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ABSTRACT applications of these methods are discussed in Joy, Boyle,
and Tan (1996) and Paskov and Traub (1995). These results
In recent years, the quasi-Monte Carlo approach for pricing have presented something of a puzzle in the fields of compu-
high-dimensional derivative securities has been used widely tational finance and numerical analysis due to the apparent
relative to other competitive approaches such as the Monte conflicting conclusion. QMC attains a convergence rate of
Carlo methods. Such success can be, in part, attributed to O(N~tlog* N) in dimensions, which is better than MC
the notion of effective dimension of the finance problems. In only if N grows exponentially with dimension. Hence
this paper, we provide additional insight on the connection the theoretical higher asymptotic convergence rate of QMC
between the effective dimension and the quasi-Monte Carlo is not achievable for practical applications, particularly for
method. We also propose a dimension reduction technique larges. This is supported by the empirical evidence in non-
which further enhances the quasi-Monte Carlo method for finance applications that QMC offers no practical advantage
derivative pricing. The efficiency of the proposed method is over MC even for problems with dimensions as low as 12
illustrated by applying it to high-dimensional multi-factor (see e.g. Bratley, Fox, and Niederreiter (1992)). Never-
path-dependent derivative securities. theless when the same method is used to price derivative
securities, it is superior to MC, even for dimensions that
are of several hundreds!

The goal of this paper is to provide further insight

1 INTRODUCTION AND MOTIVATION

Since the introduction of the Monte Carlo method to deriva-
tive pricing by Boyle in 1977, this method has been widely
used. The prices of many complex derivative securities can
be written as very high dimensional integrals and only in
rare cases explicit solutions exist. Hence the Monte Carlo
method (MC) becomes the only viable numerical tool. A

on the superior rate of convergence of QMC exhibited by
the finance problems. One plausible explanation lies in
the distinction between theominalandeffective dimension

of an integrand. Due to the inherence feature of QMC,
this method is particularly well suited for problems with
low effective dimensions. We explore these relationships

typical example is mortgage-backed securities where the in Section 2. Section 3 discusses the simulation techniques
value can depend on the monthly interest rates over the used to price the type of options considered in this paper.

next 30 years. The dimensions of such a problem can
be of several hundreds. Other exotic instruments include
multi-factor path-dependent options where the dimensions

Section 4 describes the proposed method and Section 5
provides numerical examples. Section 6 concludes the

paper.

can be several thousands since these derivatives depend on

the trajectories of multiple factors.

Despite its wide applicability and the fact that its con-
vergence rate) (N ~1/2) is independent of the dimension,
the Monte Carlo method is often criticized for its slow
rate of convergence. Different techniques for increasing

2 EFFECTIVE DIMENSIONS

In this section we describe the concept related to effective
dimension. We discuss its implication to QMC as well as the
motivation for our proposed method. Caflisch, Morokoff,

its efficiency have been proposed. These approaches areand Owen (1997) give two formal definitions of effective

known as variance reduction techniques which include con-
trol variates and antithetic variates. More recently, so-called
quasi-Monte Carlo (QMC) or low discrepancy (LD) meth-

ods have been introduced to finance applications. Early
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dimensions through the “analysis of variance" (ANOVA)
decomposition of a function. The relevant definition for our
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analysis is the effective dimension in the truncation sense dimensional, then for large we should not expect QMC

and is stated as follows:

Definition 1 The effective dimension of, in the
truncation sense, is the smallest integér such that
Y ueinz,..dry 0 2(fu) = 0.99%2(f).

Here f, is a function which depends on the components
of x in the setu and o2(f) denotes the variance of the
function f . An integrand is said to have low effective
dimension if it can be captured predominantly by the sum
of lower-dimensional integrands.

Low effective dimension occurs naturally in finance

to significantly outperform MC in practical application. On
the other hand, if the problem of interest has low effective
dimension (in the truncation sense) relative to the nominal
dimension, then the lower but more important dimensional
structures are evaluated at the much higher precision rate of
QMC. Consequently, problem with low effective dimension
can recover the QMC rate. This in part accounts for the
success of the finance applications of QMC, even for very
high dimensional problems.

The above analysis implies that if integranflsand g

problems. For example, mortgage-backed securities dependare such tha}f[o,l)x fx)dx = f[O,l)S g(x)dx anddr(f) >
on the contingent cash flows each month over the next 30 dr(g) wheredr(-) denotes the effective dimension in the

years, leading to a 360 nominal dimensional problem. Its
effective dimension, however, is much smaller due to two
factors: (i) the time value of money, a dollar in 30 years is
worth a lot less than the same dollar in 1 year; (ii) empirical
evidence indicates that majority of the cash flows occur in
the initial few years. Thus the cash flows in the first few
years are most important for pricing of mortgage-backed
securities, implying a relatively small effective dimension.

The connection between the effective dimension and the

efficiency of QMC can be explained as follows: QMC relies

on specially constructed sequences known as low discrep-

truncation sense, then QMC achieves a better rate of con-
vergence when applied tg instead of f. For example,
consider the functions

f)y =) 2"y 1)
i=1
and
glx) =) 27" 2
i=1

ancy sequences. These sequences are deterministic and are

designed to have greater uniformity than random sequences.where x € [0, 1)*.

Sobol (1967) is an example of a low discrepancy sequence.
The left and right panels in Figure 1 give the orthogonal

projection (second and third coordinates) of 2048 Sobol

and random points, respectively. Clearly, the Sbpoints

are more regularly and uniformly distributed over the unit

square than the random points which exhibit both clustering
and relative sparsity. It is this enhanced uniformity of the

Since the coefficients in these two
functions are permutations, their values of the integral must
be identical. However, we hav& (f) = s, butdr(g) = s
for s = 1,2,3 anddr(g) = 4 for s > 4. Hence for large
s, a greater precision can be expected when applying QMC
to g than to f since the earlier dimensions gfcontribute
most to the value of the integral.

The above example also suggests one way of enhancing

points that leads to higher rate of convergence. However as QMC for estimating an integral value. Suppose the integrand

we increase the dimension, the orthogonal projection of the
Sobol points can yield extremely poor uniform regularity as
demonstrated in Figure 2. The left panel of Figure 2 depicts
the orthogonal projection of the 27-th and 28-th dimensions.
Although it has the same number of points as Figure 1, the
points are far from uniformly distributed, exhibiting regular

of interest, sayf in (1). Rather than applying QMC directly

to f, the argument above suggests that we should perform
an appropriate transformation ofi so as to obtain an
integrand such ag in (2) while preserving the value of
the integral. Through the transformation, if the effective
dimension (in the truncation sense) of the resulting integrand

and rigid structures. When we subsequently increase the g is reduced substantially, then QMC will have greater

points to 4096 (as shown in the right panel of Figure 2),
the additional points gradually fill up the gaps. However
for these higher dimensional set of points, the uniformity
is achieved at a much slower rate. In fact, for these points
to have the same degree of uniformity as the Sopaints
in Figure 1, the number of points need to be increased to
a very large number!

The deterioration of the uniformity of Sobiopoints
as we increase the dimension is unfortunately typical in
most low discrepancy sequences. This implies that for
practical sample sizes, the uniformity of high dimensional

success when applied gothan tof. Formally, an optimum
application of QMC can be formulated as an optimization
algorithm which seeks a transformatigf(-) within the set
of “all possible transformations”, say, that minimizes
the effective dimension (in the truncation sense) of the
transformed integrang, while also preserving the integral
values. The constraint of preserving the value of the integral
is to ensure that the problem of interest is not distorted after
the transformation.

The functiong in (2) demonstrates one possible trans-
formation which merely re-orders the coefficients xf

low discrepancy sequences is no better than the random While it is very difficult to obtain the optimum transforma-

sequences. Hence if the problem of interest is trdy
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tion in general, two types of “transformations" have been
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Figure 2: Two-Dimensional Projection of Sobol Sequence

considered in connection with Brownian path generation. 3 PATH GENERATION METHODS

These are based on the Brownian bridge (see Moskowitz and

Caflisch (1996) and Caflisch, Morokoff, and Owen (1997)) Itwill be of interest to first describe the type of exotic options
and principal component analysis constructions (see Ac- that will be considered in this paper. We assume the risky
worth, Broadie, and Glasserman (1998)). These transfor- assets follow multivariate geometric Brownian motion and
mations demonstrate that the efficiency of QMC can be that their dynamics under the risk-neutral world (i.€,
enhanced further. Motivated by these results, this paper measure) are given by the following stochastic differential
confinesV¥ to a class of transformation which we denote as equations:

“linear transformation”. Our objective is to find an optimum

transformation over this class so that the effective dimen- dS;(t) = rS;(t)dt + 0;S;()dW; (), i =1,2,...,m, (3)
sion (in the truncation sense) of the problem of interest

is minimized. We describe the proposed transformation in where S;(t) denotesi-th asset price at time, r is the
greater details in the following two sections. risk-free interest rateg; is the volatility fori-th asset, and
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W) = (W1(2), ..., W, (1)) is am-dimensional Brownian (X)ix = pixoiorAt, i,k = 1,2, ...m and definex,,, as
motion such that;(¢) satisfies anmn x mn matrix generated fronk via
E[W; ()] = 0, X ¥ .. X
Yy 2x ... 2%
2;mn =
Var[W;(t)] =t, : : . :
Y 2 ... nX
and
It follows from (3) that the asset prices evolve as
CovlWi (1), We(d)] = i, ) P
where pj is the correlation between theth and thek-th Si(tj) = Si (0)er =P/ +Zit)), (6)

Brownian motions.
The numerical examples illustrated in Section 5 are where

based on the European multi-asset path-dependent call op- Z1(t1) 1
tions with payoff at maturityl" = ¢, given by _ _
m n Zm (1) ~ €m ~
y =C =C 7
max l_[ l_[ S; (tj)w” —-X, 0 (4) Z1(t2) €Em+1 ¢ ( )
i=1;=1 . .
and Zm (tn) €mn
m n and C is a decomposed matrix &,,, satisfying
max ZZwijSi(tj)—X, 0 (5) .,
i=1j=1 cC =%, (8)
m n A H
where) i_y >y wi; = 1and(r, 12, ..., 1) are the time and{e:; k = 1, ..., mn} are independent standard normal
points at which the asset prices are sampled &nd the variates. For MC, the sampldg:i = 1 mn) are

strike price. These options are known as the geometric
weighted average options and arithmetic weighted average
options, respectively. For an equally weighted case with
m =1 andn > 1, the contingent claim (5) is commonly
referred as an Asian option. Whem > 1 andn = 1 so

that the payoff depends only on the terminal prices of a
basket ofn assets, the resulting option is known as a basket
option.

For the assumed model, there exists an explicit closed-
form solution for the geometric average case but not the
arithmetic average options. In fact, due to the multi-factor
and path-dependency, the dimensionality of the arithmetic
average option can be very large. For instance with 10
underlying assets and 250 sampling time points, the nominal
dimensions of the problem is 2500! Hence the Monte Carlo
method becomes an important numerical tool for pricing
these derivative securities.

typically generated using standard routine such as the Box-
Muller or polar transformation. With QMGCg is obtained
via the inverse transformation; i.ef¢y = F1(xx); k =

1, ...,mn}, wherex = (x1, ..., xmn) € [0, )™ corre-
sponds to a point from an-dimensional low discrepancy
sequence and (-) is the cumulative standard normal distri-
bution. The inverse transformation is crucial when use with
QMC in order to preserve the uniformity of the input low
discrepancy points. Since each trajectory depends:on
input components, the problem is said to have a nominal
dimension ofmn.

The path construction (6) (together with (7)) corre-
sponds to multiplying a vector ofin independent normal
variates using the matri€ as long as condition (8) is sat-
isfied. This is a consequence of a property that a Brownian
path is completely determined by its covariance structure.
The conventional discretization approach uses a lower tri-

To price the above optlons using S|rr_1ulat|on, Itis neces- angular matrixC = C°" based on Cholesky decomposition
sary to simulate the multi-asset trajectories at each sampling of 3
mn-

time point; i.e.,{S;(¢t;);i =1, ...,m, j=1,...,n}. For It
simplicity, assume the asset prices are sampled at equal
fixed time interval of lengthAr so thatAr = T/n and

tj = jAt. Let X be anm x m covariance matrix given by

was first recognized by Moskowitz and
Caflisch (1996) that generating the trajectory using Brownian
bridge reduces the effective dimension of a Brownian path
and hence increases the efficiency of QMC. This method is
simple to use but is restrictive in that it is only applicable
to one-dimensional Brownian paths. A more versatile ap-
proach is that based on principal component analysis (PCA)
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Table 1: Comparison of Explained Variability for each
Component under Standard, Brownian Bridge, PCA
and LT Constructions

Explained Variability for Each Component
Standard Brown. Bridge PCA LT

e1 || 40.0% 75.0% 82.9% 82.9%

g2 || 30.0% 15.0% 10.0% 10.0%

€3 20.0% 5.00% 4.26% 4.26%

€4 10.0% 5.00% 2.83% 2.83%

proposed by Acworth, Broadie, and Glasserman (1998).
For this method, the generation matdk= CPA is de-
fined asP D2 where D is the diagonal matrix such that
D > Djj,i < jandDy; k=1, ..., mn, are the eigen-
values of the covariance matr¥,,,,, and thek-th column of

P is the unit-length eigenvector corresponds to eigenvalue
Dyp.

A standard result in multivariate statistics is that the
variability explained by the first standard normals is equal
to the sum of the squared norms of the fitstolumns of
C. This quantity therefore provides a way of comparing the
relative merits of the generation matrices. For simplicity,
let assume the covariance mat(iX,,,);; = min(, j), for
i,j =1,2,3and4. Table 1 depicts the explained variability

Tan
subject to [|[Ax|| = 1 and < A%, Ay > = 0,i =
1,2, ..., k—1 Herewe adopt the following matrix notation:

if Aisamatrix ofsizen byn. ThenA = (A4, ..., A,) =
Al
: |, whereA;. € i" is the row vector corresponding
Ay

to thei-th row of A and A.; € %™ is the column vector
corresponding to thg-th column ofA. Also, the notation
<a, b> denotes the dot product of vectarsandb, where
a andb are either both row vectors or column vectors, and
|la|| denotes the norm of a vectar

The maximization algorithm (10) is carried out itera-
tively for k = 1,2, ..., mn so that the columns oA* are
obtained sequentially. The objective function maximizes
the variance contribution due to tlketh column while the
second constraint ensures that fath optimum column is
orthogonal to the solutiond™,i = 1,2, ..., k—1 obtained
in the previous step. It can be shown that the solution to
the above optimization problem id* = P D2 where
D is the diagonal matrix withD;; > D;;,i < j, and
Dii; k=1, ..., mn are the eigenvalues of then by mn
matrix 37", (CENYCEN, and thek-th column of P is the
unit-length eigenvector corresponds to eigenvaye.

The last column of Table 1 indicates that the proposed
LT method is as efficientas PCA. This is in fact not surprising

due to each standard normal component. These resultssince the matrixy ", (C,Sh)’C,‘f_h is merely a permutation,

indicate that the standard construction is the least favorable.
The first component captures only 40% of the variation
while the first two 70%. The Brownian bridge construction
is an improvement over the standard approach but the PCA
approach is even more effective, explaining up to 82.9% of
the variation for just one component.

The column labelled “LT" is our proposed dimension re-
duction transformation which we now explain. We consider
a class of transformation by defining

C=C" =4, (9)
where A is an orthogonal matrix; i.e4A’ =1 and [ is
the identity matrix. By construction, we ha@ ' (C'T)’ =
X,.» SO that condition (8) is satisfied. We refer to this method
as linear transformation or simply the LT construction. The
optimumC"T is obtained by optimally choosing so as the
effective dimension (in the truncation sense) of the problem
of interest is minimized. For instance in the above example
where we wish to maximize the explanatory variability of
the covariance structure, the optimum orthogonal matrix
A* can be found by solving the following optimization
problem:

max

LT 2
max ||C ' || =
A gehmn

dchan? (10
i=1
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a rotation and a reflection at,,,,, a consequence of the
orthogonal matrixA. Hence if the objective is to extract key
components of a covariance matrix, then both PCA and LT
constructions are equivalent. The strength of the proposed
method becomes apparent in the following section when
we consider more complicated applications.

4  LINEAR TRANSFORMATION

In this section, we consider an European option with payoff
at maturityT given by

maxg(e) — X, 0],

where

[T [T S
s 2 wijSi (1))

It follows from (6) and (7) thatg is a function in terms
of a vector ofmn standard normal variates. Using these
two option structures, we now illustrate how to obtain an
optimum C" under our proposed LT constructions.

We first consider the geometric average option. In this
caseg becomes

gle) =

g(e) = et Thiz1onek (12)
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where

m n
w=2_ 2, wi

i=1j=1

(12)

2
|:IogS,-(O) + (r - %’) tj,i|

o =<Cp,w>,

and
(13)

andw = (w11, w21, ..., Wi, W12, ..., Wn) € R, Let

define f(e¢) = logg(e); i.e.,

mn

fle)=u+ Zotkék-
k=1

Then the variance of the functiofi is given by
o?(f(e) =Y afo’(e) =) aof.
k=1 k=1

From the definition of effective dimensiody ( f (¢)) is the
smallest integer satisfying

dr (f(€))
Z a? > 0.9%2(f(e)).

k=1

Sincea? =< Cx, w >2, which in turn depends on how

the decomposed matri€ is chosen, the above analysis
provides a way of reducing the effective dimension through
careful construction of the generation matéix Under our
proposed class of transformation whére= CT = ¢ Ch4,
equation (13) reduces to

o= <Ay, B>, k=1, ...,mn, (14)
where B = (B1, ..., Byy) and By = <CS", w>. The
optimum columns ofd are then found by modifying the
optimization algorithm (10) to

max < A, B >2 (15)
A

0,

= j=

subject to]|Ax|| = 1 and < Af*j,A.k >
1,2,...,k—1

It can be verified that wheh = 1, the optimum solution
to the above maximization problem i = iﬁ, which
leads toay = < A%, B > = *||B||. Furthermore, the
orthogonality condition ensures that A%, B > = 0 for
k > 2. Thus the optimum solutiond” .k =2, ..., mn can
be arbitrary as long as they satisfy the orthogonal condition.
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This implies thaty, = 0 fork = 2, ..., mn. Consequently,
equation (11) simplifies to
g(e) = el FIBller, (16)

which depends only on the first component. This indi-
cates that the LT construction effectively collapsesmain
dimensional geometric average option to a 1-dimensional
problem. This distinguishes the efficiency of the LT method
over the PCA approach. Although the PCA construction is
effective at isolating the key components of the covariance
matrix X,,,, the LT method exploits the linear structure
of the function to the fullest. This result is not surpris-
ing since the product of lognormals is still a lognormal.
Hence simulating a product of lognormal random variables is
equivalent to simulating one-dimensional lognormal random
variables (with appropriate parameters adjustment). The LT
construction is able to exploit the linearity structure.

Note that in our formulation of the LT method, we have
CY" = €A, whereCC" is a Cholesky decomposition of
¥..n- We could define other class of transformation such as
C'T = CPCAA. This choice is not explored in this paper
since this introduces additional computational effort for the
eigenvectors and eigenvalues decompositiox gf;.

We now consider arithmetic average options. In this
case, the functiog becomes

mn

i+ e
g(e) = Zeuz D ai !

i=1

(17)
where
o2
i = Iog(wil,izsi (O)) + (V - %) tiy, (18)

and

i = Cig, (19)
with i> = (i — 1)/m] + 1, i1 =i — (i — Dm, and |x]
denotes the greatest integer less than or equal to

Unlike the geometric average case, the variance of the
above function is now quite complex. This complicates the
procedure for deriving the optimized matrkunder the LT
method. However note that if the function is lineatifas in
the preceding example), the optimum vector is immediately
obtainable. To exploit this property, we obtain the desired
column vectorA ., iteratively for k = 1,2, ..., mn by
linearizing the function through a Taylor expansion. We
carry the optimization as follows: Applying a first order
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Taylor series around an arbitrary point= € + A€ to the
function g in (17), we have

mn

R d
gO~g@+)y 2
=1

— A¢g
361

€=¢€

mn

=g@+)

=1

mn

(Z e”i+zz1£1aik€k(xi1) Ag;. (20)

i=1
Substitutinge = 0 in the above expansion yields

mn

g~ g0+

=1

mn

(Z e“"aﬂ) A¢gy, (22)

i=1

which is linear in the normal random variables. The
variance of the function due to tlketh component is simply
given by (31 e“iaik)z. This facilitates the optimization
of ay; k=1, ..., mn in that for the LT construction, the
optimuma; can be shown to beft whereB1 = /", C;.
andcC;. = ¢ CN. The orthogonality condition implies that
<B1, A% >=0;1=2, ...,k so that the right hand side of
(21) reduces to a function involves only the first component:

mn

g0+

=1

mn

<Z et Oti]) A¢g

i=1

8(0) + [[B1]|Aey.

It should be emphasized that the underlyindgs not
linear. The above result is true under the approximation. To
find the subsequent optimun, , k > 1, one approach is to
consider the Taylor expansion with higher order terms. This
implies that optimizingA.x requires thek-th order Taylor
expansion, which can be very complex and time-consuming.
To mitigate this problem, we optimizd., given A* by
considering the Taylor approximation (20) with expansion
at a different point, say¢ = (1,0, ..., 0). This results in

mn

g~ g@+y

=1

mn
Z eui+ailai1 A¢g

i=1

so that the variance of the function becomes
2
eﬂi+ai1ail> .

Consequently, to optimize., we maximize the variance
contribution due to the second dimension as

2
eﬂi+ailai2)

mn

o?(g(€) ~ Y

=1

mn

(>

i=1

mn

>

i=1

max
A
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max
A2

mn 2
(Z er+<CEh7Af‘1> < Cl(_.?h’ A.2 >>

i=1
subject to||A.2]| = 1 and < A%, A> > = 0. Note that
the objective function depends explicitly ot;. Without
the orthogonal condition, the solution to the above maxi-
mization problem is easily found. Gram-Schmidt method
is then applied to the resulting vector in order to satisfy the
orthogonality condition.

The above procedure is readily extended for optimizing
Ax; k > 2 by expanding the Taylor series around the point
€e=(1,...,1,0...,0), where the firsk — 1 components
are ones and the remaining components are zeroes. The
resulting function becomes a linear function and the usual
optimization problem can be solved easily to obtain the
desired vectod?,.

5 NUMERICAL ILLUSTRATIONS

In this section, we demonstrate the efficiency of the proposed
LT constructions by considering the arithmetic average call
options on a basket of 10 assets with 250 sampling time
points using the following parameter values:

Si(0) = 100

r = 4% p.a.

T = 1lyear

o; = 10%+5140%

X = 100

Pij 0% and 40% for,j=1,2,...,10.

Sincem = 10 andn = 250, the nominal dimensions for
these examples are 2500, illustrating that the dimensionality
can be very high for pricing complex derivatives.

We consider three simulation techniques — Cholesky,
PCA and LT. For each method, we simulate the option
prices using both MC and QMC. The results are reported,
respectively, in Tables 2 and 3. The values in parentheses
denote the standard errors based on 10 independent repli-
cations with each batch consists of eithér= 4096 or
8192. Theoretically, the LT construction requires optimiz-
ing 2500 columns ofd since the problems have nominal
dimension of 2500. The reported results are only based on
optimal vectors up to either 50 or 100 columns, with the
remaining entries randomly generated while satisfying the
orthogonality constraints. This explains the entries [50] and
[100] under the heading “LT". The loss of accuracy from
using the suboptimal matriA is likely to be negligible in
view of the effectiveness of the dimension reduction of the
LT methods. However, using such suboptimaleads to a
significant reduction in the computational effort in solving
the optimization problem.

For the benchmark, using the standard construction with
1 million randomly generating trajectories, the estimated
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prices for the zero and positive correlation cases are 3.4409
and 5.6490 with standard errors of 0.0044 and 0.0082,
respectively. One immediate conclusion from Table 2 is

that there is no significant difference among the various

construction approaches. This is not surprising since the
rate of convergence of Monte Carlo methods does not depend
on dimensions as well as the decomposed mafrix

Table 2: MC Results: Simulated prices of the Asian
basket options using random sequences. The values
in parentheses denote the standard errors based on 10
independent replications.

N [ Standard PCA | LT
Zero correlation example
4096 | 3.429(0.027) 3.451(0.022) 3.425(0.027) [100]
3.425(0.028) [50]
8192 | 3.457(0.022) 3.438(0.017) 3.423(0.018) [100]

3.422(0.019) [50]

Positive correlation example

4096 | 5.673(0.049) 5.609(0.048) 5.618(0.049) [100]
5.619(0.049) [50]
8192 | 5.672(0.036) 5.616(0.037) 5.618(0.035) [100]

5.619(0.035) [50]

In Table 3, the same set of examples and the same tech-
nigues are compared. The only difference is that the input
€ is drawn from the randomized Sobdbw discrepancy
sequences proposed by Owen (1995), instead of a ran-
dom sequence. We also avoid generating 2500-dimensional
Sobol sequences by using the Latin supercube sampling
(LSS) method (see Owen (1998)). Briefly, this sampling
mechanism is a scheme for creating a high-dimensional
sequence from sets of lower dimensional sequences. For
instance, a 2500-dimensional low discrepancy sequences
can be concatenated from 100 sets of 25-dimensional low
discrepancy sequences by appropriately randomizing the run
order of the points. For theoretical justification of the LSS
method, see Owen (1998). In our examples, we use LSS
with 50 and 25 dimensions respectively. Based on these
results, we can make the following conclusions:

Unlike the Monte Carlo method, the performance
of QMC depends on the choice of decomposed
matrix C. In particular, a greater efficiency is
achieved with PCA and LT as confirmed by their
smaller standard errors.

The efficiency of the PCA method critically depends
on the structure of the covariance matrix. As the
correlation increases, so is the effectiveness of the
underlying method.

The LT construction is competitively efficient.
There is also no significant loss of accuracy by
reducing the optimal columns from 100 to 50,
confirming that the effective dimensions using the
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LT methods are substantially lower than 50. The LT
methods are more efficient than the PCA method
for the zero-correlated case and comparable for the
positively correlated case.

Relative to the Monte Carlo methods, the use of low
discrepancy sequences leads to dramatic improve-
ment, particularly with PCA-based and LT-based
methods.

Table 3: QMC results: Simulated prices of the Asian
basket options using randomized low discrepancy se-
qguences. The values in parentheses denote the standard
errors based on 10 independent replications.

LSS | Standard PCA | LT

N = 4096, zero correlation

50 | 3.438(0.007) 3.443(0.003) 3.447(0.001) [100]
50 3.448(0.001) [50]
25 | 3.434(0.007) 3.444(0.003) 3.445(0.001) [100]
25 3.446(0.001) [50]

N = 8192, zero correlation

50 | 3.411(0.006) 3.447(0.002) 3.445(0.001) [100]
50 3.444(0.001) [50]
25 | 3.414(0.009) 3.448(0.002) 3.445(0.001) [100]
25 3.444(0.001) [50]

N = 4096, positive correlation

50 | 5.657(0.015) 5.658(0.001) 5.657(0.001) [100]
50 5.656(0.001) [50]
25 | 5.633(0.016) 5.658(0.001) 5.657(0.001) [100]
25 5.657(0.001) [50]

N = 8192, positive correlation

50 | 5.613(0.015) 5.658(0.001) 5.657(0.001) [100]
50 5.658(0.001) [50]
25 | 5.603(0.021) 5.659(0.001) 5.657(0.001) [100]
25 5.658(0.001) [50]

6 CONCLUSION

In this paper, we propose a new method that enhances the
efficiency of QMC for finance applications. The proposed
class of transformation reduces the effective dimension of
the problem, thus enables us to exploit a particular feature
of QMC; namely the earlier dimensions of low discrepancy
sequences are more uniformly distributed. By optimally
obtaining a decomposed matid%", a significant increase

in efficiency of QMC is attained. This is demonstrated in our
high-dimensional derivative examples. While we have only
illustrated the applicability of our proposed construction in
the context of pricing multi-factor path-dependent options,
the underlying method in fact can be extended to pricing
other more exotic options as well as in optimum asset
allocation problems. We will report these applications in
future studies.
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