
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

SIMULATION BUILDING BLOCKS FOR AIRPORT TERMINAL MODELING

Alexander Verbraeck
Edwin Valentin

Systems Engineering Group

Faculty of Technology, Policy and Management
Delft University of Technology

Jaffalaan 5, 2628BX Delft, THE NETHERLANDS

ABSTRACT

Airports are an ideal application area for simulation. The
processes are in a continuous state of change, are complex
and stochastic, involve many moving objects, and require a
good performance that can be measured in several different
performance indicators. Within airports, but also between
airports, the same kind of questions are answered over and
over again. Often, however, new simulation models are
built for each question, if possible copying some parts of
previous models. Structured reuse of simulation compo-
nents is rarely seen. This paper shows an approach for air-
port terminal modeling that departs from the assumption
that reusable simulation building blocks can form the core
of a powerful airport modeling tool, which is able to an-
swer different questions at airports better and faster than
traditional models. The building blocks have been imple-
mented in the commercially available simulation language
eM-Plant. Several studies carried out with this library were
very successful.

1 INTRODUCTION

The world-wide airline industry is growing with about 4%
per year on average – varying from 2% in the USA to al-
most 6% in Asia. This growth is hard to accommodate.
Building new airports is almost impossible, because they
should be built close to large cities to function properly. In
the neighborhood of large cities space is scarce, the envi-
ronmental constraints such as noise are very severe, and
the NIMBY – Not In My Back Yard – protests are ex-
treme. Solutions that can increase capacity while not in-
creasing the infrastructure and land use are often consid-
ered best. Usually, airport extensions and measures that
increase the efficiency of the existing facilities are the only
available solution for the growth problem.

This makes processes on and around airports ideal for
simulation studies. The systems are complex, the numbers of
entities involved are high, and the systems are in a continu-

ous state of change. The boundary conditions for solutions
are interesting, because solutions have to comply with strict
regulations, financial limits, and environmental conditions.
Discrete event simulation is often used to model systems
where complex – often logistic – processes are combined
with a limited infrastructure capacity. We therefore see that
simulation is often used for studying airport processes (Ba-
beliowsky, 1997, Bitauld et al., 1997, Snowdon et al., 1998,
Gatersleben and Van der Weij, 1999, Joustra and Van Dijk,
2001). When looking at the issues at and around airports that
are covered by simulation studies, we see that there are a lot
of different domains covered, each having close links with
one or more other domains. Examples are air traffic control,
airline schedule optimization, airline crew assignment, air-
strip management and taxiing, airport gate planning, airport
terminal and passenger modeling, airport baggage handling,
air cargo handling, airport road network and parking, inter-
terminal passenger transport, and public transport to and
from the airport. As most of these application areas have re-
lations with others, managing the interrelations between
modeling studies is difficult.

Several studies have focused on one of the most im-
portant customers of the airport, the passenger. Especially
in the highly dynamic situations at airports, the interaction
between passengers and airport processes – airport access,
parking, check-in, customs, shopping, eating and drinking,
waiting, boarding, and baggage reclaim – is extremely dif-
ficult to control and predict. Passengers have a free will,
and do not always behave as intended. Especially when
there are delays or when the terminal capacity is near its
limit, simulation studies can be a big help to support deci-
sion making for changes that will improve the airport’s
processes. When the passengers are satisfied, the airlines,
which is the other important category of customers of the
airport, also benefit.

Babeliowsky (1997) and Joustra and Van Dijk (2001)
describe a number of simulation models that have been
developed for terminal modeling at Amsterdam Airport
Schiphol. The models are implemented in a commercial

Verbraeck and Valentin

simulation language and tend to become big. The models
take, as a result, quite some time to build and are hard to
change and maintain. Frequent maintenance is necessary,
because airports are in a continuous state of change.
Furthermore, it turns out that the same type of questions
are asked over and over again at different airports. For
each airport new models are usually built, although the
questions are quite similar. Even at one airport, new
questions need to be answered again and again, due to
external changes such as new flight schedules and internal
changes such as terminal extensions. Changing the existing
models takes quite some time, so answering new questions
takes usually more time than desirable. Finally, different
models often have to use the same data-sets or scenarios,
such as the expected number of passengers, the airlines that
use the airport, and the flight schedule.

One possible solution challenges in complex airport
modeling for passenger terminal studies is to use a library
of pre-configured airport building blocks (Valentin and
Verbraeck, 2002). These building blocks speed up the ini-
tial modeling process, and they also help in quickly replac-
ing model parts by alternatives. In this paper, we will study
a developed library of simulation building blocks from
which a model of a passenger handling process at an air-
port terminal can be quickly modeled. All relevant proc-
esses at the terminal are included, such as check-in, cus-
toms, shopping, boarding, and baggage reclaim. Section 2
shows some of the design choices, which are worked out in
more detail in section 3, where the building blocks are
shown. Section 4 demonstrates the use of building blocks
by showing an example of a model of Amsterdam Airport
Schiphol, and it shows how the user interface and statisti-
cal analysis are implemented.

2 DESIGN CHOICES

In our case, building blocks are not pure objects. With ob-
ject orientation, the emphasis of the modeling process lies
on identifying the right classes, finding the inheritance re-
lations between the classes, and defining the attributes and
methods of the objects (Joines and Roberts, 1998). With
building blocks, the emphasis lies on clear functionality
and clear interfaces of the building blocks.

In an iterative process, where several architectures
have been proposed by a small design team, we chose an
architecture that makes a distinction between four types of
building blocks:

1. infrastructure building blocks
2. passenger or group building blocks
3. passenger behavior building blocks
4. control building blocks

The infrastructure building blocks capture the static

lay-out of the terminal. Infrastructure building blocks can for
instance model corridors, waiting rooms, lounges, shops,
restaurants, check-in desks, etc. In general, we call this type
of building block an area. The main characteristic of an area
is that it is static in terms of the size and location in the over-
all graph of the terminal complex. Passengers ask ‘permis-
sion’ to enter an area, which is granted or delayed based on
the available and used capacity of the area. A customs area
has for instance a capacity of one person, meaning that a
person from a neighboring area can not enter the customs
area until the current person has left. Because every area has
a double function of delaying a passenger and queuing pas-
sengers, a natural waiting and delay pattern occurs in the en-
tire terminal complex. Even stairs or a lounge can hold pas-
sengers when a neighboring area is full. The areas are
connected to each other, and together they form a graph of
the terminal complex. Areas can have a walking distance
and a size (width), and they are bi-directional or uni-
directional. Based on the distance, the number of persons in
the area, the uni or bi-directional character, and the autono-
mous speed of the area (elevator, escalator, or conveyor) an
average walking speed can be calculated for a person enter-
ing the area, and thereby the time spent to reach the end of
the area. At the end of the area, a person has to ask again to
enter the next area. When granted, the passenger leaves the
current area, and enters the next one. When the next area is
full, the person stays in the area and waits in an artificial
queue until access is granted. The order of the areas to go
through to get from origin to destination is based on a short-
est path algorithm that has access to the entire graph. Several
alternatives for the shortest path algorithm are available,
which are discussed in section 3.3. From the generic concept
of an area, several types can be distinguished. The types we
incorporated into our airport terminal library, are discussed
in section 3.1.

The objects using the infrastructure are the passengers.
In our case, we decided not to model individual passengers,
but groups of persons instead. When studying airport proc-
esses, it is clear that a family moves in a different way
through the airport than a single person. Take check-in for
example. The family checks in as a group. They also have
the same speed when moving through an area. They only en-
ter the next area if they can all enter. For some individual
processes – for example customs or one family member who
goes shopping alone – the group might be temporarily split,
and recombined later. Please note also that not all persons
who are present at an airport are passengers. Crew members
and support personnel also use the areas, and can be mod-
eled just like the passengers. Passengers are often accompa-
nied by friends or relatives when they are arriving or depart-
ing. These persons also use the infrastructure and should be
modeled to get a clear indication of infrastructure use.

Different types of passengers show a different behavior.
There are many aspects of behavior that should be taken into
account when modeling airport passenger processes in de-
tail. The kind of behavior that a group has during the stay at

Verbraeck and Valentin

the airport is called a script. A script is a kind of small pro-
gram that tells a group what to do and where to go, in a
number of cases using ‘if’ statements to indicate the condi-
tions under which a group might carry out an action or go to
a certain place. Whether a group of persons will go shopping
is for instance depending on the type of passenger and the
time left till boarding. The most important attributes of a
group of persons are group size, average walking speed,
number of suitcases, arriving or departing, flight number,
type of passenger (business or tourist), and a log of times for
important activities for generating statistics.

There are special building blocks called generators
that generate the passengers based on the flight schedule.
Several choices are made for each group that is generated.
The group size is based on a stochastic distribution. The
type of passenger is based on a probability that is depend-
ing on the flight number. The walking speed per passenger
is based on a stochastic distribution. Some flights such as
charters have more inexperienced passengers than others
lowering the walking speed. The group walking speed is
calculated as the minimum of the individual walking
speeds of the group members. The time of arrival at the
airport of the departing passengers is based on a distribu-
tion function per airline with the arrival distribution of pas-
sengers. The number of accompanying persons per group
based on a distribution function. The script of the group is
selected from a list of scripts with a chance for giving that
script. There could, for instance, be a script BUSINESS
with a chance of 0.10 for a flight, and an average group
size of 1, a script FAMILY with a chance of 0.45 and an
average group size of 2, and a script WELL-WISHER with
a chance of 0.30 and an average group seize of 2. For a
flight of 300 persons, there are about 300*0.1*1 = 30 busi-
ness passengers and about 300*0.45*2 = 270 family pas-
sengers in about 135 groups on this flight. In addition,
there are 300*0.3*2 = 180 well-wishers.
 The final category of building blocks are the control
building blocks. Control building blocks can be control
processes of the airport itself, such as allocating a reclaim
belt to a certain flight, choosing a check-in desk row, or
determining at which gate a flight will be handled. Control
building blocks can also be artifacts that one does not see
at the airport, but which are present for reduction of the
complexity of the simulation model. An example is the
‘shortest path algorithm’ for passenger movement between
the areas. In reality, there is no shortest path algorithm, but
signs telling the passengers where to go. In our case, we do
not explicitly model the signs, and assume that the airport
indicates the shortest route to arrive at a destination.

3 AIRPORT TERMINAL BUILDING BLOCKS

For each of the categories, examples of a number of char-
acteristic building blocks are shown, and discussed in more
detail.
3.1 Infrastructure Building Blocks

The whole idea behind the infrastructure or area building
blocks is to have a simple mechanism to have passenger
groups move through the airport. The mechanism of enter-
ing an area, spending time in an area, and leaving the area
to enter a next area is simple to understand, yet very pow-
erful. Figure 1 shows some of the areas that can be distin-
guished in the airport terminal library. The main distinction
is between single areas, and compound areas. The com-
pound areas consist of one or more generic areas, which on
their turn can again be compound areas. With this hierar-
chy, the building block concept becomes extremely power-
ful, as we can now include entire check-in desk rows, re-
claim areas, or gate areas as building blocks in our
modeling library. The check-in and the gate are shown as
examples in figure 1.

GenericArea

SingleArea

CompoundArea

W alkArea

SittingArea LeisureArea

HandlingArea

W alk2DArea ConveyorArea

ShopArea

GateArea

CheckInArea

Custom Area

<abstract>

Figure 1: Partial Inheritance Tree of the Area Building
Blocks

Each area building block is responsible for gathering

statistics about numbers of passengers, waiting times, and
capacity use. Furthermore, each building block has a user
interface for entering data for its characteristics. Areas
might also have methods for showing animation, for set-
ting the parameters for resource behavior, and for deter-

Verbraeck and Valentin

mining the time it takes to let a passenger through. To
standardize these functionalities, each model building
block is built out of so-called building block elements. Fig-
ure 2 shows the building block elements of a single area.
Figure 3 shows that in case of compound areas, the number
of building block elements can grow considerably.

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeType

Figure 2: Building Block Element Single Area

MissionControl

CompoundArea
Area

animation
Stats SingleArea

Area
animation

Stats Resource
behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeType

MissionControl

CompoundArea
Area

animation
Stats SingleArea

Area
animation

Stats Resource
behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeTypeMissionControl

CompoundArea
Area

animation
Stats SingleArea

Area
animation

Stats Resource
behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeTypeMissionControl

CompoundArea
Area

animation
Stats SingleArea

Area
animation

Stats Resource
behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeType

SingleArea
Area

animation
Stats Resource

behavior

Capacity
Control

Handling
TimeType

Figure 3: Complex Compound Area Consisting of 4 Single
Areas, Mission Control, and 3 Other Compound Areas

Figure 3 shows that a more complex compound area

might need control blocks – the mission control – to de-
termine the overall behavior. Here the mission control is
shown as one building block element, in reality, there are
several building block elements available to model the con-
trol functions of the compound area. The statistics building
block element is available at all levels, enabling the analyst
to drill-down from a high level analysis of area use of an
overall terminal or concourse to a detailed analysis of indi-
vidual areas that cause a problem.

3.2 Group Building Blocks

The group building block is quite simple. It consists of a
number of attributes such as group size, walking speed,
flight number, and script. Of course a group also calculates
a number of statistical parameters. Separate attributes exist
for summing the queuing times, waiting times, leisure
times, handling times, etc. The only activity of a group is
to carry out its script and to update its statistics based on
the activity in the area and the waiting time for the next
area. A group can have an animation representative that
displays itself on the screen. In our case, the icons of the
animated groups consist of a number of dots that indicate
the group size.

3.3 Group Process Building Blocks

One of the most interesting features of the implemented
airport terminal building block library is the fact that each
group of passengers carries out its own script that has been
given to the group by the group generator control block. A
special language has been made for the script, and each
group has a script interpreter that carries out the script lines
one by one. Each script line consists of two parts: a method
name and one or more parameters. The method name is the
string representation of the script methods that each group
possesses. There can be zero or more parameters that the
method expects when carrying out the method. Some
methods lead to changes in the destination, impacting the
next area the person will go to. Other script statements
such as DetermineRestTime make a calculation that can
later be used. Finally, there are statements such as Wait-
ForBoard that wait for a – usually flight related – event to
take place.

Table 1: Example of a Group Script

method parameter(s)
SetDestType Checkin
DetermineRestTime -1
SpendRestTime DelayResttime
SetDestType CheckinArea
DetermineRestTime -1
DelayFor min(CurrentGroup.RestTime,

Uniform(1,300,600))
SetDestType Customs
DetermineRestTime -1
SpendRestTime DelayResttime
SetDestType GateArea
WaitForBoard
SetDestType Gate
WaitForFlight
LeaveSystem

Below, a number of examples of methods that can be
used in a script are given:

• SetDest(“CustomsWest”) – the current destina-

tion will be changed to an area called Cus-
tomsWest.

• SetDestType(“Gate”) – the SetDestType state-
ment looks up the instance of a certain category in
a corresponding control block and sets the re-
solved area as destination. For “Checkin” the area

Verbraeck and Valentin

will be the check-in row of the group’s flight.
“GateArea” is a free space in the neighborhood of
the gate. For “Gate” the destination will be the
gate of the flight. For “Customs” the destination
will be the nearest instance of a customs area.

• WaitForBoard – waits for a trigger that the board-
ing process and final safety check will start. The
passengers will try to move to the secure area near
the gate.

• WaitForFlight – waits for a trigger to occur that
the flight will depart. The passengers will try to
move to the bridge or bus that connects the gate
area to the plane.

• DetermineRestTime(-1) – calculate the time that
is left before the flight departs, and store it in a
group attribute called CurrentGroup.RestTime.
The “-1” parameter determines the way the rest
time will be calculated (e.g. with or without tak-
ing the walking time to the gate into account).

• SpendRestTime(“TaxFree”) – look up the nearest
area of type “TaxFree” in the corresponding con-
trol block, and spend the calculated rest time in
one of the tax-free shops.

The scripts can be made as complex as the modeler

wants. If necessary, if-then-else or while control statements
are available to carry out parts of the script conditionally or
repetitive. Because each statement in the script language
points to a method to be carried out, the script is easily ex-
tendible. When the modeler needs a new script statement,
only the corresponding method needs to be added to the
generic script interpreter of the group class, and each group
can from that moment on use this script statement to carry
out the new task. In the script interpreter, easy access is
given to a number of generic control building blocks and to
the group’s own attributes.

3.4 Control Building Blocks

The control building blocks carry out tasks that are outside
the observation of the passengers, but that influence their
behavior.

The most important control building block is the flight
information. The flight information building block can read
a detailed flight table from a file or database, and make it
available for the other control building blocks. Several
methods in the flight information building block ease the
access to the flight table. Functionality offered by the flight
information building block is for instance making available
information for the opening and closing of check-in desks,
scheduling the actual arrival or departure of flights, and
triggering the boarding process based on the real departure
time of the flight. Rosenberger et al. (2000) show that the
real schedule of departing and arriving planes has a lot of
randomness. Disruptions can cause large differences be-
tween the ETA and ATA – Expected and Actual Time of
Arrival – and the ETD and ATD – Expected and Actual
Time of Departure. Therefore, we decided to make an ex-
plicit distinction in the flight information building block
between the expected, scheduled times and the actual
times. Departing passengers, for instance, base their time
of arrival in the airport terminal on the ETD, and therefore
spend a lot of extra time, and occupy more space than
planned, when a delay occurs. It is for these types of delays
that the airport terminal capacity needs to be prepared.

A control block that is used by the groups is the short-
est path control block. Actually, this building block is a
simple replacement for group objects to use when they are
moving from their current position to a destination. Rather
than modeling the signs at the airport in detail, we chose to
simplify the models in this respect. Because the areas are
connected, the set of areas forms a graph for which the
shortest path algorithm can be run once, at the start of the
simulation. Two tables are filled that are optimized for
speed when a group asks for the next area it should go to
for reaching its destination. After some experimentation, it
turned out that rather than the lengths of each area, the re-
sistance of the area is a better indicator for the attractive-
ness for the passengers. In our first implementation for
Schiphol Airport, passengers went through customs twice –
first leaving the international terminal, and afterwards en-
tering the international area at another location – when the
distance was shortest. When modeling a customs area with
a high resistance, passengers suddenly tried to avoid the
customs desks, except when their scripts told them to ex-
plicitly go through. Similar actions can be taken for having
passengers use escalators rather than stairs, or avoiding in-
frequently scheduled elevators – which move very effi-
ciently from one floor to another – again, except when the
script of a group with at least one disabled person forces
the group to use an elevator.

There are also control blocks for check-in desk as-
signment, baggage belt assignment, gate assignment, and
several other flight specific resource allocations. The pas-
senger groups can ask through the SetDestType script
statements to go to the right check-in desk or transfer desk,
baggage belt, or gate. Allocation can be detailed per flight,
or more rough per airline. Because the interfaces for the
building blocks are standardized, many implementations of
these building blocks can be made with different algo-
rithms, or even connecting to databases or systems.

A final control building block is the statistics control
block, which is responsible for calculating statistics at
regular time intervals. The statistics building block can, for
instance, ask all areas every hour to report and reset their
statistics gathered during the past hour. The building block
elements (see figures 2 and 3) help tremendously, because
the interfaces of the statistics gathering functions are stan-
dardized in each area class. Passengers report all gathered
statistics to the statistics control building block when they

Verbraeck and Valentin

leave the system. Another item they report to the statistics
is whether they caught their flight or not. Especially for
transfer passengers, and on airports with large distances,
the number of passengers that miss their flight is an impor-
tant indicator for the quality of the processes.

4 IMPLEMENTATION EXAMPLE

The library building blocks have been implemented in the
object oriented simulation language eM-Plant of Tecno-
matix (2001). Several tests for different airports have been
carried out with the library. In this paper, an example is
shown of a full terminal implementation for Amsterdam
Airport Schiphol. Figure 5 shows the high-level model of
the implementation of the entire airport terminal. Figure 6
shows the generated animation of the F-pier of Amsterdam
Airport Schiphol, where passenger groups of different sizes
move through the pier. The animation is shown using the
animation building block elements in the CompoundArea
model building blocks. The building of the initial model
could be carried out very fast, the first good working ver-
sion was ready within two weeks. Later, the model has
been extended for new use, for instance for testing the
evacuation procedures at the airport. During evacuation,
each passenger group is given a new script by a special
evacuation control block with one statement: SetDest-
Type(“Exit”).
 Usually, it is quite time consuming to create the user
interface for a large number of building blocks. In our case,
this turned out to be much simpler, due to the choice for
the building block elements (figures 2 and 3). Each build-
ing block element was given its own user interface that
needed to be implemented only once per building block
element. The only thing the building block developer needs
to do for the user interface of the building block is provid-
ing input fields for the specific parameters. Buttons for
each building block element which contain the element’s
own user interface when clicked, are automatically added.
Using this functionality, we can ensure that the user inter-
face for similar parts in the tool is always the same. It also
reduces the amount of work for developing new building
blocks considerably.
 The output of the model is of course also very impor-
tant, because it is the major information on which the deci-
sion makers base their decisions. In order to allow for a use
of the building blocks in many different decision situa-
tions, many different types of statistics are gathered in the
model. To avoid an overload of generated information, the
user can decide to gather all statistics, or only a subset per
building block. It is the responsibility of the statistics con-
trol building block to turn the gathered data – that is gath-
ered by the statistics building block elements in the other
building blocks – into information during the run, or into
files that can be analyzed later. Again, several different in-
stances of the statistics control building block can exist, of
which one can be chosen and inserted into the model. Re-
placing the way statistics are written away has thereby be
reduced to an action of seconds instead of days. We have
tested an implementation where all information gathered
was immediately written to external files. This produced so
many megabytes of information in hundreds of files, that it
was unworkable. For several examples, we have therefore
chosen to use a statistics block that writes away hourly in-
formation to a number of files, which can be studied using
e.g. Excel. This worked very well. An example is shown in
figure 4, where the number of passengers in the central
check-in area is shown during 24 hours of operation on a
busy day. A graph like this can be generated in a matter of
minutes on the basis of the information on file.

.OTC.D epartureC entral

0

100

200

300

400

500

600

0 3600

7200

1080
0

1440
0

18000

216
00

2520
0

28800

32400

36000

3960
0

43200

46800

504
00

5400
0

57600

61200

648
00

6840
0

72000

75600

7920
0

8280
0

86400

Figure 4: Example of Gathered Statistical Output

5 CONCLUSIONS

The choices we made for the implementation of the airport
library resulted in very flexible and powerful models and a
well maintainable library. One of the main reasons is the
set of well-defined model building blocks with clear re-
sponsibilities. The standardization of interfaces helps to
quickly replace one implementation of a building block by
another version. The separation between infrastructure –
static – and passenger behavior – dynamic – made the
modeling of complex airports easy. Both the scripts and
compound infrastructure areas are now reusable, and can
be joined in a model in any combination. The separation
between the infrastructure and control building blocks also
contributed to the reusability. We expect that faster model-
ing and easier maintenance will also occur during day-to-
day use of these concepts. This has, however, still to be
tested in practice.

REFERENCES

Babeliowsky, M. Designing Interorganizational Logistic
Networks. Ph.D. Thesis, Delft University of Technol-
ogy, 1997.

Bitauld, P., K. Burch, S. El-Taji, E. Fanucchi, M. Monte-
vecchi, J. Ohlsson, A. Palella, R. Rushmeier and J.

Verbraeck and Valentin

Figure 5: High-Level Building Blocks in the Schiphol Model

Figure 6: Animation of the F-Pier in the Model

Verbraeck and Valentin

Snowdon. “Journey Management”. In: OR/MS Today,
October 1997, pp. 30-33.

Gatersleben, M.R. and S. van der Weij. “Analysis and
Simulation of Passenger Flows in an Airport Termi-
nal”. In: P.A. Farrington, H.B. Nembhard, D.T. Stur-
rock, and G.W. Evans, eds., Proceedings of the 1999
Winter Simulation Conference. Piscataway, NJ: IEEE,
1999, pp. 1226-1231.

Joines, J.A. and S.D. Roberts. “Object-Oriented Simula-
tion”. In: J. Banks (ed.), Handbook of Simulation.
New York: Wiley, 1998.

Joustra, P.E. and N.M. Van Dijk. Simulation of Check-In
at Airports. In: B.A. Peters, J.S. Smith, D.J. Medeiros
and M.W. Rohrer, eds., Proceedings of the 2001 Win-
ter Simulation Conference. Piscataway, NJ: IEEE,
2001, pp. 1023-1026.

Rosenberger, J.M., A.J. Schaefer, D. Goldsman, E.L. John-
son, A.J. Kleywegt and G.L. Nemhauser. “SIMAIR: A
Stochastic Model of Airline Operations”. In: J.A.
Joines, R.R. Barton, K. Kang, and P.A. Fishwick, eds.,
Proceedings of the 2000 Winter Simulation Confer-
ence. Piscataway, NJ: IEEE, 2000, pp. 1118-1122.

Snowdon, J., S. El-Taji, M. Montevecchi, E. MacNair,
C.A. Callery, and S. Miller, “Avoiding the Blues for
Airline Travelers”. D.J. Medeiros, E.F. Watson, J.S.
Carson, and M.S. Manivannan (eds.), Proceedings of
the 1998 Winter Simulation Conference, Piscataway,
NJ: IEEE, 1998, pp. 1105-1112.

Tecnomatix. User Manual eM-Plant 4.6. Stuttgart, Ger-
many, 2001.

Valentin, E. and A. Verbraeck. “Simulation Using Build-
ing Blocks”. In: F. Barros and N. Giambiasi. Proceed-
ings AIS’2002. San Diego: SCS, 2002, pp. 65-70.

AUTHOR BIOGRAPHIES

ALEXANDER VERBRAECK is an associate professor
in the Systems Engineering Group of the Faculty of
Technology, Policy and Management of Delft University
of Technology, and a part-time full professor in supply
chain management at the R.H. Smith School of Business of
the University of Maryland. He is a specialist in discrete
event simulation for real-time control of complex
transportation systems and for modeling business systems.
His current research focus is on development of generic
libraries of object oriented simulation building blocks in
C++ and Java. Contact information: <a.verbraeck
@tbm.tudelft.nl> www.tbm.tudelft.nl/web
staf/alexandv

EDWIN VALENTIN is a researcher in the Systems
Engineering Group of the Faculty of Technology, Policy
and Management of Delft University of Technology. His
specialty is the development of domain-dependent generic
discrete-event simulation libraries. Edwin participates in
the BETADE research program on developing new
concepts for designing and using building blocks in
software engineering, simulation, and organizational
modeling. Contact information: <edwinv@tbm.
tudelft.nl> www.tbm.tudelft.nl/webstaf/
edwinv

http://www.tbm.tudelft.nl/web staf/alexandv
http://www.tbm.tudelft.nl/web staf/alexandv
http://www.tbm.tudelft.nl/webstaf/ edwinv
http://www.tbm.tudelft.nl/webstaf/ edwinv

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1199
	02: 1200
	03: 1201
	04: 1202
	05: 1203
	06: 1204
	07: 1205
	08: 1206

