following two sections.
d

-

r

3 PATH GENERATION METHODS

It will be of interest to first describe the type of exotic option
that will be considered in this paper. We assume the ris
assets follow multivariate geometric Brownian motion an
that their dynamics under the risk-neutral world (i.e.,Q
measure) are given by the following stochastic differenti
equations:

dSi(t) = rSi(t)dt + σiSi(t)dWi(t), i = 1,2, . . . , m, (3)

where Si(t) denotesi-th asset price at timet , r is the
risk-free interest rate,σi is the volatility for i-th asset, and
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W (t) = (W1(t), . . . ,Wm(t)) is am-dimensional Brownian
motion such thatWi(t) satisfies

E[Wi(t)] = 0,

V ar[Wi(t)] = t,
and

Cov[Wi(t),Wk(t)] = ρikt,
whereρik is the correlation between thei-th and thek-th
Brownian motions.

The numerical examples illustrated in Section 5 ar
based on the European multi-asset path-dependent call o
tions with payoff at maturityT = tn given by

max

 m∏
i=1

n∏
j=1

Si(tj )
wij −X, 0

 (4)

and

max

 m∑
i=1

n∑
j=1

wijSi(tj )−X, 0

 (5)

where
∑m
i=1

∑n
j=1wij = 1 and{t1, t2, . . . , tn} are the time

points at which the asset prices are sampled andX is the
strike price. These options are known as the geometr
weighted average options and arithmetic weighted avera
options, respectively. For an equally weighted case wit
m = 1 andn > 1, the contingent claim (5) is commonly
referred as an Asian option. Whenm > 1 andn = 1 so
that the payoff depends only on the terminal prices of
basket ofm assets, the resulting option is known as a bask
option.

For the assumed model, there exists an explicit close
form solution for the geometric average case but not th
arithmetic average options. In fact, due to the multi-facto
and path-dependency, the dimensionality of the arithmet
average option can be very large. For instance with 1
underlying assets and 250 sampling time points, the nomin
dimensions of the problem is 2500! Hence the Monte Carl
method becomes an important numerical tool for pricin
these derivative securities.

To price the above options using simulation, it is neces
sary to simulate the multi-asset trajectories at each sampli
time point; i.e.,{Si(tj ); i = 1, . . . , m, j = 1, . . . , n}. For
simplicity, assume the asset prices are sampled at eq
fixed time interval of length1t so that1t = T/n and
tj = j1t . Let 6 be anm×m covariance matrix given by
-
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(6)ik = ρikσiσk1t , i, k = 1,2, . . . m and define6mn as
anmn×mn matrix generated from6 via

6mn =


6 6 · · · 6

6 26 · · · 26
...

...
. . .

...

6 26 · · · n6

 .
It follows from (3) that the asset prices evolve as

Si(tj ) = Si(0)e(r−σ2
i /2)tj+Zi(tj ), (6)

where 

Z1(t1)
...

Zm(t1)

Z1(t2)
...

Zm(tn)


= C̃



ε1
...

εm
εm+1
...

εmn


= C̃ε (7)

and C̃ is a decomposed matrix of6mn satisfying

C̃C̃
′ = 6mn (8)

and {εk; k = 1, . . . , mn} are independent standard normal
variates. For MC, the samples{εk; i = 1, . . . , mn} are
typically generated using standard routine such as the Box
Muller or polar transformation. With QMC,ε is obtained
via the inverse transformation; i.e.,{εk = F−1(xk); k =
1, . . . , mn}, wherex = (x1, . . . , xmn) ∈ [0,1)mn corre-
sponds to a point from amn-dimensional low discrepancy
sequence andF(·) is the cumulative standard normal distri-
bution. The inverse transformation is crucial when use with
QMC in order to preserve the uniformity of the input low
discrepancy points. Since each trajectory depends onmn

input components, the problem is said to have a nomina
dimension ofmn.

The path construction (6) (together with (7)) corre-
sponds to multiplying a vector ofmn independent normal
variates using the matrix̃C as long as condition (8) is sat-
isfied. This is a consequence of a property that a Brownia
path is completely determined by its covariance structure
The conventional discretization approach uses a lower tri
angular matrixC̃ ≡ CCh based on Cholesky decomposition
of 6mn.

It was first recognized by Moskowitz and
Caflisch (1996) that generating the trajectory using Brownian
bridge reduces the effective dimension of a Brownian path
and hence increases the efficiency of QMC. This method i
simple to use but is restrictive in that it is only applicable
to one-dimensional Brownian paths. A more versatile ap
proach is that based on principal component analysis (PCA
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Table 1: Comparison of Explained Variability for each
Component under Standard, Brownian Bridge, PCA
and LT Constructions

Explained Variability for Each Component
Standard Brown. Bridge PCA LT

ε1 40.0% 75.0% 82.9% 82.9%
ε2 30.0% 15.0% 10.0% 10.0%
ε3 20.0% 5.00% 4.26% 4.26%
ε4 10.0% 5.00% 2.83% 2.83%

proposed by Acworth, Broadie, and Glasserman (1998
For this method, the generation matrix̃C ≡ CPCA is de-
fined asPD1/2 whereD is the diagonal matrix such that
Dii ≥ Djj , i < j andDkk; k = 1, . . . , mn, are the eigen-
values of the covariance matrix6mn, and thek-th column of
P is the unit-length eigenvector corresponds to eigenvalu
Dkk.

A standard result in multivariate statistics is that th
variability explained by the firstk standard normals is equal
to the sum of the squared norms of the firstk columns of
C̃. This quantity therefore provides a way of comparing th
relative merits of the generation matrices. For simplicity
let assume the covariance matrix(6mn)ij = min(i, j), for
i, j = 1,2,3 and 4. Table 1 depicts the explained variability
due to each standard normal component. These resu
indicate that the standard construction is the least favorab
The first component captures only 40% of the variatio
while the first two 70%. The Brownian bridge construction
is an improvement over the standard approach but the PC
approach is even more effective, explaining up to 82.9%
the variation for just one component.

The column labelled “LT" is our proposed dimension re
duction transformation which we now explain. We conside
a class of transformation by defining

C̃ ≡ CLT = CChA, (9)

whereA is an orthogonal matrix; i.e.,AA′ = I and I is
the identity matrix. By construction, we haveCLT(CLT)′ =
6mn so that condition (8) is satisfied. We refer to this metho
as linear transformation or simply the LT construction. Th
optimumCLT is obtained by optimally choosingA so as the
effective dimension (in the truncation sense) of the proble
of interest is minimized. For instance in the above examp
where we wish to maximize the explanatory variability o
the covariance structure, the optimum orthogonal matr
A∗ can be found by solving the following optimization
problem:

max ||C LT·k ||2 = max
A·k∈<mn

mn∑
i=1

(CCh
i· A·k)2 (10)
).

e

lts
e.

A
f

e

subject to ||A·k|| = 1 and < A∗·i ,A·k > = 0, i =
1,2, . . . , k−1.Here we adopt the following matrix notation:
if A is a matrix of sizem byn. ThenA = (A·1, . . . ,A·n) =A1·

...

Am·

, whereAi· ∈ <n is the row vector corresponding

to the i-th row of A andA·j ∈ <m is the column vector
corresponding to thej -th column ofA. Also, the notation
<a, b> denotes the dot product of vectorsa andb, where
a andb are either both row vectors or column vectors, and
||a|| denotes the norm of a vectora.

The maximization algorithm (10) is carried out itera-
tively for k = 1,2, . . . , mn so that the columns ofA∗ are
obtained sequentially. The objective function maximizes
the variance contribution due to thek-th column while the
second constraint ensures that thek-th optimum column is
orthogonal to the solutionsA∗·i , i = 1,2, . . . , k−1 obtained
in the previous step. It can be shown that the solution to
the above optimization problem isA∗ = PD1/2 where
D is the diagonal matrix withDii ≥ Djj , i < j , and
Dkk; k = 1, . . . , mn are the eigenvalues of themn by mn
matrix

∑mn
k=1 (C

Ch
k· )′CCh

k· , and thek-th column ofP is the
unit-length eigenvector corresponds to eigenvalueDkk.

The last column of Table 1 indicates that the proposed
LT method is as efficient as PCA. This is in fact not surprising
since the matrix

∑mn
k=1 (C

Ch
k· )′CCh

k· is merely a permutation,
a rotation and a reflection of6mn, a consequence of the
orthogonal matrixA. Hence if the objective is to extract key
components of a covariance matrix, then both PCA and LT
constructions are equivalent. The strength of the propose
method becomes apparent in the following section whe
we consider more complicated applications.

4 LINEAR TRANSFORMATION

In this section, we consider an European option with payof
at maturityT given by

max[g(ε)−X,0],

where

g(ε) =

∏m
i=1

∏n
j=1 Si(tj )

wij

∑m
i=1

∑n
j=1wijSi(tj )

.

It follows from (6) and (7) thatg is a function in terms
of a vector ofmn standard normal variates. Using these
two option structures, we now illustrate how to obtain an
optimumCLT under our proposed LT constructions.

We first consider the geometric average option. In this
caseg becomes

g(ε) = eµ+
∑mn
k=1 αkεk , (11)
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where

µ =
m∑
i=1

n∑
j=1

wij

[
logSi(0)+

(
r − σ

2
i

2

)
tj ,

]
(12)

and

αk =< C̃·k,w>, (13)

andw = (w11, w21, . . . , wm1, w12, . . . , wmn)
′ ∈ <mn. Let

definef (ε) = logg(ε); i.e.,

f (ε) = µ+
mn∑
k=1

αkεk.

Then the variance of the functionf is given by

σ 2(f (ε)) =
s∑
k=1

α2
kσ

2(εk) =
s∑
k=1

α2
k .

From the definition of effective dimension,dT (f (ε)) is the
smallest integer satisfying

dT (f (ε))∑
k=1

α2
k ≥ 0.99σ 2(f (ε)).

Since α2
k =< C̃·k,w >2, which in turn depends on how

the decomposed matrix̃C is chosen, the above analysis
provides a way of reducing the effective dimension through
careful construction of the generation matrixC̃. Under our
proposed class of transformation whereC̃ ≡ CLT = C ChA,
equation (13) reduces to

αk = <A·k,B>, k = 1, . . . , mn, (14)

whereB = (B1, . . . , Bmn)
′ andBk = <CCh·k ,w >. The

optimum columns ofA are then found by modifying the
optimization algorithm (10) to

max
A·k

<A·k,B>2 (15)

subject to ||A·k|| = 1 and < A∗·j ,A·k > = 0, j =
1,2, . . . , k − 1.

It can be verified that whenk = 1, the optimum solution
to the above maximization problem isA∗·1 = ± B

||B|| , which
leads toα1 = < A∗·1,B > = ± ||B||. Furthermore, the
orthogonality condition ensures that< A∗·k,B > = 0 for
k ≥ 2. Thus the optimum solutionsA∗·k, k = 2, . . . , mn can
be arbitrary as long as they satisfy the orthogonal condition
.

This implies thatαk = 0 for k = 2, . . . , mn. Consequently,
equation (11) simplifies to

g(ε) = eµ± ||B||ε1, (16)

which depends only on the first component. This indi-
cates that the LT construction effectively collapses anmn-
dimensional geometric average option to a 1-dimensiona
problem. This distinguishes the efficiency of the LT method
over the PCA approach. Although the PCA construction i
effective at isolating the key components of the covarianc
matrix 6mn, the LT method exploits the linear structure
of the function to the fullest. This result is not surpris-
ing since the product of lognormals is still a lognormal.
Hence simulating a product of lognormal random variables i
equivalent to simulating one-dimensional lognormal random
variables (with appropriate parameters adjustment). The L
construction is able to exploit the linearity structure.

Note that in our formulation of the LT method, we have
CLT = CChA, whereCCh is a Cholesky decomposition of
6mn. We could define other class of transformation such a
CLT = CPCAA. This choice is not explored in this paper
since this introduces additional computational effort for the
eigenvectors and eigenvalues decomposition of6mn.

We now consider arithmetic average options. In this
case, the functiong becomes

g(ε) =
mn∑
i=1

eµi+
∑mn
l=1 αilεl , (17)

where

µi = log(wi1,i2Si(0))+
(
r − σ

2
i1

2

)
ti2, (18)

and

αik = C̃ik, (19)

with i2 = b(i − 1)/mc + 1, i1 = i − (i2 − 1)m, and bxc
denotes the greatest integer less than or equal tox.

Unlike the geometric average case, the variance of th
above function is now quite complex. This complicates the
procedure for deriving the optimized matrixA under the LT
method. However note that if the function is linear inε (as in
the preceding example), the optimum vector is immediatel
obtainable. To exploit this property, we obtain the desired
column vectorA·k iteratively for k = 1,2, . . . , mn by
linearizing the function through a Taylor expansion. We
carry the optimization as follows: Applying a first order
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Taylor series around an arbitrary pointε = ε̂ +1ε to the
function g in (17), we have

g(ε) ≈ g(ε̂)+
mn∑
l=1

∂g

∂εl

∣∣∣∣
ε=ε̂

1εl

= g(ε̂)+
mn∑
l=1

(
mn∑
i=1

eµi+
∑mn
k=1 αik ε̂k αil

)
1εl. (20)

Substitutingε̂ = 0 in the above expansion yields

g(ε) ≈ g(0)+
mn∑
l=1

(
mn∑
i=1

eµi αil

)
1εl, (21)

which is linear in the normal random variables1ε. The
variance of the function due to thek-th component is simply
given by

(∑mn
i=1 e

µi αik
)2. This facilitates the optimization

of α·k; k = 1, . . . , mn in that for the LT construction, the
optimumA∗·1 can be shown to beB1||B1|| whereB1 =∑mn

i=1 C̄i·
andC̄i· = eµiCCh

i· . The orthogonality condition implies that
<B1,A

∗·l >= 0; l = 2, . . . , k so that the right hand side of
(21) reduces to a function involves only the first componen

g(0)+
mn∑
l=1

(
mn∑
i=1

eµi αil

)
1εl = g(0)+ ||B1||1ε1.

It should be emphasized that the underlyingg is not
linear. The above result is true under the approximation. T
find the subsequent optimumA∗·k, k > 1, one approach is to
consider the Taylor expansion with higher order terms. Thi
implies that optimizingA·k requires thek-th order Taylor
expansion, which can be very complex and time-consumin
To mitigate this problem, we optimizeA·2 given A∗·1 by
considering the Taylor approximation (20) with expansion
at a different point, saŷε = (1,0, . . . ,0). This results in

g(ε) ≈ g(ε̂)+
mn∑
l=1

(
mn∑
i=1

eµi+αi1αil

)
1εl

so that the variance of the function becomes

σ 2(g(ε)) ≈
mn∑
l=1

(
mn∑
i=1

eµi+αi1αil

)2

.

Consequently, to optimizeA·2 we maximize the variance
contribution due to the second dimension as

max
A·2

(
mn∑
i=1

eµi+αi1αi2

)2
d

t:

o

s

g.

= max
A·2

(
mn∑
i=1

eµi+<CCh
i· ,A∗·1> <CCh

i· ,A·2>
)2

subject to||A·2|| = 1 and<A∗·1,A·2> = 0. Note that
the objective function depends explicitly onA∗·1. Without
the orthogonal condition, the solution to the above max
mization problem is easily found. Gram-Schmidt method
is then applied to the resulting vector in order to satisfy th
orthogonality condition.

The above procedure is readily extended for optimizin
A·k; k > 2 by expanding the Taylor series around the poin
ε̂ = (1, . . . ,1,0 . . . ,0), where the firstk − 1 components
are ones and the remaining components are zeroes. T
resulting function becomes a linear function and the usu
optimization problem can be solved easily to obtain th
desired vectorA∗·k.

5 NUMERICAL ILLUSTRATIONS

In this section, we demonstrate the efficiency of the propose
LT constructions by considering the arithmetic average ca
options on a basket of 10 assets with 250 sampling tim
points using the following parameter values:

Si(0) = 100
r = 4% p.a.
T = 1 year
σi = 10%+ i−1

9 40%
X = 100
ρij = 0% and 40% fori, j = 1,2, . . . ,10.

Sincem = 10 andn = 250, the nominal dimensions for
these examples are 2500, illustrating that the dimensionali
can be very high for pricing complex derivatives.

We consider three simulation techniques – Cholesk
PCA and LT. For each method, we simulate the optio
prices using both MC and QMC. The results are reported
respectively, in Tables 2 and 3. The values in parenthes
denote the standard errors based on 10 independent re
cations with each batch consists of eitherN = 4096 or
8192. Theoretically, the LT construction requires optimiz
ing 2500 columns ofA since the problems have nominal
dimension of 2500. The reported results are only based o
optimal vectors up to either 50 or 100 columns, with the
remaining entries randomly generated while satisfying th
orthogonality constraints. This explains the entries [50] an
[100] under the heading “LT". The loss of accuracy from
using the suboptimal matrixA is likely to be negligible in
view of the effectiveness of the dimension reduction of th
LT methods. However, using such suboptimalA leads to a
significant reduction in the computational effort in solving
the optimization problem.

For the benchmark, using the standard construction wi
1 million randomly generating trajectories, the estimate
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prices for the zero and positive correlation cases are 3.44
and 5.6490 with standard errors of 0.0044 and 0.008
respectively. One immediate conclusion from Table 2 i
that there is no significant difference among the variou
construction approaches. This is not surprising since th
rate of convergence of Monte Carlo methods does not depe
on dimensions as well as the decomposed matrixC̃.

Table 2: MC Results: Simulated prices of the Asian
basket options using random sequences. The value
in parentheses denote the standard errors based on 1
independent replications.

N Standard PCA LT
Zero correlation example
4096 3.429(0.027) 3.451(0.022) 3.425(0.027) [100]

3.425(0.028) [50]
8192 3.457(0.022) 3.438(0.017) 3.423(0.018) [100]

3.422(0.019) [50]

Positive correlation example
4096 5.673(0.049) 5.609(0.048) 5.618(0.049) [100]

5.619(0.049) [50]
8192 5.672(0.036) 5.616(0.037) 5.618(0.035) [100]

5.619(0.035) [50]

In Table 3, the same set of examples and the same tec
niques are compared. The only difference is that the inp
ε is drawn from the randomized Sobol′ low discrepancy
sequences proposed by Owen (1995), instead of a ra
dom sequence. We also avoid generating 2500-dimension
Sobol′ sequences by using the Latin supercube samplin
(LSS) method (see Owen (1998)). Briefly, this sampling
mechanism is a scheme for creating a high-dimension
sequence from sets of lower dimensional sequences. F
instance, a 2500-dimensional low discrepancy sequenc
can be concatenated from 100 sets of 25-dimensional lo
discrepancy sequences by appropriately randomizing the r
order of the points. For theoretical justification of the LSS
method, see Owen (1998). In our examples, we use LS
with 50 and 25 dimensions respectively. Based on the
results, we can make the following conclusions:

• Unlike the Monte Carlo method, the performance
of QMC depends on the choice of decompose
matrix C̃. In particular, a greater efficiency is
achieved with PCA and LT as confirmed by their
smaller standard errors.

• The efficiency of the PCA method critically depends
on the structure of the covariance matrix. As the
correlation increases, so is the effectiveness of th
underlying method.

• The LT construction is competitively efficient.
There is also no significant loss of accuracy by
reducing the optimal columns from 100 to 50,
confirming that the effective dimensions using the
9
,

s
e
d

0

h-
t

n-
al
g

l
or
es
w
n

S
e

e

LT methods are substantially lower than 50. The LT
methods are more efficient than the PCA metho
for the zero-correlated case and comparable for th
positively correlated case.

• Relative to the Monte Carlo methods, the use of low
discrepancy sequences leads to dramatic improv
ment, particularly with PCA-based and LT-based
methods.

Table 3: QMC results: Simulated prices of the Asian
basket options using randomized low discrepancy se-
quences. The values in parentheses denote the standa
errors based on 10 independent replications.

LSS Standard PCA LT
N = 4096, zero correlation
50 3.438(0.007) 3.443(0.003) 3.447(0.001) [100]
50 3.448(0.001) [50]
25 3.434(0.007) 3.444(0.003) 3.445(0.001) [100]
25 3.446(0.001) [50]
N = 8192, zero correlation
50 3.411(0.006) 3.447(0.002) 3.445(0.001) [100]
50 3.444(0.001) [50]
25 3.414(0.009) 3.448(0.002) 3.445(0.001) [100]
25 3.444(0.001) [50]

N = 4096, positive correlation
50 5.657(0.015) 5.658(0.001) 5.657(0.001) [100]
50 5.656(0.001) [50]
25 5.633(0.016) 5.658(0.001) 5.657(0.001) [100]
25 5.657(0.001) [50]
N = 8192, positive correlation
50 5.613(0.015) 5.658(0.001) 5.657(0.001) [100]
50 5.658(0.001) [50]
25 5.603(0.021) 5.659(0.001) 5.657(0.001) [100]
25 5.658(0.001) [50]

6 CONCLUSION

In this paper, we propose a new method that enhances
efficiency of QMC for finance applications. The propose
class of transformation reduces the effective dimension
the problem, thus enables us to exploit a particular featu
of QMC; namely the earlier dimensions of low discrepanc
sequences are more uniformly distributed. By optimall
obtaining a decomposed matrixCLT, a significant increase
in efficiency of QMC is attained. This is demonstrated in ou
high-dimensional derivative examples. While we have onl
illustrated the applicability of our proposed construction in
the context of pricing multi-factor path-dependent options
the underlying method in fact can be extended to pricin
other more exotic options as well as in optimum asse
allocation problems. We will report these applications in
future studies.
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