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ABSTRACT

We consider importance sampling (IS) to increase the e
ficiency of Monte Carlo integration, especially for pricing
exotic options where the random input is multivariate Nor-
mal. When the importance function (the product of inte-
grand and original density) is multimodal, determining a
good IS density is a difficult task. We propose an Auto-
mated Importance Sampling DEnsity selection procedur
(AISDE). AISDE selects an IS density as a mixture of
multivariate Normal densities with modes at certain loca
maxima of the importance function. When the simulation
input is multivariate Normal, we use principal component
analysis to obtain a reduced-dimension, approximate im
portance function, which allows efficient identification of a
good IS density via AISDE in original problem dimensions
over 100. We present Monte Carlo experimental result
on randomly generated option-pricing problems (including
path-dependent options), demonstrating large and consiste
efficiency improvement.

1 INTRODUCTION

Consider the problem of estimating the integral

ν = Ef [h(Z)] =
∫
h(z)f (z)dz <∞, (1)

via Monte Carlo sampling for aresponse functionh : Rd →
[0,∞), whereZ is a d-dimensional random vector with
known density functionf .

Importance sampling (IS) is known as a very effective
method for reducing the variance (more generally, increasin
the efficiency) of the Monte Carlo estimate ofν. Let g be
any d-dimensional density that is positive on the suppor
of f , i.e., f (z) > 0⇒ g(z) > 0. We write

ν =
∫
h(z)

f (z)

g(z)
g(z)dz = Eg

[
h(Z)

f (Z)

g(Z)

]
,
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where Eg denotes expectation under the new densityg.
Monte Carlo estimation with importance sampling proceed
as follows:

1. Generate{Zi}ni=1 as independent, identically dis-
tributed (i.i.d.) underg.

2. Calculate

ν̂(g) = n−1
n∑
i=1

(h · f )(Zi)
g(Zi)

.

We will refer to ν̂(g) as animportance sampling estimator
of ν. The densityg is called theimportance sampling
density. We call the product of integrand and original
density, (h · f )(z) ≡ h(z)f (z), the importance function.
Sampling fromg may be more (or less) costly than sampling
from f , which affects theestimation efficiency, defined as
the inverse product of an estimator’s variance times th
associated computing cost.

The class of integration applications that motivated thi
work is pricing high-dimensional exotic options with option-
pricing models where the stochastic factors are multivaria
Normal. In exotic option pricing, when cast as an integratio
problem as in (1) withf being the multivariate standard
normal density, the importance function may be multimoda
and possibly have modal regions far from each other. In th
setting, selecting a good IS density is a nontrivial problem
We give background on option pricing and review existing
IS methods in this context in Section 2.

In this paper, we are interested inautomatedandrobust
methods for identifying an IS density. By “automated”, we
mean that no analytical manipulation of the integral is per
formed, except for the trivial rewriting of the integral to
account for the choice of sampling density. By “robust”,
we loosely mean that efficiency improvement should b
obtained over a wide class of response functions–in pa
ticular, including the case where the importance functio
is multimodal. IS density selection methods that fit this
loose definition of robustness have been proposed in th
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past, most notably in the context of Bayesian integratio
by Oh and Berger (1993) and West (1993). We discuss th
difficulties that arise in implementing these procedures i
the next section.

Our main contribution is an automated, general-purpos
and robust algorithmic framework for IS density selection
A specialized implementation within this framework is pre-
sented as a procedure for Automated Importance Samplin
DEnsity selection (AISDE). AISDE delivers an IS density
with multivariate Normal components centered at certai
modes (local maxima) of the importance functionh ·f . To
identify the modes, AISDE performs repeated maximiza
tions ofh ·f invoking a generic unconstrained optimization
routine. Each maximization is initialized at a good point,
determined on the basis of a random sample from a samplin
density. When the random input is multivariate Normal
we use principal components analysis to obtain a reduce
dimension, approximate importance function, which allows
efficient identification of a good IS density via AISDE in
original problem dimensions over 100.

This paper is organized as follows. In Section 3 we re
view methods for identifying a good IS density, with focus on
robust methods. In Section 4 we motivate and develop Pro
cedure AISDE. Section 5 develops the dimension-reductio
technique and the corresponding Monte Carlo estimatio
with importance sampling. In Section 6 we report results
of a Monte Carlo study demonstrating the effectiveness o
AISDE in the application of pricing high-dimensional ex-
otic options. We summarize our findings and suggest som
extensions in Section 7.

2 IMPORTANCE SAMPLING FOR PRICING
EXOTIC OPTIONS

Let Sjt , j = 1, . . . , k denote the time-t value of the k
stochastic factors underlying the option. These factors ma
correspond directly to the price of a tradeable assets such
stocks, or, they may be pricing-model parameters such
an interest rate, forward rate, or stochastic volatility. The
values of factors are monitored in discrete time over th
set of monitoring timesti = iT /m, i = 0, . . . , m, equally
spaced between time 0 and timeT , whereT is the calendar
option expiration time. At time 0, the factor vector has
known valueS0 = (s1

0s
2
0 . . . s

k
0).

Let Sti = (S1
ti
S2
ti
. . . Skti ) denote the vector of all

stochastic factors at timeti , i = 1, . . . , m. The option
payoff is some nonnegative functionp(·) applied to the
set of all factor valuesSti , i = 1, . . . , m. From arbitrage-
pricing theory, the arbitrage-free price of the option is the
expectation ofp(·) with respect to a so-calledrisk-neutral
measure. For a rigorous treatment of arbitrage pricing
theory, see Duffie (1996) and Harrison and Pliska (1981
for an excellent and mathematically lighter treatment, se
Baxter and Rennie (1996).
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The prevailing class of pricing models postulates that the
vector of stochastic factors followsk-dimensional Geometric
Brownian motion. In these models, under the risk-neutra
measure, we have

Rti ≡ ln(Sti ./Sti−1) ∼ Nk
(
µ(ti − ti−1),6

√
ti − ti−1

)
,

Rti , i = 1, . . . , m are independent, (2)

where “./” denotes element-wise division; “∼” means “is
distributed as”;Nk(µ,6) denotes thek-variate Normal
distribution with meanµ and covariance matrix6; µ is
the risk-neutral drift vector;6 is the covariance matrix of
factor log-returns over one time unit. (For brevity, we skip
the details of determination of the drift vectorµ under the
risk-neutral measure.) We defer the remaining details o
casting option pricing as in (1) to Section 6.

In exotic option pricing, the importance function may
be multimodal and possibly have modal regions far from
each other, making the determination of a good IS density
difficult task. This is typically the case for a call option on
the maximum ofk > 1 factors and for an outperformance
option, which is a call option on the difference between
two factors.

Notably, the IS density proposed in Glasserman et a
(1999) typically fails for such options, often substantially
increasing the variance. Another IS density selection proce
dure that in our experience proved ineffective (the varianc
was roughly unchanged) is the algorithm by Lepage (1978
that appears in the classicNumerical Recipes in Cby Press
et al. (1992). Closer inspection of the reason of failure
of these methods reveals that they are designed for rel
tively narrow classes of response functions and/or origina
densitiesf . In the case of Glasserman et al. (1999), the
effectiveness of the density is shown under the assumptio
(roughly) that the logarithm of the importance function is
a concave function on the support of the response functio
(the option payoff), which may be violated by exotic-option
payoffs. The Lepage procedure is designed to identify th
variance-minimizingseparableIS density, i.e., a density
that is the product of univariate densities.

3 IMPORTANCE SAMPLING WITH
MULTIMODAL IMPORTANCE FUNCTIONS

We assume throughout this paper thath(z) ≥ 0 andν > 0.
Our entire development extends easily to arbitraryh by
writing ν = ∫

h+(z)f (z)dz − ∫ h−(z)f (z)dz, whereh+
andh− are the positive and negative part of the integrandh,
respectively, and then estimating separately the two integra
of nonnegative functions.
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Importantly for simulation efficiency, thevariance-
minimizing IS densityis

g∗(z) = 1

ν
h(z)f (z) (3)

since it would lead to a zero-variance estimator if it wer
possible to both sample from it and evaluate it in closed form
However, actually evaluatingg∗(Z) is clearly infeasible, as
ν is the unknown quantity to be estimated. The messa
from (3) is that, to reduce variance, an IS density shou
approximate–as much as possible–the importance functi

Many of the IS density selection methods that hav
been developed are designed for a unimodal importan
function. When the importance function is multimodal
there can be serious difficulties in finding a good densi
(van Dijk and Kloek 1980). We focus our review on two
approaches for the multimodal case; both are motivated
integration (and more generally, inference) with Bayesia
posterior distributions.

West (1993) proposes a kernel density estimation tec
nique. Based on a sample from an appropriate dens
the candidate IS density is a mixture of kernels (densitie
centered at each of the sampled points. Kernel dens
estimation is extremely intensive computationally, as it in
volves by definition a number of density components equ
to the sample size. To make the IS density practical to us
West proposes a heuristic procedure for iteratively collap
ing pairs of the mixture components to a single compone
until the total mumber of components in the mixture is a
small as deemed appropriate by the analyst.

Oh and Berger (1993) use as importance samplin
density a mixture of multivariatet density functions in
dimensiond. Mixtures oft ’s have many attractive properties:

(a) They can represent very irregular forms of function
(van Dijk and Kloek 1980).

(b) They allow easy and fast random variate generatio
(c) They allow flexibility in controlling the tail behavior

(thickness of tails) of the density.

The authors assume a capability to identify theimportant
modesof the importance function. [They do not define pre
cisely this notion. Loosely speaking, a mode is importa
if the function is large at the mode (or the integral is larg
at a region appropriately linked to the mode) relative to th
other modes.] They choose the degrees of freedom for ea
t component based on application-specific consideratio
Their procedure performs constrained continuous minimiz
tion of a Monte Carlo estimate of the squared coefficient
variation, where: (a) the components are initially centere
at the known modes; and (b) the decision variables are t
mixture weights, the mean vectors, and covariance matric
of all the components.
.
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In implementing the Oh-Berger (OB) procedure, there
is a key difficulty. Quoting the authors, “Note that we thus
assume a capability to identify the modes (or at least the
important modes) of the integrand. This can, of course, be
a difficult task”. (In our terminology, the integrand of Oh
and Berger is the importance function,h ·f , the product of
response functionh times the original densityf .) Beyond
this difficulty, there is another important issue that must
be addressed with respect to efficiency: ifh · f has many
modes, then even if it were feasible and computationally
viable to identify all modes, the efficiency of a mixture IS
density with too many components would suffer from the
high cost of evaluating the IS density.

4 FRAMEWORK FOR AUTOMATED
IMPORTANCE SAMPLING DENSITY
SELECTION (AISDE)

In this paper, the candidate IS densities considered belon
to the family

g(·) =
m∑
i=1

αiφ(·; θi) (4)

wherem is a positive integer;αi, i = 1, . . . , m are positive
mixing weights such that

∑m
i=1 αi = 1; θi ∈ Rd , i =

1, . . . , m; andφd(·; θ) is the density of thed-variate Normal
distribution with meanθ and identity covariance matrix.
This family is flexible in terms of location and weighing of
the component densities, while being constrained to have
unit covariance on each component. The choice of unit
covariance is made to simplify our subsequent exposition
but is not restricting on our development. In view of
the covariance restriction, unless otherwise stated, we wil
assume that the original densityf is the product of univariate
densities with unit variance.

Our approach to density selection is logically positioned
before the OB procedure in the density selection process. W
do not require a priori knowledge of any of the modes of the
importance functionh·f and focus on efficiently identifying
modes that are important in reducing the variance.

To begin our development, we define the variance and
the second moment under importance sampling, respectivel
as functions of the IS density:

σ 2(g) = ν2(g)− ν2

where

ν2(g) ≡ Eg

[(
h(Z)

f (Z)

g(Z)

)2]
.

A mixture IS densityg with many components is typi-
cally substantially costlier to evaluate thanf . To model
the efficiency of candidate IS densities, we use the follow-
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n-
ing simple model that captures the essential Monte Ca
computing cost components. Define the constantscf , ch,
and cφ as the expected per-replication computing cost
random-variate generation (i.e., sampling fromf ), eval-
uation of the response functionh, and evaluation ofφ,
respectively. Writingg(M) to explicitly denote the number
of components ofg, the efficiency ofg relative tof is

Eff (g(M)) = σ 2(f )

σ 2(g(M))

cf + ch
cf + ch + (M + 1)cφ

. (5)

In practice, good estimates of the computing-cost consta
may be either a priori known or estimated dynamical
during the density estimation itself. In the remainder, w
assume these as known constants.

Let M = {z1, z2, . . . , z|M|} be the set of all modes
(local maxima) ofh · f . We will select an IS density by
attempting to obtain a good solution to the optimizatio
problem

max Eff(g(N )) (6)

s.t. N ⊆M (7)

g(N ) =∑j∈N αjφ(zj ) (8)

zj ∈M, eachj (9)

αj = (h·f )(zj )∑
`∈N (h·f )(z`) . (10)

That is, the selection problem restricts attention to densit
in the class (4), further restricted as follows:

• Constraint (8) says that each componentφ of g is
centered at (has mean) a mode of the importan
function h · f .

• Constraint (10) says that the mixture componen
are weighed in proportion to the value of the im
portance function at the corresponding mode.

Briefly, our approach to obtaining a good solution to (6
is as follows. In view of the constraints (8) and (9), it i
necessary to identify some or all of the modes ofh·f . For this
task, we simply use a standard off-the-shelf unconstrain
optimization routine, say MAXIMIZE. The remaining work
is to find a goodN .

There are two main considerations in the search fo
goodN . The first one has to do with the impact ofN
to efficiency, as opposed to simply variance. In gener
for N1 ⊆ N2, we expect Var(g(N2) ≤ Var(g(N1), by ar-
guing that a larger set of modes allowsg more flexibility
to approximateh · f . However, the computing-cost com
ponent of efficiency decreases with|N |, so we may have
Eff (g(N2) ≤ Eff (g(N1).

The second, more important consideration is the prac
cal issue of controlling the maximization computing effor
We focus our discussion on the effects of problem dime
rlo
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sion d. Actual integration via Monte Carlo requiresO(d)
work, i.e., it is linear in problem dimension. In contrast, the
work of MAXIMIZE is typically O(d3) or O(d4), when
derivatives are user-provided or approximated via finite dif-
ferences within MAXIMIZE, respectively. Thus, as the
dimensiond increases, invoking MAXIMIZE will be not
practical. However, for moderate problem dimension (say
≤ 30), the work per call to MAXIMIZE may be quite small
relative to the Monte Carlo total budget. With this case in
mind, and considering thath ·f may have many modes, the
main consideration is to identify modes efficiently, namely:

• Identify a new mode with each call to MAXIMIZE.
• Identify earlier (rather than later) the modes with

higher impact on reducing variance.

With these considerations, we propose Procedure
AISDE (Automatic Importance Sampling Density Estima-
tion). In the following paragraph, we summarize the key
steps of AISDE, accompanied with motivating comments
and discussion. A commented pseudocode of AISDE with
full details is given in Figure 1.

1. Generate a sampleZi, i = 1, . . . , n, independent
and identically distributed (i.i.d.) from asampling
density. For simplicity, use the sampling density
f .

2. At iteration 0, initialize the candidate IS density
g0 to f . Note that for any densityg constructed
independent of the sample, an unbiased estimate
of the second momentν2(g) is

̂ν2(g) = n−1
n∑
i=1

(
h(Zi)f (Zi)

g(Zi)

)2
g(Zi)

f (Zi)

= n−1
n∑
i=1

h2(Zi)f (Zi)

g(Zi)
.

3. (At theM-th update iteration, use the following
notation: NM is the set of all known modes of
h · f ; andgM is the candidate IS density.) Until
a certain termination criterion is met, do:

(a) Identify the sample point that contributes most
to the estimate of the varianceσ 2(gM),

i∗ = argmax1≤i≤n
h2(Zi)f (Zi)

gM(Zi)
.

We can expect to most improvegM by increas-
ing it nearZi∗ . Thus the most promising region
in which to look for undiscovered modes of
h · f is nearZi∗ .
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(b) Invoke MAXIMIZE to maximizeh·f , starting
at the pointZi∗ :

z = MAXIMIZE (h · f ; start atZi∗).

If z is not inNM , then theM-th update is

i. M = M + 1.

ii. Add the modez to the set of known modes
NM ;

iii. Update the IS densitygM as in (8)-(10)
whereN = NM .

iv. Update estimates of the variance and ef-
ficiency of gM .

4. Output densitygA as the one with maximum es-
timated efficiency over all update iterations.

4.1 Convergence and Statistical Properties of AISDE

We briefly discuss the asymptotic behavior of AISDE with
respect to the sample sizen and the number of maximizations
nO. Of course in practice AISDE will likely be most useful
with modestn and smallnO. We need the notion of
attraction set of a modezj , defined as the setAj = {z ∈
Rd : MAXIMIZE (h · f ; start atz) returnszj }.

The maximum necessary value ofnO is n (in this
case, each sampled point serves as a starting point for on
maximization.) First consider a fixed sample sizen. As
nO increases ton, the set of modes of the importance
function identified by AISDE,N , increases to a (possibly
strict) subset ofM (the strict case occurs if there exists
a modej of h · f such that none of the sampled points
{Zi}ni=1 belongs toAj . Now letting n = nO→∞, under
the mild assumption that the attraction set of each point in
M has positive probability underf , N converges toM,
and the associated weightsαi, i = 1, . . . ,N converge. In
summary,gA converges to a density whose components are
in one-to-one correspondence with the modes ofh ·f as the
computer budget allocated to AISDE grows appropriately.

Given thatgM was constructed explicitly to reduce the
sample-based variance estimate at the previousM-iteration,
S2
M−1, we expect the variance estimateS2

M to be biased
low, i.e., underestimate the true varianceσ 2(gM). Recall,
however, that the reason for obtaining these estimates is t
comparethe successive candidate density variances and e
ficiencies, so the quantity we are implicitly estimating is the
difference (or ratio) of variancesacross update iterations,
which is expected to be less biased than the individual vari
ance estimates. Our computational experience confirme
this negative bias. Ultimately, however, the really relevant
quantity is the efficiency ofgA, evaluated empirically in
Section 6.
e

o
f-

-
d

Procedure AISDE (Automatic Importance Sampling
DEnsity Selection)

M = 0; S = ∅; N0 = ∅
1. Generate an i.i.d. sample of sizen from densityf

{Zi}ni=1
i.i.d.∼ f

2. Calculate unbiased estimates ofν, σ 2(f ), andν2:

ν̂ = n−1∑n
i=1 h(Zi)

S2 = (n− 1)−1∑n
i=1 h

2(Zi)− n̂ν2

ν̂2 = ν̂2− n−1S2.

3. Initialize the first candidate IS density
g0(·) = f (·)

4. Each sample point gives an estimate ofν2(g0)

Y
(0)
i = h2(Zi)f (Zi)

gM(Zi)
, i = 1,2, . . . , n

While (Termination Condition)

5. Find the sample point that contributes most tôσ 2(gM)

i∗ = argmaxi{Y (M)i : i /∈ S}
S = S ∪ {i∗}

6. Maximizeh · f , starting atZi∗
z = MAXIMIZE (h · f ; start atZi∗)

7. Check if the maximizer is valid and new
If (MAXIMIZE Converged andz /∈ NM )

8. Update mode information
M = M + 1; zM = z; NM = NM−1 ∪ {zM}

9. Set IS density mixture weights

αM = (h·f )(zM)∑M
j=1(h·f )(zj )

10. Update the IS density (evaluated at the sample points
gM(Zi) = αMφ(Zi; zM)+ (1− αM)gM−1(Zi),

i = 1, . . . , n

11. Update the individual-point estimates ofν2(gM)

Y
(M)
i = h2(Zi)f (Zi)

gM(Zi)
, i = 1,2, . . . , n

12. Estimate the efficiency ofgM relative tof

S2
M = n−1∑n

i=1 Y
(M)
i − ν̂2̂Eff (gM) = (S2/S2
M)

cf+ch
cf+ch+(M+1)cφ

End If

End (Termination Condition)

13. Output density with maximum estimated efficiency

M∗ = argmaxi{ ̂Eff (gM), i = 1, . . . ,M}
gA(·) =∑M∗

j=1 αjφ(·; zj )

Figure 1: AISDE Pseudocode
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5 DIMENSION REDUCTION FOR IMPORTANCE
SAMPLING VIA PRINCIPAL COMPONENT
ANALYSIS

We restrict attention to the special case with simulation
input X ∼ Nd(µX,6X), where “∼” means “is distributed
as”; Nd denotes thed-variate Normal distribution;µX is
the mean vector;6X is a nonsingular covariance matrix.
The problem is to estimateν = E[h1(X)] for a given
function h1(·). In this case, the importance function can
often be well-approximated by lower-dimensional functions,
thus enabling effective use of procedures such as AISDE
requiring maximization in high dimension.

From standard linear algebra, there exists ad × d
orthogonal matrixU such that

U ′6XU = 3, 3 = diag(λ2
1, λ

2
2, . . . , λ

2
d)

where the “diag” notation means that3 is a diagonal matrix
whose diagonal elements are the argument of diag.

λ2
1 ≥ λ2

2 ≥ . . . ≥ λ2
d > 0.

The multivariate Normal distribution has the special property
that any linear transformation of a multivariate Normal vector
is also multivariate Normal. ThusX can be represented as

X = µX + UY, Y ∼ Nd(0d ,3). (11)

where 0d is a d-vector of zeros. SinceY consists of
d independent Normal random variables with decreasing
variances, the parsimonious approach to approximatingX is
to restrict the transformation implied byU to the firstdR < d

elements inY . The reduced dimensiondR may be either
selected directly or determined by selecting the “proportion
of total variance to keep” via a parameter 0< δ ≤ 1. In
the latter case, we take

dR = min

{
k :

k∑
j=1

λ2
j ≥ δ

d∑
j=1

λ2
j

}

PartitionY = (YK YD), whereYK andYD are the fistdR
and the remaining elements ofY , respectively. Let3K =
diag(λ2

1, λ
2
2, . . . , λ

2
dR
); 3D = diag(λ2

dR+1, λ
2
dR+2, . . . , λ

2
d).

LetUK be thed×dR matrix formed by the firstdR columns
of U ; and letUD be thed × (d − dR) matrix formed by
the lastd − dR columns ofU .

The proposed approximation toX is

X̃ = µX + UK ỸK , ỸK ∼ NdR(0dR, 3̃K ), (12)
where

3̃K = ρdiag(λ2
1, λ

2
2, . . . , λ

2
dR
), ρ =

∑d
j=1 λ

2
j∑dR

j=1 λ
2
j

.

The vectorỸK is conceptually equivalent toYK, except that
the sum of variances of its elements is adjusted via th
inflation factorρ ≥ 1 to equal the sum of variances of the
full-dimensional inputY in (11). Note thatX̃ has the original
dimensiond, but is generated as a linear transformation o
the dR-dimensionalỸK.

Consider a hypothetical simulation (approximating the
original simulation) where the random imput is̃YK, of
dimensiondR, and the output whose expectation is to be
estimated ish1(X̃). Corresponding to the approximating
simulation is theapproximate importance function

r(z) = h1(µX + UK3̃Kz)φdR(z). z ∈ RdR (13)

whereφdR is thedR-dimensional standard Normal density.
It is important that there is flexibility in choosingdR, with
the obvious tradeoff that asdR is reduced, the accuracy
of (12) as an approximation to (11) will deteriorate.

Based on this flexible development of an approximate
lower-dimensional importance function, we propose tha
Monte Carlo estimation ofν via importance sampling can
proceed in two steps. Step 1 is to determine an IS density fo
the reduced-dimension, approximate importance functio
in (13). Procedure AISDE may be used in this step to
obtain an IS densityg for samplingYK. This reduction
of dimension is crucial, in view of the very fast (cubic
or quartic) growth of the MAXIMIZE work with problem
dimension. Step 2 is estimation ofν via Monte Carlo with
importance sampling as follows.X is sampled according to
the exact representation (11), where the elements ofYK are
sampled via a new densityg; the elements ofYD are sampled
via the original densityφd−dR. The exact procedure for step
2 is listed in Figure 2. We name this procedureImportance
Sampling on Selected Principal Components(ISSPC).
Proposition 1. For any densityg strictly positive on
(−∞,∞)dR, (15) is an unbiased estimate ofE[h1(X)].
Proof. The representation (11) is equivalent to the repre
sentation

X = µX + U3Z, Z ∼ Nd(0d , Id),

where Id is the identity matrix of dimensiond. Under
the originalZ-densityφd , ZK ∼ φdR, ZD ∼ φd−dR, and
ZK , ZD are independent. In view of the sampling ofZK
andZD in (14), the likelihood ratio equals

φdR(ZK )φd−dR(ZD)

g(ZK )φd−dR(ZD)
,
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Importance Sampling on Selected Principal Components

INPUTS:

• X ∼ Nd(µX,6X); µX is the mean vector6X is
a nonsingular covariance matrix;

• IS densityg (dR-dimensional)
• φd−dR is the (d − dR)-variate standard Normal

density

GOAL: Estimateν = E[h1(X)].

1. Generate

ZK ∼ g, ZD ∼ φd−dR; ZK , ZD independent
(14)

YK = 3KZK ; YD = 3DZD

2. Set

X = µX + UKYK + UDYD

3. Evaluate

h1(X)
φdR(ZK )

g(ZK )
(15)

Figure 2: Importance Sampling on Selected Principal Com
ponents

completing the proof.

6 APPLICATION TO EXOTIC OPTION PRICING
AND EXPERIMENTAL EVALUATION

We focus on the application of the techniques of Sections
and 5 to pricing exotic options. Recalling (2), and defining
the vector of all log-returnsX = (Rt1Rt2 . . .Rtm), we have
that X is d-variate Normal, whered = km, with known
mean and covariance matrix. Observe that the vector o
factor prices is recovered fromX as

Sti = S0. ∗ exp

( i∑
j=1

Rtj

)
.

where “.*” denotes element-wise multiplication.
We report experimental results for two exotic option

payoff functions. The payoff of a call option on the maxi-
of
-

4

f

mum of the path-wise arithmetic average of factors is

p1(X) =
(

max
k

{
m−1

m∑
i=1

Skti

}
−K

)+
wherex+ ≡ max(x,0); K is the strike price. The payoff
of a call option on the maximum of factors at expiration
with a down-and-out barrier on the minimum of factors i

p2(X) = (max
k
SkT −K)+1

{
minkS

k
ti
≥ b, i = 1, . . . , m

}
where b is the barrier value. A special feature is that
the corresponding importance functions are multimodal a
thus require techniques such as the ones developed in
paper. Recalling the discussion of arbitrage pricing i
the second paragraph of Section 2, the option price
ci = E[pi(X)], i = 1,2.

We tested the robustness of AISDE against proble
instances that were generated randomly as follows. T
parametersµ and6 in (2) were:6 is a diagonal matrix,
with diagonal equal to(0.1ek+0.7U)2, whereek is ak-vector
of ones;U is a k-vector uniformly distributed on(0,1)k;
the squaring of the vector in parentheses is element-wi
µ = −0.05ek − 1

2diag(6), where diag(6) is the k-vector
of diagonal elements of6. The factor vector at time 0
was S0 = 60ek + 30V , whereV is a k-vector uniformly
distributed on(0,1)k. For the barrier, we tookb = 30.
The strike priceK was set subsequently by increasingK
in small amounts until the coefficient of variation (CV) of
pi(X) exceeded 5. The large target CV value of 5 aims
set up problem instances such that importance sampling
most needed. The option expiration time wasT = 1 year.
The number of monitoring times wasm = 10.

AISDE was implemented as follows. We tookn =
10000. The termination condition in theWhile statement wâEff (gM) < ̂Eff (gM−1). The dimension reduction technique
was implemented by settingδ = 0.9, i.e., we used as many
principal components as necessary to “cover” 90% of th
total problem variance.

Performance measures were estimated as follows. T
variance ratio, VR= σ 2(f )/σ 2(gA), was estimated as
the ratio of sample variances based on 10 independ
macroreplications of the standard and IS estimate, whe
each of the latter estimates was the average over 320
independent replications. The efficiency ratio, ER, wa
estimated as in (5), where the variance ratio was estima
as we just discussed, and the constantscf , ch, andcφ were
estimated to sufficient accuracy for the computing platfor
MATLAB on which all experiments were performed.

Importance sampling estimation of the option pric
based on a first-stage density estimation via AISDE h
two computing cost components: (1) The one-time cost
IS density estimation, measured here byTA, the CPU time
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consumed by AISDE; (2) Just as with standard Monte Carl
the cost per simulation replication. Letγ denote the target
confidence level of a Monte-Carlo based confidence interv

of the option price. To put the cost (1) in perspective, defin
the break-even relative accuracy

BRA(TA , γ ) = x1−γ /2CV

√
ER

ER− 1

cf + ch
TA

where x1−γ /2 is the (1 − γ /2)-quantile of the standard
Normal distribution. It is easy to check that BRA has the
following property for any given confidence levelγ : BRA
is the minimum ratio (CI half-width/option price) such that
standard Monte Carlo requires less CPU time than AISDE
based importance sampling.

Tables 1 and 2 contain results for the option payoffsp1
andp2, respectively. In each table, there are three pane
corresponding to different values of the number of factor
k. In each panel, each of the first 5 rows corresponds to o
randomly generated problem instance and is corresponding
numbered under the column labeled “Probl #”; the 6th row
labeled “AVG” gives the geometric average of the varianc
ratio and efficiency ratio over the 5 problem instances. Fo
each problem instance, we report: the reduced dimensiondR;
the number of modesM∗ of the selected IS densitygA; the
estimated variance ratio VR; the estimated efficiency ratio
ER; and the break-even relative accuracy BRA(TA ,95%).

Clearly densitygA yields large and consistent efficiency
improvement. In addition, the large values of the break
even relative accuracy, BRA, indicate that the CPU cost o
AISDE, TA, is justified by the efficiency improvement. For
example, in Table 1, panel 1, Problem 1, unless the user
satisfied with a ratio (CI half-width/option price)> 0.173,
AISDE-based importance sampling is preferred to standa
Monte Carlo.

In a larger set of experiments than the one reporte
here, we tested AISDE on a wider selection of payof
functions and in original problem dimension up to 140 (7
factors, 20 monitoring times). This experimental evaluatio
over random problem instances demonstrated that AISDE
powerful and robust–it yielded large efficiency improvemen
in a very large percentage of randomly generated problem

7 CONCLUSION AND SUGGESTIONS FOR
FUTURE WORK

Both the Oh-Berger (OB) and our new Procedure AISDE
appear to be robust, i.e., yield efficiency improvement wit
a consistency that is hard to “break”. The power of thes
procedures stems from the flexibility of mixtures of nor-
mal or t densities in approximating the many types o
importance functions that may be encountered in applic
,

l
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-
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d
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s.

Table 1: Performance of AISDE-Based Importance
Sampling for Option Payoffp1; k = 3,5,7; m = 10

k Probl # dR M∗ VR ER BRA
1 5 3 35.7 30.9 0.173
2 4 3 46.0 40.1 0.182

3 3 5 3 37.2 32.2 0.134
4 4 2 48.0 43.2 0.240
5 4 2 76.5 68.9 0.262

AVG 46.8 41.2
1 7 3 47.8 43.6 0.169
2 8 5 32.0 27.9 0.146

5 3 7 5 37.5 32.8 0.151
4 7 5 40.6 35.5 0.144
5 7 5 33.8 29.5 0.135

AVG 37.9 33.4
1 10 6 36.7 30.6 0.117
2 10 7 56.3 45.9 0.170

7 3 10 7 58.0 47.3 0.252
4 10 2 297.4 274.2 0.658
5 10 6 98.1 81.9 0.347

AVG 81.0 68.4

Table 2: Performance of AISDE-Based Impor-
tance Sampling for Option Payoffp2; k = 3,5,7;
m = 10
k Probl # dR M∗ VR ER BRA

1 4 3 14.4 13.1 0.235
2 5 3 15.0 13.5 0.171

3 3 4 3 19.7 17.9 0.193
4 4 2 15.4 14.3 0.111
5 4 3 15.6 14.2 0.158

AVG 15.9 14.5
1 7 5 10.4 9.3 0.196
2 7 5 12.7 11.3 0.217

5 3 7 5 11.5 10.2 0.120
4 7 5 12.1 10.8 0.282
5 7 5 11.0 9.8 0.139

AVG 11.5 10.3
1 10 7 5.0 4.3 0.174
2 10 7 7.5 6.5 0.178

7 3 10 7 7.8 6.8 0.163
4 10 7 5.5 4.8 0.150
5 10 7 8.6 7.5 0.140

AVG 6.7 5.9

tions. Our contribution is towards automating and makin
computationally efficient the task of locating the mixture
components at modes of the importance function, a cent
task that does not appear to have been previously addres
There is a natural combination of our Procedure AISDE an
procedures such as OB, namely: first apply AISDE to obta
a candidate densitygA and then apply OB to improvegA



Avramidis

n

-

E
e
t

i-
ffi-
n.
r-
d

ess
al
.

99.
t-

tic

l-

al

.

in

y

de
l,
r-

s.

n
,
es
-
e
d

via optimization over the component weights, modes, a
covariance matrices.

The idea of dimension reduction via principal compo
nent analysis significantly increases the range of proble
dimensions that can be addressed effectively via AISD
Unfortunately, this development leverages special prop
ties of the Multivariate Normal distribution and does no
immediately extend to other distributions.

The impressive performance of AISDE in our exper
ments in option pricing does not of course guarantee e
ciency improvement in a given new integration applicatio
It would be interesting to study experimentally the prope
ties of integration problems that may “break” the observe
robustness of AISDE. Such properties include the heavin
of tails of the original density and perhaps more pathologic
response functions than the ones we have encountered
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