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ABSTRACT 
 
When the systems under investigation are complex, the 
analytical solutions to these systems become impossible. 
Because of the complex stochastic characteristics of the 
systems, simulation can be used as an analysis tool to 
predict the performance of an existing system or a design 
tool to test new systems under varying circumstances. 
However, simulation is extremely time consuming for most 
problems of practical interest. As a result, it is impractical 
to perform any parametric study of system performance, 
especially for systems with a large parameter space. One 
approach to overcome this limitation is to develop a 
simpler model to explain the relationship between the 
inputs and outputs of the system. Simulation metamodels 
are increasingly being used in conjunction with the original 
simulation, to improve the analysis and understanding of 
decision-making processes. In this study, artificial neural 
networks (ANN) metamodel is developed for simulation 
model of an asynchronous assembly system and ANN 
metamodel together with simulated annealing (SA) is used 
to optimize the buffer sizes in the system. 
 
1  INTRODUCTION 
 
When the systems under investigation are complex, as are 
often the case in manufacturing or other practical environ-
ments, analytical solutions to these systems become impos-
sible. Because of the complex stochastic characteristics of 
these systems, simulation can be used as an analysis tool to 
predict the performance of an existing system or a design 
tool to test new systems under varying circumstances. When 
designing a new system, the best combination of design 
variables (i.e., inputs) is investigated to optimize perform-
ance measures (i.e., outputs) of the simulation model. This 
procedure is simulation optimization. In this procedure, 
simulation model can be viewed as a stochastic objective 
function since it is not explicitly expressed in terms of deci-
 
sion variables. Different approaches for simulation optimiza-
tion are available in the literature. These approaches include 
standard non-linear programming techniques, response sur-
face methodologies, stochastic approximation techniques, 
pattern search techniques and random search techniques. A 
drawback of such approaches is that they terminate upon 
finding a local optimum. Recently, metaheuristics such as 
simulated annealing, genetic algorithms and tabu search 
have been successfully used in simulation optimization 
problems. Comprehensive reviews of literature on simula-
tion optimization have been provided by Glynn (1989), Me-
keton (1987), Jacobson and Schruben (1989), Safidazeh 
(1990), Fu (1994a,b), Carson and Maria (1997), Azadivar 
(1999) and Swisher et al (2000). However, simulation is ex-
tremely time consuming for most problems of practical in-
terest. As a result, it is impractical to perform any parametric 
study of system performance, especially for systems with a 
large parameter space. Systematic performance studies of 
most real world problems are beyond reach, even with su-
percomputers, unless substantial improvement in the speed 
of the performance evaluation process can be achieved. One 
approach to overcome this limitation is to develop a simpler 
model to explain the relationship between the inputs and 
outputs of the system. Simulation metamodels as simplified 
versions of simulation models are increasingly being used in 
conjunction with the original simulation, in an attempt to 
improve the analysis and understanding of decision making 
processes. 

 In this study, an artificial neural networks (ANN) 
metamodel was developed for simulation model of an 
asynchronous assembly system and ANN metamodel 
together with simulated annealing (SA) was used to 
optimize the buffer size in the system.  

 
2  LITERATURE REVIEW 
 
Barton (1992) had reviewed different simulation metamod-
elling techniques and illustrated that the methods based on 
parametric polynomial response surface approximations 
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are the most common. Recent years, artificial neural net-
works (ANN) have been used to obtain a simulation meta-
model. Although, Fishwick (1989) showed that regression 
metamodels were better than ANN metamodels, opposite 
results had been obtained by following  studies. Pierreval 
and Huntsinger (1992) proposed the use of ANN as a 
metamodelling technique for job-shop and percolator cof-
feepot simulation models. Kilmer and Smith (1993) dem-
onstrated that ANN metamodels show improved perform-
ance compared to first and second order linear regression 
metamodels for discrete event simulation models. Kilmer, 
Smith and Shuman (1994) used input-output training pairs 
from inventory simulation model to train two ANN, one 
estimating mean total cost and the other estimating the 
variance of total cost. They then used estimates of the 
mean and the variance of the cost produced by the ANN to 
predict confidence intervals for the inventory cost. Hurrion 
(1997) have used ANN to find optimum number of kan-
bans in a manufacturing system. In the study,  after an 
ANN metamodel for simulation model of the manufactur-
ing system was developed, the metamodel was used to-
gether with exhaustive search method to find optimum 
number of kanbans. Badiru and Sieger (1998) used the 
ANN as a simulation metamodel in the economic analysis 
of risky projects and investigated the effect of transfer 
functions on the performance of the ANN metamodels. 
Mollaghasemi et al. (1998) demonstrated that ANN can be 
used in conjunction with simulation models to provide a 
decision support system for designing manufacturing sys-
tems. In the study, ANN metamodel was developed to an-
swer inverse questions (i.e., to estimate the inputs that are 
required to obtain specific outputs) and authors investi-
gated the performance of the ANN metamodel. Hurrion 
(1999) studied the effect of factorial and random experi-
mental design methods for the development of regression 
and neural network simulation metamodels and showed 
that, for two example problems (JIT system and job-shop 
system), ANN metamodels using randomized experimental 
design procedure are more accurate and efficient meta-
models than those produced by similar sized factorial de-
signs with either regression or neural networks. Chan and 
Spedding (2001) developed an ANN metamodel for the 
simulation model of the assembly system of optoelectronic 
products and they used ANN metamodel and response sur-
face plot to find optimum six-sigma configuration of the 
assembly process.  Sabuncuoglu and Touhami (2002) de-
veloped ANN metamodel for a jobshop system and carried 
out extensive computational tests to represent the effec-
tiveness of ANN metatmodel.  

As it is seen in literature review that the ANN 
metamodel was used successfully in different systems. Our 
purpose is to extend to applicability of ANN metamodel 
for AAS and use ANN metamodel as a part of a search 
algorithm in simulation optimization. 
 

3  ASYNCHRONOUS ASSEMBLY SYSTEMS 
 

A closed, single loop, asnchronous assembly system (AAS) 
with the topology as shown in Figure 1, which was de-
scribed by Bulgak et al. (1995), was considered as a problem 
in the study. In this system, a set of assembly stations are ar-
ranged in tandem according to the order of assembly opera-
tions performed. The distance between any two adjacent sta-
tions (connected by a transfer chain or conveyor) and the 
pallet dimensions determine the number of pallets that can 
be accommodated between these adjacent stations. The 
maximum amounts for these work-in-process (WIP) inven-
tories between each pair of stations in the system (b1, b2, 
b3... in Figure 1) constitute the buffer sizes (capacities). Se-
lecting appropriate buffer sizes for the transport systems of 
automated manufacturing systems is a complex task that 
must account for random fluctuations in production rates by 
the individual stations as well as for transport delays that are 
a part of material handling system. If buffer sizes are too 
large, then transport delays are excessive and more in-
process inventories must be input into the system to 
accommodate the large buffer sizes. If the buffer sizes are 
too small, then small processing delays will cause the buffer 
to fill, and upstream stations will be blocked from releasing 
complete work piece. With a fixed number of pallets in the 
system, there is always an optimal configuration capable of 
reducing blocking and starvation effects considerably to 
yield a maximum possible production rate. Extensive litera-
ture review can be seen in Bulgak et al. (1995).  

The buffer size optimization problem in AAS is the 
following problem: Given a fixed total number of pallets to 
perpetually circulate in the system, find the optimal buffer 
configuration to yield maximum production rate for the 
AAS configuration depicted in Figure 1. Accordingly, the 
decision variables are the buffer sizes between the pairs of 
stations and the objective is to maximize the production 
rate. Fundamentally the problem is a stochastic, nonlinear, 
combinatorial optimization problem with discrete decision 
variables. Since no known closed-form expression exists to 
determine the expected value of the production rate, dis-
crete event simulation is used to estimate this value.   

Characteristics of the simulation model are given below: 
 
• Station Cycle Time. The time required for a station 

to perform the prescribed assembly task (or set of 

b1 b2 b3 

b15 

b14 

1 

5 

2 3 4 

1415 

b4 

Figure 1: Scheme of the Asynchronous Assembly System 
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tasks) under normal operating conditions. This is 
the deterministic component of the station service 
time (6,22) and considered to be 5 time units.  

• Jam Rate. Stations are subject to jam due to 
various reasons, such as system breakdowns, 
defective parts being assembled or a robotic 
assembly station accidentally dropping the part it 
is holding. Jam occurrences are random events. 
These are expressed in percentage for a particular 
station. In the study, while number of stations 
subject to jam was taken from 2 to 8 at intervals 
of 2 stations, jam rates for the stations were taken 
from 0.5% to 5% at intervals of 1.5%. The 
probabilities of selection of number of stations 
subject to jam and jam rates for any configuration 
are equal.  

• Jam Clear Time. This is expressed in time units 
required to a jam. These times are geometric 
random variables with means of 18 time units. 

• Number of Pallets. The total number of pallets 
circulating in the system has been kept fixed and 
is taken as 40. 

 
In the study, decision variables are buffer sizes 

between the pairs of stations. The upper and lower limits of 
any single buffer have been fixed as 15 and 1, respectively. 
The expected value of the production rate that is function 
of buffer sizes, number of stations subject to jam and jam 
rates is obtained by simulating the system around 15000 
time units, with 10 independent replications. For each 
replication a warm-up time of 500 time units is used to 
remove the initial transient. 

 
4  OPTIMIZATION WITH ARTIFICIAL  

NEURAL NETWORK METAMODEL  
AND SIMULATED ANNEALING 

    
4.1 Artificial Neural Network  
 
Neural networks were inspired by the power, flexibility 
and robustness of the biological brain. They were 
computational (mathematical) analogs of the basic 
biological components of a brain – neurons, synapses and 
dendrites. Artificial neural networks (ANN) consist of 
many simple computational elements (summing units – 
neurons- and weighted connections-weights) that together 
in parallel and in series (Figure 2).  

ANN begin in a random state and “learn” using 
repeated processing of a training set, that is, a set of inputs 
with target outputs. Learning occurs because the error 
between ANN output and the target output is calculated 
and used to adjust the weighted synapses of the ANN. This 
continues until errors are small enough or no more weight 
changes are occurring. The ANN is then trained and the 
weights are fixed. The trained ANN can be used for new 
inputs to perform estimation or classification tasks. 
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Figure 2: Structure of an ANN 

 
In this paper, ANN metamodel was developed, or 

trained, based on the production rate of a set of buffer 
sizes, jammed stations, number of pallets and jam clear 
time for a given AAS. The ANN metamodel was used to 
estimate production rate as a function of the possible 
configuration during the search for optimal design (i.e., 
determination of buffer sizes). In this way, multiple 
estimates of production rate are available without using 
simulation model for each new configuration.  

 
4.1.1  Developing ANN Metamodel 

 
In this study, AAS with 15 stations that while some sta-
tions are subject to jam, others are jam free was consid-
ered. Since, there are AASs having different jam rates and 
different stations subject to jam in real world, we develop a 
general ANN metamodel for estimation production rate, 
which is function of different buffer sizes (bi), jam rates 
(jr) and number of stations (ns) subject to jam. A three lay-
ers feed forward network was constructed with thirty input 
neurons in the input layer and one neuron in the output 
layer to map the production rate to the thirty input vari-
ables. ANN model used buffer sizes between the pairs of 
stations and jam rate for each station as input. Output was 
production rate, which was a function of input. Discrete 
event simulation was used to estimate the value of produc-
tion rate. Data set, which was used to train ANN, was gen-
erated randomly from the set of possible configurations. 
For each configuration in data set, buffer sizes between the 
pairs of stations, jam rates and number of stations subject 
to jam were determined randomly using their determined 
ranges of value. An example as an input for ANN is given 
in Figure 3. The training of ANN was carried out using 
backpropogation algorithm because of its powerful ap-
proximation capacity and its applicability to both binary 
and continuous inputs. The bipolar sigmoid function and 
normalized cumulative delta rule was used as a transfer 
function and learning rule, respectively. After preliminary 
experiments, a network architecture of 30 (15 buffer sizes, 
15 jam rates) inputs, 15 hidden neurons in one hidden layer 
and a single output is developed. A data set of 200 configu-
rations was split into training (140 configurations) and test-
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Figure 3: An Example to Input in ANN model 

Buffer size: 
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 
5 4 1 3 4 7 9 15 6 8 11 4 5 6 4 

 
Jam rates: 

ws1 ws 2 ws 3 Ws 4 ws 5 ws 6 ws 7 ws 8 ws 9 ws 10 ws 11 ws 12 ws 13 ws 14 ws 15 
0 0 3.5 0 3.5 0 3.5 0 0 3.5 0 0 0 0 0 
 
ing (60 configurations). Cross validation was used to stop 
over training. In cross validation, once the error term 
obtained from cross validation set starts to increase 
significantly then training is stopped. The training ANN 
was carried out with NeuralWorks Professional II/PLUS 
program. In training ANN model, learning coefficients for 
the hidden layer, the output layer and momentum are taken 
as 0.80, 0.10 and 0.70, respectively. To see the 
effectiveness of the developed ANN model, a regression 
metamodel were built based on same data set. After 
investigated several regression models it was determined 
that the exponential function on response best fits the data.  
It is important that any metamodel should be validated 
before it is used for its intended purpose. One method of 
validation, especially for a regression metamodel, is to use 
as independent set of configurations, which has not been 
used for either training or termination of training, and 
obtain the mean squared error of prediction. For validation 
and comparison purposes of two metamodels, an 
independent set with 100 randomly choosen configurations 
was obtained. Root mean squared error (RMSE), mean 
absolute deviation (MAD), maximum absolute deviation 
and percentage error of production rate were used as 
performance measures to compare two metamodels. Table 
1 gives the results obtained from the metamodels with 
independent set. As it is seen in table that ANN metamodel 
is better than exponential metamodel. RMSE, MAD and % 
error decrease approximately 50% with ANN metamodel. 
 
4.2  Search for Optimal Buffer Sizes  
 
After a metamodel was developed for any simulation 
model, it can be coupled with a variety of search 
techniques with the purpose of optimization. In this study, 
simulated annealing (SA), which is a class of metaheuristic 
techniques, was used.  

SA is based on an analogy to the cooling of materials 
in a heat bath. The fundamental idea is that if the amount 
of energy in a system is reduced very slowly, the system 
will come to rest in a more perfect state than if the energy 
is reduced quickly. When translated into terms pertinent to 
optimization, the energy in the system refers to the toler-
ance for pursuing apparently poorer solutions in an effort 
to avoid being trapped in local minima. As the search pro-
ceeds, this tolerance is slowly reduced until the search 
converges to a final optimal solution. In literature, it can be 
seen that the SA has been appeared in several simulation 
optimization applications. Some of them are: Bulgak and 
Sanders (1988), Haddock and Mittenthal (1992), Ahmed et 
al. (1997), Lacksonen (2001), Alabas et al. (2002).  

In this study, a solution was coded as integer numbers. 
Each number represents buffer size between a pair of 
stations. The initial solution was obtained in randomly. A 
move in SA was realized using following scheme: a 
number was randomly selected between 1 and number of 
stations in AAS. This number represents selected a pair of 
stations.  Next, a new buffer size for the selected pair of 
stations was randomly generated between 1 and 15 
excepting its current type.  After changing the current 
buffer size to new the buffer size, the new solution 
becomes the current solution.  To was determined using the 
empirical rule of Kirkpatrick et al. (1983) to be 0.02 
resulting in the initial fraction of accepted downhill moves 
of approximately 0.85.  As a cooling schedule, a single 
iteration at each temperature, as per Lundy and Mees 
(1986) was used. The temperature at each iteration is 
determined by Tk+1 = Tk/(1+βTk), whereTk is the 
temperature at the kth iteration and β is the cooling ratio 
which is calculated using [To-Tf /(f-1) To Tf ]. The final 
temperature, Tf and f were set to 0.001 and 2000, 
respectively.  
 
5  EXPERIMENTAL RESULTS  
 
To investigate the performance of ANN/SA procedure, 
three ASSs having different jam rates were selected. Since 
SA is a stochastic search method, it was run with different 
10 seeds for each problem. While Table 2 gives the jam 
rates for the ASSs, the best configurations of 10 runs are 
given in Table 3. In addition, the simulation model was run 
to predict %95 confidence interval (CI) of production rate 
for each best configuration. In Table 4, estimation of 
production rate with ANN metamodel, simulation model 
and CI for each best configuration can be seen. As it is 
seen that the CIs contain the results predicted by the ANN 
metamodel. This result is an another way to represent of 
ANN metamodel validation.    
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Table 1. Comparison of Exponential and ANN Metamodels. 

 
Table 2. Jam Rates for Workstations in AASs 

ASS ws1 ws 2 ws 3 ws 4 ws 5 ws 6 ws 7 ws 8 ws 9 ws 10 ws 11 ws 12 ws 13 ws 14 ws 15 
1 0 3.5 0 3.5 0 3.5 0 3.5 3.5 0 3.5 0 0 0 0 
2 0 0.5 0.5 0.5 0 0.5 0.5 0 0.5 0.5 0 0.5 0 0 0 
3 0 0 0 2 2 2 2 2 0 0 0 2 2 2 0 

 
Table 3. Optimum Buffer Sizes for AASs 

ASS b1 b2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b14 b 15 
1 1 6 3 1 8 5 6 3 6 9 1 2 1 11 4 
2 1 4 7 1 3 8 2 5 14 3 2 7 3 1 3 
3 4 2 2 8 3 11 7 1 2 1 5 9 4 1 9 

 
Table 4. Estimation of Production Rate with ANN Metamodel and Simulation Model 

 Estimation of Production Rate  
ASS ANN Metamodel Simulation Model Lower 95% CI Upper 95% 

1 0,1350 0.1342 0,1328 0,1355 
2 0,1588 0.1581 0,1569 0,1595 
3 0,1397 0.1416 0,1396 0,1436 

Metamodel RMSE MAD MAX %Error 
Exponential 0,003818 0,00307 0,00855 2,16114 
Artificial Neural Network 0,002289 0,00174 0,00753 1,23587 
 

6  CONCLUSION  
 
In this study, ANN metamodel together with SA was used 
to find the best buffer size configuration for the AASs with 
15 station. Based on the results obtained, we conclude that 
these complex stochastic combinatorial engineering 
problems can be solved with reasonable accuracy. 
Comprehensive comparisons of the performance of the 
search algorithms combined with metamodels on the AASs 
can be made as a future research.  
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