
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

A FINITE-CAPACITY BEAM-SEARCH-ALGORITHM FOR
PRODUCTION SCHEDULING IN SEMICONDUCTOR MANUFACTURING

Ilka Habenicht
Lars Mönch

Institute of Information Systems
Technical University of Ilmenau

Helmholtzplatz 3, P.O. BOX 100565
D- 98684 Ilmenau, GERMANY

ABSTRACT

In this paper we describe a finite-capacity algorithm that
can be used for production scheduling in a semiconductor
wafer fabrication facility (wafer fab). The algorithm is a
beam-search-type algorithm. We describe the basic fea-
tures of the algorithm. The implementation of the algo-
rithm is based on the ILOG-Solver libraries. We describe
the simulation environment, which is used to evaluate the
performance of the proposed algorithm. We show some re-
sults from computational experiments with the algorithm
and the simulation test-bed described.

1 INTRODUCTION

The manufacturing of integrated circuits (IC) on silicon
wafers is a complex production process (cf. Atherton and
Atherton 1995, Uzsoy et al. 1992, Schömig and Fowler
2000). Between 250-500 process steps on 50-120 different
types of equipment are required to produce a medium
complexity circuit. A mix of different process types, i.e.,
batch processes and single wafer processes, sequence de-
pendent setup times, very expensive equipment, and reen-
trant flows are typical for this type of production.

The production process of circuits requires that the manu-
facturing area is extremely clean, i.e., usually the production
of circuits takes place in clean room environments. The pro-
duction of Application Specific Integrated Circuits (ASIC) is
additionally characterized by a wide range of product types
and the demand to achieve good delivery performance.

A single product moves through the wafer fab in lots.
Each lot consists of several wafers. It is possible to place
on a single wafer on average up to 800 circuits. The cir-
cuits are made up of layers. Because of the layered nature
of the circuits it is possible to group the reentrant parts of
the production flows into the following groups: cleaning,
metal deposition, chemical vapor deposition (CVD), photo-
lithography, etching, ion implantation, and inspec-

tion/control steps. Based on this grouping, a decomposition
of the entire factory in individual work areas takes place.
Unfortunately, the groups obtained in the decomposition are
not always the same for different layers. The recursive na-
ture of the process flows is one of the main sources of diffi-
culty in planning, scheduling and controlling wafer fabs.

In this paper we study a common production schedul-
ing problem in wafer fabs. Given a set of pending lots we
are interested in determining start and end times for indi-
vidual operations of the lots. Here, an operation is defined
as a set of consecutive process steps.

In contrast to current practice in semiconductor manu-
facturing the suggested algorithm takes the capacity on the
work centers of the wafer fab into account. We use a simu-
lation model of a full wafer fab in order to determine the
performance of our algorithm.

The paper is organized as follows. In the next section,
we describe the problem under consideration in detail and
we also summarize some related research. The main part of
the paper deals with the description of the finite-capacity
beam-search-algorithm. The suggested algorithm is basi-
cally a beam-search-algorithm as described in Fox (1994)
and Fargher and Smith (1994). However, we modified the
existing algorithms in a way suitable for the solution of the
problem under consideration.

We describe the implementation of the algorithm us-
ing the ILOG-solver libraries. A description of the simula-
tion test-bed used in the experiments, which is based on
previous work of Mönch et al. (2002), is presented in Sec-
tion 4. We present the results of computational experi-
ments in Section 5.

2 PROBLEM DESCRIPTION AND MODEL

2.1 Lot Planning Problem

In this section, we will formulate the lot planning problem
addressed in this paper. An aggregation procedure for

Habenicht and Mönch

process steps takes place first. Operations are considered
instead of single process steps. Here, an operation is de-
fined as a set of consecutive process steps of one product.
More formally, if a product kP has a process flow

()
kni1kk s,...,s:s = , then we replace ks by the sequence

()
kml1kk o,...,o:o = of operations. Usually, an operation

consists of three or four consecutive process steps. Note
that the decision of which process steps form a single op-
eration is influenced by the decomposition of the shop
floor into different work areas.

The three main reasons for considering operations are:
firstly, the problem size decreases, secondly, due to uncer-
tainties in the real factory process it is not reasonable to
work on the level of detail of single process steps, thirdly,
the personal on the shop-floor is primarily interested in due
date prescription (internal due dates) for lots with respect
to the work area.

The problem can be formulated as follows. Given a set
of lots { }k1 L,...,L . We assume, that each lot iL ,

k,...,1i = , has to perform the operations






=

iii mini o,...,o:o . By
iino we denote the first operation

of lot iL that has to be performed. We denote the due date

of lot iL by id . We are interested in determining the start

date and the end date of each operation of the lot. The cal-
culated start and end dates should take into account capac-
ity restrictions of the shop-floor.

The calculated start and end dates are required in or-
der to obtain due date estimates, to plan operator and tool
requirements and to look ahead for doing optimal batch
and setup decisions (cf. Fowler et al. 2000). The calculated
start and end dates are also used to measure the perform-
ance of a work area. The end dates of single operations are
used for the implementation of certain due date perform-
ance oriented dispatching rules at the shop floor. Further-
more, the start and end dates of the operations can be used
to calculate the schedules for the individual work areas in-
dependently (cf. Mönch 2001).

2.2 Infinite Capacity Approach for Lot Planning

A method to determine the required start and end dates
(without considering the violation of capacity constraints)
is the following one (cf. Atherton and Atherton 1995). The
operations of each lot are scheduled independent of the
other lots. The basic problem is the determination of the
amount of waiting time for the single operations, e.g., the
time that the lots are waiting for processing on machines of
the work area of the corresponding operation.
We assume, that lot iL has the actual operation niio

at time t . The planned due date i,outd of lot iL can be

calculated as follows

 ∑
=

+=
i

i

m

nk
kiiout pft:d , , (1)

where

 f prescribed flow factor,
 im index of the last operation operations for lot iL ,

 kip pure processing time for operation iko .

The flow factor f is defined as the ratio of the (aver-

age) real process time (including time for waiting on proc-
essing) and the (average) pure processing time (i.e., the
time without any waiting time) (cf. Atherton and Atherton
1995). The flow factor depends of the capacity of the sys-
tem wafer fab and the current work in process (WIP) of the
wafer fab.

The expected start dates (and of course end dates) for
single operations can be determined in a recursive manner
as follows

 i1ki,k,i1k pfd:d ++ += . (2)

Here, we denote by i,kd the end date of the k-th operation

of lot iL .

In cases where we cannot assume id ≠ i,outd we have

to recalculate the amount of accumulated waiting time. We
use the following formula to determine the new amount of
waiting time represented by the quantity h :

∑
=

−=
i

i

m

ns
si

i

p

td
:h , (3)

if 0tdi ≥− holds, otherwise a new due date has to be set.

Here, we denote by t the actual time. The expected start
dates (and of course end dates) for single operations have
to be determined now by the following formula

 i1ki,k i1,k phd:d ++ += . (4)

Note that the new due date setting and the recalculation
procedure for the quantity h has to be done on a shift to
shift or day to day basis.

Habenicht and Mönch

2.3 Literature Review

We found a number of references dealing with lot planning
issues of semiconductor wafer fabrication facilities in the
literature. The approaches can be divided roughly in three
different classes.

Operations research related (or mathematical) optimi-
zation approaches (sometimes in combination with dis-
crete-event simulation) belong to the first class. The work
of Hung and Leachman (cf. Hung and Leachman 1996) is
an example of such an approach. The solution complexity
of the underlying linear programs depends on the granular-
ity of the used time buckets. However, in our case, we need
at least for the shifts at the beginning of the planning hori-
zon time buckets of fine granularity.

Liao et al. chose a Lagrange relaxation approach for
lot scheduling in a wafer fab (Liao et al. 1996). This work
is interesting, because, instead of working on the single
process step level, the authors use an aggregation of proc-
ess steps that is similar to our operation forming. However,
we believe that due to the high computational burden of the
Lagrange relaxation this approach is only feasible for a
short planning horizon (one shift until one day).

Approaches of the second class employ MRP II type
solution techniques, i.e. forwards and backwards calcula-
tion techniques for the lots. We refer, for example, to the
work by Horiguchi et al. (2001) for such a method, applied
to a reentrant flow manufacturing system. Methods of this
type are also used in the system ReDS (Hadavi and Voigt
1994). Forward and backward planning algorithms are also
included and implemented in commercial software pack-
ages used in semiconductor manufacturing.

Search heuristics from artificial intelligence in combi-
nation with the MRP II type methods form the third class.
Here, we refer to the work by Fargher and Smith (1994)
and by Fargher et al. (1994). They used a beam-search-
algorithm in combination with backtracking steps for lot
release and for the determination of schedules in an aggre-
gated sense. The artificial intelligence techniques were
originally developed in order to solve constraint satisfac-
tion problems. Therefore, we cannot expect good optimiza-
tion features.

A more recent scheduling approach with focus on re-
scheduling abilities is described in the work by Toba (1999).

3 BEAM-SEARCH-ALGORITHM

3.1 Finite-Capacity Beam-Search-Algorithm

The essence of a beam-search-algorithm is a suitable
search tree as shown in Figure 1. Every node of this tree
represents a time bucket (time period) mT . The search

tree is partitioned into levels. Nodes, i.e., time buckets, at
level k have distance k-1 to the root. The beam width kβ
gives the maximal number of nodes at level k . We have a
certain freedom in choosing the beam width.

Suppose that an operation ijo was assigned at level

)1k(− of the search tree to the time bucket mT .

• Then we search for a possible time bucket for

scheduling the following operation 1ijo + . There-

fore, we branch into nodes on the level k with

possible time buckets for scheduling 1ijo + . We try

to schedule 1ijo + without violating the capacity

restrictions given by the tool groups required for
processing 1ijo + .

• A backtracking step has to be take place if a
scheduling step in a time period at level k is not
possible due to the violation of capacity con-
straints. That means, that the operation ijo has to

be removed from mT and to be scheduled to one

of the following period of mT . The backtracking

scheme allows more than one consecutive back-
tracking step.

The backtracking step is basic requirement in order to

plan operations as far as possible into the future.

3.2 Capacity Modeling

Because of the existence of parallel tools, i.e., tools of the
same functionality, the routing of the lots in the process
flows takes place on the level of tool groups. Therefore, we
have to work with tool groups instead of individual tools.
The capacity of a machine group is the sum of the capacity
of all machines of the group. The capacity of a tool group is
reduced to a certain degree by taking into account times re-
quired for preventative maintenance and for machine failure.

T2

T2

T5T3T2 T4 T3 T4

T3

T1

node of the search tree with a successfully inserted operation

node of the search tree with failed insertion

Figure 1: Search Guided by a Beam-Search-Algorithm

Habenicht and Mönch

We are interested in scheduling operations as ex-
plained in Section 2.1. A lot is processed on different tool
groups while performing an operation. In this research, we
assume that for each operation it is always possible to find
a tool group that behaves like a bottleneck with respect to
the process steps of the operation, i.e., it is possible to con-
struct a one-to-one mapping between an operation and a
single tool group with low available capacity.

The lead time of an operation is the sum of the proc-
essing time of the process steps multiplied by a factor

1f
~

> . This quantity f
~

 reflects possible waiting times be-
tween the consecutive process steps of the operation. A

careful adjustment of f
~

 for different operations and prod-
uct flows of the lots by using historical data from the
manufacturing execution system and from simulation ex-
periments is important for the algorithm.

3.3 Overall Structure of the Algorithm

The algorithm’s goal is to determine the start and end dates
for the operations of the lots. The algorithm ranks the lots
by their importance (according to a certain criterion) (outer
loop) and uses the beam-search-algorithm to calculate the
start and end dates for the operations of the lot (inner loop).
The outer loop of the algorithm is shown in Figure 2.

Start

Read all
lot information

Fix a sequence
of the lots

All lots
are planned?

Plan the lot by using
the beam search

algorithm

Stop

yes

no

Figure 2: Outer Loop of the Planning Algorithm

The importance of a lot is determined as follows. We

calculate for each lot iL the index

 ∑
=

−−=
i

i

m

nk
kiii ptd:slack , (5)

where we denote by t the point of time, where the calcula-
tion is performed. Then we rank the lots starting with the
smallest index given by (5). W consider the due dates as an
additional criterion if the slack calculated by (5) is equal
for two lots.

The algorithm requires the following data input:

1. Tool and routing information, including a parti-

tion of each route into consecutive operations,
2. Forecast information,
3. Information on preventative maintenance and ma-

chine breakdowns in order to setup the available
capacity of the tool groups,

4. Information on bottlenecks in order to determine
the one-to-one mapping between operations and
tool groups,

5. Information on the lots currently on the shop-floor
and the corresponding WIP distribution.

The inner loop of the algorithm (Figure 3) works as

follows. The capacity model already described in Section
3.2 is used for setting up the capacity constraints. These
constraints must be formulated separately for every time
bucket, for which an operation is to be scheduled. If the
constraint is not satisfied in a certain time bucket, the con-
secutive node of the search tree will be checked. This node
represents the successor of the time bucket, where the
check has failed.

Start with operation oi.

Choose next operation.

Bucket capacity feasible?

Plan into this bucket.

StopAll operations planned?

Find appropriate time bucket on the tool group associated with oi.

Update of the capacity of the tool group associated with oi.

Find a capacity
feasible bucket
by backtracking.yes

yes

no

no

Figure 3: Inner Loop of the Planning Algorithm

At the moment, we build a new plan from scratch dur-

ing each rescheduling activity. It should be possible to
avoid the calculation of an entire new plan by scheduling
only lots that show a deviation from the planned start dates
of the current operation. However, more research is needed
to work out the details.

Habenicht and Mönch

3.4 Implementation Issues of the Algorithm

After running into problems with homemade tree libraries,
mainly due to the size of the search trees, we decided to
use classes from the ILOG library (Le Pape 1994).

The classes of ILOG Solver provide a framework for
modeling and solving constraint programming problems
and make very efficient use of memory. The library sup-
ports especially the implementation of backtracking algo-
rithms on tree structures. For the implementation of our al-
gorithm, we modified ILOG’s implementation class
IlcConstraintI and the handle class IlcConstraint, and for-
mulated different constraints.

This way we implemented the technological con-
straints for the sequence of the operations and the non pre-
emptions of the operations. The third constraint that we
modeled with the help of these classes is the beam width.

Different required input data like processing times of
operations, capacities of tool groups and lengths of time
buckets are modeled with objects of the class IloNumArray.

4 SIMULATION MODEL

We use a discrete-event simulation tool and a simulation
model of a wafer fab to evaluate the performance of our
algorithm. This approach is widely used in the research
community to estimate the performance of new algorithms
(cf. Horiguchi et al. 2001 and Toba 1999).

We used the basic architecture described by Mönch et
al. (2002) including the simulation tool AutoSched AP 7.1.
The center point of this architecture is a data storage,
called data model, that contains all information required in
order to run the production scheduling algorithm. We ex-
tended the data model by additional classes and attributes
to make it usable for the beam-search-algorithm. The basic
architecture can be seen in Figure 4. Most of the data listed
as input requirements of the algorithm can be read from the
simulation model (as static and dynamic data).

Simulation Model

Data Model

Beam Search
Algorithm

ILOG-Solver
Libraries

Figure 4: Integration of the Beam-Search-Algorithm in the
Simulation Environment
Because the simulation tool included the AP Frame-
work, written in the C++ programming language, the integra-
tion of the ILOG solver libraries requires only little effort.

We used the MIMAC test data set 1 (Fowler and Rob-
inson 1995) in a slightly modified version. The simulation
model used consists of two different process flows (A,B)
with 200 process steps and over 80 different tool groups.

We used a slack-based dispatching rule. The rule se-
lects the lot with the smallest slack for that process step. For
the calculation of the slacks of the lots waiting in front of a
certain machine we use the information given by the lot
plan. For that purpose we determine first the amount of time
for the process steps that are corresponding to non critical
machines by simply multiplying the processing time by a
suitable factor. The difference between the time assigned to
the operation by the lot plan and this amount of time is then
used to prescribe an amount of time to the critical process
step of the operation. By using this scheme it is possible to
determine end dates for the single process steps.

In our experiments, we used a moderate workload of
the system. Machine failures are exponentially distributed.
We used a forecast horizon of three month. The model is
initialized by using a work in process (WIP) distribution of
the wafer fab. The length of a single simulation run was
100 days in our experiments. We take five independent
replications of each simulation run in order to obtain statis-
tically significant results.

5 COMPUTATIONAL RESULTS

In this section we present the results of computational ex-
periments. We performed three different types of experi-
ments. The following performance measures were used:

• Average tardiness of the lots released and finished
within the planning horizon under consideration.
We define the tardiness of lot iL as follows:

)dC,0max(:T i
r
ii −= , (6)

where we denote by r
iC the realized completion

time of lot iL . In order to derive the performance

measure we sum over the corresponding iT for all

lots and divide the sum by the number of lots. We
denote this quantity by averT .

• Average predictability of the plans. Because the
planned completion times of the lots will change
over time, we use the completion time of the first
plan that contains the lot as a fixed reference. We
define the positive and negative deviation of the
(first) plan as follows:

{ }0,CCmax:D p
i

r
ii −=+ , (7)

Habenicht and Mönch

{ }0,CCmax:D r
i

p
ii −=− , (8)

where we denote by p
iC the expected completion

time of lot iL obtained by the first plan. We sum

over the quantities (7) and (8) for all correspond-
ing lots and divide this sum by the number of lots
to derive the performance measures for predict-
ability. The corresponding quantities are denoted

by +
averD and −

averD .

• Average cycle time of product P:)P(CT .

• Throughput of the wafer fab (number of com-
pleted wafer): TP.

In a first series of experiments, we are interested in

answering the question, how the frequency of planning in-
fluences the system behavior. We set the length of the re-
planning interval as 24 hours. We used the following time
bucket sizes given in Table 1 in our experiments.

Table 1: Time Bucket Settings (Scenario 1)
Time Size of the Time Bucket

0 – 1 day 1h
1 day – 7 day 4h

7 day – 14 day 8h
14 day - end 24h

We find the results of the beam-search-algorithm in the

case of four fixed bottlenecks of the line in Table 2. We con-
sider only the bottleneck tool groups for capacity modeling.
In Table 2 we present the resulting performance measures in
terms of the ratio of the value obtained by the beam-search-
algorithm to the corresponding value of the infinite capacity
algorithm (ICA). The corresponding values for the infinite
capacity algorithm described in Section 2.2 can be found in
the last row of Table 2. Clearly, the algorithm is sensitive to
flow factor (FF) setting. The beam-search-algorithm outper-
forms the infinite capacity algorithm.

Table 2: Results for Different Flow Factors based on
Beam- Search-Algorithm with Four Bottlenecks

FF averT +
averD −

averD CT(A) CT(B) TP

1.5 0.957 0.640 12.551 1.043 0.917 1.010
1.6 0.900 0.599 13.993 1.034 0.905 1.015
1.7 0.942 0.589 17.919 1.035 0.917 1.012
ICA 1.000 1.000 1.000 1.000 1.000 1.000

In the next experiment, we fixed the flow factor and

investigated the influence of a more detailed modeling of
bottleneck resources. From Table 3 we can verify that an
increase in the number of modeled tools also leads to an
improvement of the performance measures. In Table 3 we
present the resulting performance measures in terms of

the ratio of the value obtained by the beam-search-
algorithm to the corresponding value of the infinite ca-
pacity algorithm (ICA).

We performed a second experiment in order to evalu-
ate the impact of the time bucket size setting to the per-
formance measures. In this experiment, we fixed the time
bucket size as 8 hours. Again, as in the first experiment, we
are interested in the values of the described performance
measures. We compared the two different scenarios. Sce-
nario 2 and scenario 3 are described in Table 4.

Table 3: Results for Different Number of Modeled Bottle-
necks (BN) based on Beam-Search-Algorithm (Flow
Factor = 1.5)
#BN averT +

averD
−
averD CT(A) CT(B) TP

4 0.957 0.641 12.551 1.043 0.917 1.010
14 0.910 0.725 10.503 1.036 0.905 1.016

ICA 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Different Time Bucket Settings (Scenario 2 and
Scenario 3)

Time Size of the Time Bucket
Scenario 2

0 day – 14 day 4h
14 day - end 24h

Scenario 3
 0 day- 14 day 8h
14 day - end 24h

In Table 5 we find the performance measures of inter-

est. It can be seen from Table 5 that we get similar results
for the three scenarios. We conclude from these results that
a finer grid at the beginning of the planning horizon (sce-
nario 1) does not lead to better results, but it increases the
time required for computing.

Table 5: Results for Different Time Bucket Settings with
14 Bottlenecks (Flow Factor = 1.5)

S averT +
averD

−
averD CT(A) CT(B) TP

1 0.910 0.725 10.503 1.036 0.905 1.016
2 0.918 0.728 12.519 1.036 0.906 1.011
3 0.945 0.752 11.604 1.033 0.923 1.009

ICA 1.000 1.000 1.000 1.000 1.000 1.000

We study the impact of flow factor setting and de-
tailed modeling of bottleneck tool groups to the perform-
ance measure average predictability of the plans in Figure
5. We present the resulting performance measures in terms
of the ratio of the value obtained by the beam-search-
algorithm to the corresponding value of the infinite capac-
ity algorithm (ICA). In the case of negative deviation we
divide the relative values by ten for scaling purposes. We

see that the ratio of −
averD increases with increasing flow

Habenicht and Mönch

P re d ic ta b ility D e p e n d in g o n F lo w F a c to r S e ttin g a n d B o ttle n e c k M o d e lin g

0 ,000

0 ,200

0 ,400

0 ,600

0 ,800

1 ,000

1 ,200

1 ,400

1 ,600

1 ,800

2 ,000

0 ,9 1 ,1 1 ,3 1 ,5 1 ,7 1 ,9 2 ,1

F lo w F a c to r

D
ev

ia
ti

o
n

 (
R

el
at

iv
e

to
 IC

A
)

D e v ia tio n p lu s (1 4 B N)

D e v ia tio n p lu s (4 B N)

D e v ia tio n m in u s (1 4 B N)

D e v ia tio n m in u s (4 B N)

Figure 5: Impact of Flow Factor Setting and Number of Modeled Bottlenecks on the Predictability

factor. On the other hand, the ratio of +
averD decreases with

increasing flow factor. As expected, the flow factor setting
is crucial for the performance of the beam-search-
algorithm. In the case of more detailed bottleneck model-
ing the positive deviation is not so sensitive to the flow
factor setting. As expected, the proposed algorithm demon-
strates some advantage compared to the infinite capacity
algorithm described in Section 2.2. Our results agree with
the results of Horiguchi et al. (2001). However, the authors
of this paper considered a simpler algorithm that does not
leave so much room for improvement.

6 CONCLUSIONS

In this paper we presented a finite-capacity beam-search
for lot planning in a semiconductor wafer fab. We de-
scribed the basic features of the algorithm and explained
some implementation details. We presented a simulation
test-bed to investigate the performance of the algorithm.

The proposed algorithm is considered for an integra-
tion in a more general framework of distributed (i.e., agent-
based) hierarchical production control of semiconductor
wafer fabs (cf. Vargas-Villamil and Rivera 2001 and
Mönch 2001 for hierarchical and distributed production
control of wafer fabs).

In the future, we will investigate different rescheduling
strategies and we will consider more complex wafer fabs.

ACKNOWLEDGMENTS

The authors would like to thank Volker Schmalfuß and
Bernd Friedemann, X-FAB Semiconductor Foundries AG
Erfurt, Germany, for interesting discussion on the topic of
this paper and for providing data sets for tests.
REFERENCES

Atherton, L. F. and R. W. Atherton. 1995. Wafer Fabrica-
tion: Factory Performance and Analysis. Kluwer Aca-
demic Publishers, Boston, Dordrecht, London.

Fargher, H. E., M. A. Kilgore, P. J. Kleine, and R. A.
Smith. 1994. A Planner and Scheduler for
Semiconductor Manufacturing. IEEE Transactions on
Semiconductor Manufacturing, 7: 117-126.

Fargher, H. E. and R. A. Smith. 1994. Planning in a
Flexible Semiconductor Manufacturing Enviroment.
In Intelligent Scheduling, eds. M. Zweben and M. Fox,
545-581, San Francisco, CA: Morgan Kaufmann.

Fowler, J. W. and J. Robinson. 1995. Measurment and
Improvement of Manufacturing Capacities (MIMAC):
Final Report. Technical Report 95062861A-TR,
SEMATECH, Austin, TX.

Fowler, J. W., G. L. Hogg, and D. T. Phillips. 2000.
Control of Multiproduct Bulk Server
Diffusion/Oxidation Processes, Part Two: Multiple
Servers. IIE Transactions on Scheduling and
Logistics, 32 (2): 167-176.

Fox, M. S. 1994. ISIS: A Retrospective. In Intelligent
Scheduling, eds. M. Zweben and M. Fox, 3-28, San
Francisco, CA: Morgan Kaufmann.

Hadavi, K. and K. Voigt. 1994. ReDS: A Real Time
Production Scheduling System from Conception to
Practice. In Intelligent Scheduling, eds. M. Zweben
and M. Fox, 581-604, San Francisco, CA: Morgan
Kaufmann.

Horiguchi, K., N. Raghavani, R. Uzsoy, and S.
Venkatheswaran. 2001. Finite-Capacity Production
Planning Algorithms for a Semiconductor Wafer Fab-

Habenicht and Mönch

rication Facility. International Journal of Production
Research, 39 (5): 825-842.

Hung, Y.-F. and R. C. Leachman. 1996. A Production
Planning Methodology for Semiconductor
Manufacturing Based on Iterative Simulation and
Linear Programming Calculations. IEEE Transactions
on Semiconductor Manufacturing, 9: 257-269.

Le Pape, C. 1994. Implementation of Resource Constraints
in ILOG SCHEDULE: A Library for the Development
of Constraint-Based Scheduling Systems. Intelligent
Systems Engineering 3: 55-66.

Liao, D.-Y., S.-C. Chang, K.-W. Pei, and C.-M. Chang.
1996. Daily Scheduling for R&D Semiconductor Fab-
rication. IEEE Transactions on Semiconductor Manu-
facturing, 9 (4): 550-561.

Mönch, L. 2001. Towards an Agent-Based Production
Control in the Semiconductor Industry. In Proceedings
13th European Simulation Symposium– Simulation in
Industry (ESS 2001), Workshop on Multi-Agent-
Based Modeling and Simulation, Marseille, 941-945.

Mönch, L., O. Rose, and R. Sturm. 2002. Framework for
Performance Assessment of Shop-Floor Control Sys-
tems. In Proceedings of the 2002 Modeling and Analy-
sis of Semiconductor Manufacturing Conference
(MASM 2002), ed. J. W. Fowler, J. K. Cochran, 95-100.

Schömig, A. and J. W. Fowler. 2000. Modelling Semicon-
ductor Manufacturing Operations. In Proceedings of
the 9th ASIM Dedicated Conference Simulation in
Production and Logistics, ed. K. Mertins and M. Rabe,
55-64.

Toba, H. 1999. Segment-Based Approach for Real-Time
Reactive Rescheduling for Automatic Manufacturing
Control. IEEE Transactions on Semiconductor Manu-
facturing, 13 (3): 264-272.

Uzsoy, R., C.-Y. Lee, and L. A. Martin-Vega. 1992. A Re-
view of Production Planning and Scheduling Models
in the Semiconductor Industry, Part I: System Charac-
teristics, Performance Evaluation and Production
Planning. IIE Transactions on Scheduling and Logis-
tics, 24: 47-61.

Vargas-Villamil, F.-D. and D. E. Rivera. 2001. A Model
Predictive Control Approach for Real-Time Optimiza-
tion of Reentrant Manufacturing Lines. Computers in
Industry, 45: 45-57.

AUTHOR BIOGRAPHIES

ILKA HABENICHT is a Ph.D. student in the Department
of Information Systems at the Technical University of Il-
menau, Germany. She received a master’s degree in busi-
ness related engineering from the Technical University of
Ilmenau, Germany. Her research interests are in production
control of semiconductor wafer fabrication facilities. Her
email address is <Ilka.Habenicht@tu-
ilmenau.de>.
LARS MÖNCH is an Assistant Professor in the Depart-
ment of Information Systems at the Technical University
of Ilmenau, Germany. He received a master’s degree in
applied mathematics and a Ph.D. in the same subject from
the University of Göttingen, Germany. After receiving his
Ph.D. he worked for two years for Softlab GmbH in Mu-
nich in the area of software development. His current re-
search interests are in simulation-based production control
of semiconductor wafer fabrication facilities, applied opti-
mization, and artificial intelligence applications in manu-
facturing. He is a member of GI (German Chapter of the
ACM), GOR (German Operations Research Society) and
SCS. His email address is <Lars.Moench@tu-
ilmenau.de>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1406
	02: 1407
	03: 1408
	04: 1409
	05: 1410
	06: 1411
	07: 1412
	08: 1413

