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ABSTRACT  
 
In this paper we describe a finite-capacity algorithm that 
can be used for production scheduling in a semiconductor 
wafer fabrication facility (wafer fab). The algorithm is a 
beam-search-type algorithm. We describe the basic fea-
tures of the algorithm. The implementation of the algo-
rithm is based on the ILOG-Solver libraries. We describe 
the simulation environment, which is used to evaluate the 
performance of the proposed algorithm. We show some re-
sults from computational experiments with the algorithm 
and the simulation test-bed described. 

 
1 INTRODUCTION 
 
The manufacturing of integrated circuits (IC) on silicon 
wafers is a complex production process (cf. Atherton and 
Atherton 1995, Uzsoy et al. 1992, Schömig and Fowler 
2000). Between 250-500 process steps on 50-120 different 
types of equipment are required to produce a medium 
complexity circuit. A mix of different process types, i.e., 
batch processes and single wafer processes, sequence de-
pendent setup times, very expensive equipment, and reen-
trant flows are typical for this type of production.  

The production process of circuits requires that the manu-
facturing area is extremely clean, i.e., usually the production 
of circuits takes place in clean room environments. The pro-
duction of Application Specific Integrated Circuits (ASIC) is 
additionally characterized by a wide range of product types 
and the demand to achieve good delivery performance.  

A single product moves through the wafer fab in lots. 
Each lot consists of several wafers. It is possible to place 
on a single wafer on average up to 800 circuits. The cir-
cuits are made up of layers. Because of the layered nature 
of the circuits it is possible to group the reentrant parts of 
the production flows into the following groups: cleaning, 
metal deposition, chemical vapor deposition (CVD), photo-
lithography, etching, ion implantation, and inspec-

 

tion/control steps. Based on this grouping, a decomposition 
of the entire factory in individual work areas takes place. 
Unfortunately, the groups obtained in the decomposition are 
not always the same for different layers. The recursive na-
ture of the process flows is one of the main sources of diffi-
culty in planning, scheduling and controlling wafer fabs.  

In this paper we study a common production schedul-
ing problem in wafer fabs. Given a set of pending lots we 
are interested in determining start and end times for indi-
vidual operations of the lots. Here, an operation is defined 
as a set of consecutive process steps.  

In contrast to current practice in semiconductor manu-
facturing the suggested algorithm takes the capacity on the 
work centers of the wafer fab into account. We use a simu-
lation model of a full wafer fab in order to determine the 
performance of our algorithm. 

The paper is organized as follows. In the next section, 
we describe the problem under consideration in detail and 
we also summarize some related research. The main part of 
the paper deals with the description of the finite-capacity 
beam-search-algorithm. The suggested algorithm is basi-
cally a beam-search-algorithm as described in Fox (1994) 
and Fargher and Smith (1994). However, we modified the 
existing algorithms in a way suitable for the solution of the 
problem under consideration.  

We describe the implementation of the algorithm us-
ing the ILOG-solver libraries. A description of the simula-
tion test-bed used in the experiments, which is based on 
previous work of Mönch et al. (2002), is presented in Sec-
tion 4. We present the results of computational experi-
ments in Section 5. 

2 PROBLEM DESCRIPTION AND MODEL 
 
2.1 Lot Planning Problem 
 
In this section, we will formulate the lot planning problem 
addressed in this paper. An aggregation procedure for 
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process steps takes place first. Operations are considered 
instead of single process steps. Here, an operation is de-
fined as a set of consecutive process steps of one product. 
More formally, if a product kP  has a process flow 

( )
kni1kk s,...,s:s = , then we replace ks  by the sequence 

( )
kml1kk o,...,o:o =  of operations. Usually, an operation 

consists of three or four consecutive process steps. Note 
that the decision of which process steps form a single op-
eration is influenced by the decomposition of the shop 
floor into different work areas.  

The three main reasons for considering operations are: 
firstly, the problem size decreases, secondly, due to uncer-
tainties in the real factory process it is not reasonable to 
work on the level of detail of single process steps, thirdly, 
the personal on the shop-floor is primarily interested in due 
date prescription (internal due dates) for lots with respect 
to the work area. 

The problem can be formulated as follows. Given a set 
of lots { }k1 L,...,L . We assume, that each lot iL , 

k,...,1i = , has to perform the operations 






=

iii mini o,...,o:o . By 
iino  we denote the first operation 

of lot iL  that has to be performed. We denote the due date 

of lot iL  by id . We are interested in determining the start 

date and the end date of each operation of the lot. The cal-
culated start and end dates should take into account capac-
ity restrictions of the shop-floor.  

The calculated start and end dates are required in or-
der to obtain due date estimates, to plan operator and tool 
requirements and to look ahead for doing optimal batch 
and setup decisions (cf. Fowler et al. 2000). The calculated 
start and end dates are also used to measure the perform-
ance of a work area. The end dates of single operations are 
used for the implementation of certain due date perform-
ance oriented dispatching rules at the shop floor. Further-
more, the start and end dates of the operations can be used 
to calculate the schedules for the individual work areas in-
dependently (cf. Mönch 2001). 

2.2 Infinite Capacity Approach for Lot Planning 

A method to determine the required start and end dates 
(without considering the violation of capacity constraints) 
is the following one (cf. Atherton and Atherton 1995). The 
operations of each lot are scheduled independent of the 
other lots. The basic problem is the determination of the 
amount of waiting time for the single operations, e.g., the 
time that the lots are waiting for processing on machines of 
the work area of the corresponding operation.  
We assume, that lot iL  has the actual operation niio  

at time t . The planned due date i,outd  of lot iL  can be 

calculated as follows 

 ∑
=

+=
i

i

m

nk
kiiout pft:d  , , (1) 

where 
 
 f  prescribed flow factor, 
 im  index of the last operation operations for lot iL , 

 kip  pure processing time for operation iko . 

 
The flow factor f  is defined as the ratio of the (aver-

age) real process time (including time for waiting on proc-
essing) and the (average) pure processing time (i.e., the 
time without any waiting time) (cf. Atherton and Atherton 
1995). The flow factor depends of the capacity of the sys-
tem wafer fab and the current work in process (WIP) of the 
wafer fab.  

The expected start dates (and of course end dates) for 
single operations can be determined in a recursive manner 
as follows 

 
 i1ki,k,i1k pfd:d ++ += . (2) 

 
Here, we denote by i,kd  the end date of the k-th operation 

of lot iL .  

In cases where we cannot assume id ≠ i,outd  we have 

to recalculate the amount of accumulated waiting time. We 
use the following formula to determine the new amount of 
waiting time represented by the quantity h : 

 

 

∑
=

−=
i

i

m

ns
si

i

p

td
:h , (3) 

 
if 0tdi ≥− holds, otherwise a new due date has to be set. 

Here, we denote by t the actual time. The expected start 
dates (and of course end dates) for single operations have 
to be determined now by the following formula 
 
 i1ki,k i1,k phd:d ++ += . (4) 

 
Note that the new due date setting and the recalculation 
procedure for the quantity h  has to be done on a shift to 
shift or day to day basis. 
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2.3 Literature Review 

We found a number of references dealing with lot planning 
issues of semiconductor wafer fabrication facilities in the 
literature. The approaches can be divided roughly in three 
different classes.  

Operations research related (or mathematical) optimi-
zation approaches (sometimes in combination with dis-
crete-event simulation) belong to the first class. The work 
of Hung and Leachman (cf. Hung and Leachman 1996) is 
an example of such an approach. The solution complexity 
of the underlying linear programs depends on the granular-
ity of the used time buckets. However, in our case, we need 
at least for the shifts at the beginning of the planning hori-
zon time buckets of fine granularity. 

Liao et al. chose a Lagrange relaxation approach for 
lot scheduling in a wafer fab (Liao et al. 1996). This work 
is interesting, because, instead of working on the single 
process step level, the authors use an aggregation of proc-
ess steps that is similar to our operation forming. However, 
we believe that due to the high computational burden of the 
Lagrange relaxation this approach is only feasible for a 
short planning horizon (one shift until one day).  

Approaches of the second class employ MRP II type 
solution techniques, i.e. forwards and backwards calcula-
tion techniques for the lots. We refer, for example, to the 
work by Horiguchi et al. (2001) for such a method, applied 
to a reentrant flow manufacturing system. Methods of this 
type are also used in the system ReDS (Hadavi and Voigt 
1994). Forward and backward planning algorithms are also 
included and implemented in commercial software pack-
ages used in semiconductor manufacturing. 

Search heuristics from artificial intelligence in combi-
nation with the MRP II type methods form the third class. 
Here, we refer to the work by Fargher and Smith (1994) 
and by Fargher et al. (1994). They used a beam-search-
algorithm in combination with backtracking steps for lot 
release and for the determination of schedules in an aggre-
gated sense. The artificial intelligence techniques were 
originally developed in order to solve constraint satisfac-
tion problems. Therefore, we cannot expect good optimiza-
tion features.  

A more recent scheduling approach with focus on re-
scheduling abilities is described in the work by Toba (1999). 

3 BEAM-SEARCH-ALGORITHM 

3.1 Finite-Capacity Beam-Search-Algorithm 

The essence of a beam-search-algorithm is a suitable 
search tree as shown in Figure 1. Every node of this tree 
represents a time bucket (time period) mT . The search 

tree is partitioned into levels. Nodes, i.e., time buckets, at 
level k have distance k-1 to the root. The beam width kβ  
gives the maximal number of nodes at level k . We have a 
certain freedom in choosing the beam width.  

Suppose that an operation ijo  was assigned at level 

)1k( −  of the search tree to the time bucket mT .  

 
• Then we search for a possible time bucket for 

scheduling the following operation 1ijo + . There-

fore, we branch into nodes on the level k with 

possible time buckets for scheduling 1ijo + . We try 

to schedule 1ijo +  without violating the capacity 

restrictions given by the tool groups required for 
processing 1ijo + .  

• A backtracking step has to be take place if a 
scheduling step in a time period at level k  is not 
possible due to the violation of capacity con-
straints. That means, that the operation ijo  has to 

be removed from mT  and to be scheduled to one 

of the following period of mT . The backtracking 

scheme allows more than one consecutive back-
tracking step. 

 
The backtracking step is basic requirement in order to 

plan operations as far as possible into the future.  

3.2 Capacity Modeling 

Because of the existence of parallel tools, i.e., tools of the 
same functionality, the routing of the lots in the process 
flows takes place on the level of tool groups. Therefore, we 
have to work with tool groups instead of individual tools. 
The capacity of a machine group is the sum of the capacity 
of all machines of the group. The capacity of a tool group is 
reduced to a certain degree by taking into account times re-
quired for preventative maintenance and for machine failure. 
 

T2

T2

T5T3T2 T4 T3 T4

T3

T1

node of the search tree with a successfully inserted operation

node of the search tree with failed insertion
 

 

Figure 1: Search Guided by a Beam-Search-Algorithm 
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We are interested in scheduling operations as ex-
plained in Section 2.1. A lot is processed on different tool 
groups while performing an operation. In this research, we 
assume that for each operation it is always possible to find 
a tool group that behaves like a bottleneck with respect to 
the process steps of the operation, i.e., it is possible to con-
struct a one-to-one mapping between an operation and a 
single tool group with low available capacity.  

The lead time of an operation is the sum of the proc-
essing time of the process steps multiplied by a factor 

1f
~

> . This quantity f
~

 reflects possible waiting times be-
tween the consecutive process steps of the operation. A 

careful adjustment of f
~

 for different operations and prod-
uct flows of the lots by using historical data from the 
manufacturing execution system and from simulation ex-
periments is important for the algorithm.  

 
3.3 Overall Structure of the Algorithm 
 
The algorithm’s goal is to determine the start and end dates 
for the operations of the lots. The algorithm ranks the lots 
by their importance (according to a certain criterion) (outer 
loop) and uses the beam-search-algorithm to calculate the 
start and end dates for the operations of the lot (inner loop). 
The outer loop of the algorithm is shown in Figure 2. 
 

Start

Read all
lot information

Fix a sequence
of the lots

All lots
are planned?

Plan the lot by using 
the beam search 

algorithm

Stop

yes

no

 
Figure 2: Outer Loop of the Planning Algorithm 

 
The importance of a lot is determined as follows. We 

calculate for each lot iL  the index 
 

 ∑
=

−−=
i

i

m

nk
kiii ptd:slack , (5) 

 
where we denote by t  the point of time, where the calcula-
tion is performed. Then we rank the lots starting with the 
smallest index given by (5). W consider the due dates as an 
additional criterion if the slack calculated by (5) is equal 
for two lots. 

The algorithm requires the following data input: 
 
1. Tool and routing information, including a parti-

tion of each route into consecutive operations, 
2. Forecast information, 
3. Information on preventative maintenance and ma-

chine breakdowns in order to setup the available 
capacity of the tool groups, 

4. Information on bottlenecks in order to determine 
the one-to-one mapping between operations and 
tool groups, 

5. Information on the lots currently on the shop-floor 
and the corresponding WIP distribution. 

 
The inner loop of the algorithm (Figure 3) works as 

follows. The capacity model already described in Section 
3.2 is used for setting up the capacity constraints. These 
constraints must be formulated separately for every time 
bucket, for which an operation is to be scheduled. If the 
constraint is not satisfied in a certain time bucket, the con-
secutive node of the search tree will be checked. This node 
represents the successor of the time bucket, where the 
check has failed. 
 

Start with operation oi. 

Choose next operation.

Bucket capacity feasible?

Plan into this bucket.

StopAll operations planned?

Find appropriate time bucket on the tool group associated with oi.  

Update of the capacity of the tool group associated with oi.

Find a capacity 
feasible bucket
by backtracking.yes

yes

no

no

 
Figure 3: Inner Loop of the Planning Algorithm 

 
At the moment, we build a new plan from scratch dur-

ing each rescheduling activity. It should be possible to 
avoid the calculation of an entire new plan by scheduling 
only lots that show a deviation from the planned start dates 
of the current operation. However, more research is needed 
to work out the details. 
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3.4 Implementation Issues of the Algorithm 

After running into problems with homemade tree libraries, 
mainly due to the size of the search trees, we decided to 
use classes from the ILOG library (Le Pape 1994).  

The classes of ILOG Solver provide a framework for 
modeling and solving constraint programming problems 
and make very efficient use of memory. The library sup-
ports especially the implementation of backtracking algo-
rithms on tree structures. For the implementation of our al-
gorithm, we modified ILOG’s implementation class 
IlcConstraintI and the handle class IlcConstraint, and for-
mulated different constraints. 

This way we implemented the technological con-
straints for the sequence of the operations and the non pre-
emptions of the operations. The third constraint that we 
modeled with the help of these classes is the beam width.  

Different required input data like processing times of 
operations, capacities of tool groups and lengths of time 
buckets are modeled with objects of the class IloNumArray. 

4 SIMULATION MODEL 
 
We use a discrete-event simulation tool and a simulation 
model of a wafer fab to evaluate the performance of our 
algorithm. This approach is widely used in the research 
community to estimate the performance of new algorithms 
(cf. Horiguchi et al. 2001 and Toba 1999).  

We used the basic architecture described by Mönch et 
al. (2002) including the simulation tool AutoSched AP 7.1. 
The center point of this architecture is a data storage, 
called data model, that contains all information required in 
order to run the production scheduling algorithm. We ex-
tended the data model by additional classes and attributes 
to make it usable for the beam-search-algorithm. The basic 
architecture can be seen in Figure 4. Most of the data listed 
as input requirements of the algorithm can be read from the 
simulation model (as static and dynamic data). 

 

Simulation Model

Data Model

Beam Search
Algorithm

ILOG-Solver
Libraries

 
Figure 4: Integration of the Beam-Search-Algorithm in the 
Simulation Environment 
Because the simulation tool included the AP Frame-
work, written in the C++ programming language, the integra-
tion of the ILOG solver libraries requires only little effort. 

We used the MIMAC test data set 1 (Fowler and Rob-
inson 1995) in a slightly modified version. The simulation 
model used consists of two different process flows (A,B) 
with 200 process steps and over 80 different tool groups.  

We used a slack-based dispatching rule. The rule se-
lects the lot with the smallest slack for that process step. For 
the calculation of the slacks of the lots waiting in front of a 
certain machine we use the information given by the lot 
plan. For that purpose we determine first the amount of time 
for the process steps that are corresponding to non critical 
machines by simply multiplying the processing time by a 
suitable factor. The difference between the time assigned to 
the operation by the lot plan and this amount of time is then 
used to prescribe an amount of time to the critical process 
step of the operation. By using this scheme it is possible to 
determine end dates for the single process steps.  

In our experiments, we used a moderate workload of 
the system. Machine failures are exponentially distributed. 
We used a forecast horizon of three month. The model is 
initialized by using a work in process (WIP) distribution of 
the wafer fab. The length of a single simulation run was 
100 days in our experiments. We take five independent 
replications of each simulation run in order to obtain statis-
tically significant results. 

 
5 COMPUTATIONAL RESULTS 
 
In this section we present the results of computational ex-
periments. We performed three different types of experi-
ments. The following performance measures were used: 
 

• Average tardiness of the lots released and finished 
within the planning horizon under consideration. 
We define the tardiness of lot iL  as follows: 

 

 )dC,0max(:T i
r
ii −= , (6) 

 

where we denote by r
iC  the realized completion 

time of lot iL . In order to derive the performance 

measure we sum over the corresponding iT  for all 

lots and divide the sum by the number of lots. We 
denote this quantity by averT . 

• Average predictability of the plans. Because the 
planned completion times of the lots will change 
over time, we use the completion time of the first 
plan that contains the lot as a fixed reference. We 
define the positive and negative deviation of the 
(first) plan as follows: 

 

{ }0,CCmax:D p
i

r
ii −=+ , (7) 
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{ }0,CCmax:D r
i

p
ii −=− , (8) 

 

where we denote by p
iC the expected completion 

time of lot iL  obtained by the first plan. We sum 

over the quantities (7) and (8) for all correspond-
ing lots and divide this sum by the number of lots 
to derive the performance measures for predict-
ability. The corresponding quantities are denoted 

by +
averD  and −

averD . 

• Average cycle time of product P: )P(CT . 

• Throughput of the wafer fab (number of com-
pleted wafer): TP. 

 
In a first series of experiments, we are interested in 

answering the question, how the frequency of planning in-
fluences the system behavior. We set the length of the re-
planning interval as 24 hours. We used the following time 
bucket sizes given in Table 1 in our experiments. 
 

Table 1: Time Bucket Settings (Scenario 1) 
Time Size of the Time Bucket 

0 – 1 day 1h 
1 day – 7 day 4h 

7 day – 14 day 8h 
14 day - end 24h 

 
We find the results of the beam-search-algorithm in the 

case of four fixed bottlenecks of the line in Table 2. We con-
sider only the bottleneck tool groups for capacity modeling. 
In Table 2 we present the resulting performance measures in 
terms of the ratio of the value obtained by the beam-search-
algorithm to the corresponding value of the infinite capacity 
algorithm (ICA). The corresponding values for the infinite 
capacity algorithm described in Section 2.2 can be found in 
the last row of Table 2. Clearly, the algorithm is sensitive to 
flow factor (FF) setting. The beam-search-algorithm outper-
forms the infinite capacity algorithm.  
 
Table 2: Results for Different Flow Factors based on 
Beam- Search-Algorithm with Four Bottlenecks 

FF averT  +
averD  −

averD  CT(A) CT(B) TP 

1.5 0.957 0.640 12.551 1.043 0.917 1.010 
1.6 0.900 0.599 13.993 1.034 0.905 1.015 
1.7 0.942 0.589 17.919 1.035 0.917 1.012 
ICA 1.000 1.000 1.000 1.000 1.000 1.000 

 
In the next experiment, we fixed the flow factor and 

investigated the influence of a more detailed modeling of 
bottleneck resources. From Table 3 we can verify that an 
increase in the number of modeled tools also leads to an 
improvement of the performance measures. In Table 3 we 
present the resulting performance measures in terms of 

 

the ratio of the value obtained by the beam-search-
algorithm to the corresponding value of the infinite ca-
pacity algorithm (ICA).  

We performed a second experiment in order to evalu-
ate the impact of the time bucket size setting to the per-
formance measures. In this experiment, we fixed the time 
bucket size as 8 hours. Again, as in the first experiment, we 
are interested in the values of the described performance 
measures. We compared the two different scenarios. Sce-
nario 2 and scenario 3 are described in Table 4.  

 
Table 3: Results for Different Number of Modeled Bottle-
necks (BN) based on Beam-Search-Algorithm (Flow  
Factor = 1.5) 
#BN averT  +

averD  
−
averD  CT(A) CT(B) TP 

4 0.957 0.641 12.551 1.043 0.917 1.010 
14 0.910 0.725 10.503 1.036 0.905 1.016 

ICA 1.000 1.000 1.000 1.000 1.000 1.000 
 
Table 4: Different Time Bucket Settings (Scenario 2 and 
Scenario 3) 

Time Size of the Time Bucket 
Scenario 2 

0 day – 14 day 4h  
14 day - end 24h  

Scenario 3 
 0 day- 14 day   8h 
14 day - end 24h  

 
In Table 5 we find the performance measures of inter-

est. It can be seen from Table 5 that we get similar results 
for the three scenarios. We conclude from these results that 
a finer grid at the beginning of the planning horizon (sce-
nario 1) does not lead to better results, but it increases the 
time required for computing. 
 
Table 5: Results for Different Time Bucket Settings with 
14 Bottlenecks (Flow Factor = 1.5) 

S averT  +
averD  

−
averD  CT(A) CT(B) TP 

1 0.910 0.725 10.503 1.036 0.905 1.016 
2 0.918 0.728 12.519 1.036 0.906 1.011 
3 0.945 0.752 11.604 1.033 0.923 1.009 

ICA 1.000 1.000 1.000 1.000 1.000 1.000 
 

We study the impact of flow factor setting and de-
tailed modeling of bottleneck tool groups to the perform-
ance measure average predictability of the plans in Figure 
5. We present the resulting performance measures in terms 
of the ratio of the value obtained by the beam-search-
algorithm to the corresponding value of the infinite capac-
ity algorithm (ICA). In the case of negative deviation we 
divide the relative values by ten for scaling purposes. We 

see that the ratio of −
averD  increases with increasing flow  



Habenicht and Mönch 
 

P re d ic ta b ility D e p e n d in g  o n  F lo w  F a c to r   S e ttin g   a n d   B o ttle n e c k   M o d e lin g

0 ,000

0 ,200

0 ,400

0 ,600

0 ,800

1 ,000

1 ,200

1 ,400

1 ,600

1 ,800

2 ,000

0 ,9 1 ,1 1 ,3 1 ,5 1 ,7 1 ,9 2 ,1

F lo w   F a c to r

D
ev

ia
ti

o
n

 (
R

el
at

iv
e 

to
 IC

A
)

D e v ia tio n  p lu s  (1 4  B N )

D e v ia tio n  p lu s  (4  B N )

D e v ia tio n  m in u s  (1 4  B N )

D e v ia tio n  m in u s  (4  B N )

 
 

Figure 5: Impact of Flow Factor Setting and Number of Modeled Bottlenecks on the Predictability 

 

factor. On the other hand, the ratio of +
averD  decreases with 

increasing flow factor. As expected, the flow factor setting 
is crucial for the performance of the beam-search-
algorithm. In the case of more detailed bottleneck model-
ing the positive deviation is not so sensitive to the flow 
factor setting. As expected, the proposed algorithm demon-
strates some advantage compared to the infinite capacity 
algorithm described in Section 2.2. Our results agree with 
the results of Horiguchi et al. (2001). However, the authors 
of this paper considered a simpler algorithm that does not 
leave so much room for improvement. 

6 CONCLUSIONS 
 
In this paper we presented a finite-capacity beam-search 
for lot planning in a semiconductor wafer fab. We de-
scribed the basic features of the algorithm and explained 
some implementation details. We presented a simulation 
test-bed to investigate the performance of the algorithm.  

The proposed algorithm is considered for an integra-
tion in a more general framework of distributed (i.e., agent-
based) hierarchical production control of semiconductor 
wafer fabs (cf. Vargas-Villamil and Rivera 2001 and 
Mönch 2001 for hierarchical and distributed production 
control of wafer fabs).  

In the future, we will investigate different rescheduling 
strategies and we will consider more complex wafer fabs.  
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