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ABSTRACT 

This paper presents some of my experience in applying a 
commercial optimum-seeking simulation tool to manufac-
turing system design and control problems.  After a brief 
introduction to both the general approach and to the spe-
cific tool being used, namely OptQuest for Arena, the main 
body of the paper reports on the use of the tool in tackling 
two manufacturing system design and control problems, 
one very simple and one significantly more complex.  The 
paper concludes with some material highlighting how easy 
the tool is to apply to this kind of problem and also pre-
sents some thoughts on how the tool might be enhanced to 
improve its value. 

1 INTRODUCTION 

A common type of problem faced by individuals interested 
in the design and operation of manufacturing systems is 
choosing values for one or more control parameters for 
such systems.  Typically, the goal is to find that set of con-
trol parameter values that will optimize the performance of 
the system.  Discrete-event simulation has been extensively 
applied to a broad range of manufacturing system prob-
lems, but in its traditional form it is, alas, an inherently 
evaluative (or descriptive) tool.  I.e., the manner in which it 
is applied involves the user choosing values for the 
controllable parameters of the system being studied with 
the simulation then providing estimates of how the system 
will perform under these circumstances.  Determining the 
best set of values for the control parameters is thus an 
iterative process requiring human involvement wherein at 
each step a person (or persons) uses the simulation output 
data gathered to date to guide the selection of revised 
control parameter values that, it is hoped, will give better 
performance.  The entire process might involve many it-
erations, extensive human effort, and result in a final set of 
control parameters that are not guaranteed to deliver 
optimal performance. 

 

A generally preferable alternative to tackling this kind 

of problem via an evaluative method is to use what is re-
ferred to as  generative (or prescriptive) tool, such as clas-
sical mathematical programming.  In employing this kind 
of tool, the user specifies the measure of system perform-
ance to optimize together with the allowable range of val-
ues for the controllable parameters, after which the tool de-
termines a set of values for the controllable parameters that 
are guaranteed to result in optimal performance. 

Since pure discrete-event simulation is evaluative and 
since a generative approach is highly preferable when 
faced with the type of problem at issue here, much atten-
tion and effort has been devoted to trying to find ways to 
employ simulation in a more generative manner.  The goal 
of these efforts is to develop what is referred to as simula-
tion optimization  methods, allowing simulation to be used 
to make optimal decisions without the need for human-in-
the-loop control and intervention.  Considerable progress 
has been made towards this goal and many developments 
and results have been reported in the literature (see Fu 
2001 for a recent introductory tutorial on the topic, and 
Boesel et al. 2001 for a discussion of existing barriers to 
the wider use of the simulation optimization and promising 
directions for future developments). 

The aim of this paper is not to survey the state of 
simulation optimization in general nor to delve into theo-
retical issues associated with the topic.  Instead, the paper 
aims to present some of my preliminary experiences with 
the application of one of the leading commercially avail-
able tools for simulation-based optimization to a couple of 
manufacturing-related models from my teaching and re-
search activities. 

The remainder of the paper is structured as follows.  
The immediately following section provides a brief intro-
duction both to the general approach that is referred to as 
optimum-seeking simulation and to the specific commercial 
software being used, OptQuest for Arena developed by 
OptTek Systems, Inc., of Boulder, Colorado.  Following 
this section, the main body of the paper describes two 
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manufacturing system design and control problems in-
tended to serve as examples illustrating the application of 
the optimum-seeking simulation approach.  For each of the 
examples, material is presented on the basic nature of the 
manufacturing system design and control problem involved 
and on the application of the OptQuest for Arena (hereafter 
referred to simply as OptQuest for brevity), to solving the 
problem.  The paper concludes with a section summarizing 
the lessons learned from my experiences to date, including 
some personal opinions on how OptQuest might be en-
hanced to improve its usefulness in the future. 

2 A BRIEF INTRODUCTION TO OPTIMUM-
SEEKING SIMULATION AND TO  
OPTQUEST FOR ARENA 

Research to date in simulation optimization has identified a 
number of analytical approaches which can result in opti-
mal choice of control parameters for a system being mod-
eled.  However, these approaches can generally only be 
used under a restrictive set of conditions which are invalid 
for the vast majority of manufacturing systems, and control 
problems, of interest. 

This has lead to the development of the optimum-
seeking simulation approach, wherein a general-purpose 
heuristic optimization engine is interfaced with a general-
purpose simulation engine, with the optimization compo-
nent replacing the human in the overall problem-solving 
process.  I.e., once the human tells the optimization com-
ponent the objective and the allowable range of values for 
the controllable parameters, the optimization engine then 
interacts with the simulation engine iteratively until a final 
solution is reached.  The basic arrangement of the optimi-
zation and simulation components involved in this funda-
mental approach is illustrated in Figure 1. 

 

Figure 1: The Optimum-Seeking Simulation Concept 
 
Since this approach should result in a solution which 

should be “good” rather then optimal (in the mathematical 
programming sense of provably no worse than the best 
possible solution), it is referred to as optimum-seeking.   

The OptQuest tool used in the work described in this 
paper is actually a powerful general-purpose heuristic op-
timization engine, embedded versions of which have been 
developed for specific simulation software platforms.  
Since I have more than a decade of experience using the 
Arena (or its ancestor and current foundation, SIMAN) 
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iterate until 'satisfied'
simulation package, available from Rockwell Software (see 
Swets and Drake 2001), it is the version of OptQuest 
which has been developed to tightly integrate with Arena 
that I have been exploring over the past six months. 

A key issue in the design of the optimization compo-
nent of good optimum-seeking simulation tools is how to 
choose good candidates for the next set of control parame-
ters for the simulation component to evaluate, based on the 
set of results that have been observed so far.  A detailed 
discussion of the main options for making this choice is 
beyond the scope of this paper, but OptQuest is described 
as making use of a combination of the methods of tabu 
search, neural networks, and scatter search (see April et 
al. 2001 for more information). 

As the above general description of the optimum-
seeking simulation approach should have suggested, the 
two key steps in attempting to use OptQuest to choose con-
trol parameters for a system that has been modeled in 
Arena are: 

 
• Specify the controls (i.e., the controllable parame-

ters associated with the system being modeled) 
that OptQuest is allowed to select values for, and 
establish upper and lower limits for each control.   
− The set of controls a user is allowed to select 

from includes all Arena model variables and 
all model resource capacities. 

• Identify the objective (i.e., the performance meas-
ure of interest for the system being modeled) and 
inform OptQuest whether the goal is to seek to 
maximize or minimize it.   
− The set of objectives a user is allowed to se-

lect from includes any statistic defined in the 
model (specifically, the average value of any 
observational or time-persistent data being 
monitored or the value of any Arena “Out-
put” computed at the end of a replication). 

 
In addition to these two essential steps, OptQuest pro-

vides the user with some additional functionality that can 
be exploited to either: (i) further restrict the solution space 
that will be heuristically searched; or (ii) impose additional 
performance requirements on solutions for them to be 
deemed valid.  Specifically, the user can: (i) specify addi-
tional linear constraints between the chosen controls; (ii) 
specify that certain additional performance measures are of 
interest, whose values must lie between user-defined upper 
and lower bounds in any acceptable solution. 

The user must also specify some options before setting 
OptQuest running, such as specifying a maximum total run 
time or controlling the number of replications to be run for 
each set of controls (e.g., single replication v. fixed num-
ber), or setting parameters related to the precision of the 
search process.  Space does not permit a complete descrip-
tion of the capabilities and use of OptQuest to be given 
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here so the reader is referred to Rockwell Software (2000) 
for further details.  An example of the application of Op-
tQuest to a call center design problem can also be found in 
Kelton et al. (2002). 

3 THE FIRST EXAMPLE: SEQUENCE-
DEPENDENT SETUP 

3.1 The System Being Investigated 

The first example scenario is a simple sequence-dependent 
setup situation for a production facility consisting of a sin-
gle resource.  I originally created a model of this situation 
to allow manufacturing engineering students to explore 
some of the behavior of production facilities where se-
quence-dependent setup is present and to give them experi-
ence in reverse engineering a model that someone else has 
developed.  The key features of the situation (and the 
model of it) can be summarized as follows: 

 
• Jobs arrive one at a time with exponentially dis-

tributed inter-arrival times with a mean of 120 
minutes.  {This mean value could be easily 
changed.} 

• There are four different types of job, each occur-
ring with the same probability.  {The product mix 
could be easily changed.  Adding more job types 
would require extra work to define an appropriate 
setup time matrix.} 

• Processing times are deterministic comprising a 
“run” component that is the same value for all job 
types (the default value is 93 minutes but this is 
easily changed) and a “setup” component that de-
pends upon the type of the previous job and that 
of the current job.  {Each row of the setup matrix 
is a permutation of the values (0, 10, 20, 30), such 
that there is a clear job type preference order, de-
pendent upon the type of the most recently proc-
essed job and such that the mean setup time if a 
strict first-in-first-out (FIFO) queuing discipline 
were to be enforced would be 15 minutes.}  The 
default values of these model input parameters re-
sult in an average server utilization of 90% for a 
FIFO queue discipline. 

• The facility is assumed to operate on a strict 
make-to-order basis and to guarantee its custom-
ers that jobs will be completed within a fixed in-
terval, or flow allowance, after their time of arri-
val.  I.e., due dates are set as arrival time plus 
flow allowance, with the default flow allowance 
being set to 960 minutes (i.e., one 16 hour day). 

• Statistics are collected on a number of perform-
ance measures of possible interest including job 
flowtime, job tardiness, amount of work in proc-
ess, and resource utilization. 
• The model incorporates a queuing discipline for 
the queue ahead of the resource that involves a 
single control parameter which attempts to bal-
ance two conflicting desires: (a) to reduce utiliza-
tion and average flowtime by taking advantage of 
sequence-dependent setup times; (b) attempting to 
ensure that jobs do not wait too long in the queue 
resulting in excessively high tardiness.  The ap-
proach embodied in this queue discipline is to 
limit the number of times that a job can be leapt 
over, in the processing sequence, by jobs that ar-
rived after it.  I.e., by choosing the value of the 
single control parameter, referred to here as Max-
Skip, the user is guaranteeing that a job’s position 
in the processing sequence can differ from its po-
sition in the arrival sequence by no more than +/-
(MaxSkip-1). 
− E.g., if MaxSkip is set to 1, the queue disci-

pline is equivalent to FIFO.  If MaxSkip is set 
to 10, then a job with a large setup time, 
given the jobs being selected from the queue, 
can wait at the head of the queue until no 
more than 9 jobs which arrived after it have 
been picked ahead of it, before the queuing 
policy forces the undesirable job to be chosen 
next.  Similarly, a job with a zero setup time 
can never be chosen next if it will jump over 
9 jobs that arrived earlier than it did. 

• The model uses random number streams for the 
two sources of stochasticity present (inter-arrival 
times and job types) in such a way that all scenar-
ios run, for different values of the MaxSkip con-
trol parameter face an identical demand stream in 
terms of which types of job arrives at which in-
stants in time. 

3.2 Applying OptQuest to this System 

One problem concerning this example facility, to which 
OptQuest could readily be applied, is that of choosing  the 
value of MaxSkip that minimizes average job tardiness.  
This problem is very easy to set up, once the simulation al-
ready exists, since OptQuest leads the user through the 
choice of controls and objective when it is initialized from 
the Arena “Tools” menu. 

Although the complexity of this model is low enough 
that it would be relatively easy to solve this problem by ex-
plicit enumeration (i.e., running N simulations with MaxSkip 
varying from 1 to N, incremented by one between simula-
tions), I thought that it might be interesting to see how Op-
tQuest performed when asked to tackle this problem. 

To help interpret OptQuest’s performance, a complete 
set of runs with 1 <= MaxSkip <= 50 was carried out us-
ing Arena’s Process Analyzer (see Kelton et al. 2002 for 
more information on this tool which makes carrying out a 
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defined set of experiments easier).  The results are shown 
in Figure 2, with axis limits for the chart chosen to clarify 
the behavior of the system in the region of MaxSkip values 
of most significance.  Note that the results are based on one 
replication for each scenario, rather than multiple replica-
tions, since our primary interest here is in relative perform-
ance of alternative scenarios rather than in precisely pre-
dicting the performance of one particular scenario. 

 

Figure 2: Average Job Tardiness versus Control Parame-
ter (MaxSkip) Value 

 
The remainder of this section provides brief descrip-

tions of some specific OptQuest “trials” that were con-
ducted with the above overall objective: 

 
• Before running any trial, the model’s replication 

parameters were set so that a single replication 
would take around one half a minute to complete 
on the computer running the model.  For all tests, 
the allowable range of values for the MaxSkip 
control parameter was set to be from 1 to 50, with 
the control parameter defined as integer-valued. 

• Test #01 involved asking OptQuest to run for up 
to 15 minutes, starting with MaxSkip = 2 for its 
first simulation.  By the 12th iteration, the very 
good solution at MaxSkip = 6 was found, with the 
barely 0.1% better solution at MaxSkip = 7 en-
countered on the 27th iteration. 

• Test #02 involved limiting OptQuest to 15 scenar-
ios, starting with MaxSkip = 50.  By the 8th itera-
tion the best solution at MaxSkip = 7 was found. 

• Test #03 involved asking OptQuest to perform 10 
replications of each scenario, allowing it two 
hours to do its work, and starting with MaxSkip = 
25.  As before, by the 8th iteration the best solu-
tion at MaxSkip = 7 was found.  {Somewhat sur-
prisingly, to me at any rate, despite being able to 
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conduct a full 25 scenarios in the allotted time, 
OptQuest did not test MaxSkip values of 6 or 8, 
i.e., those either side of the one it had found to be 
best.}  

 
Although the problem being explored here is much 

simpler than those for which OptQuest was designed (it 
does not present a very challenging search task), examin-
ing the log file produced by OptQuest does provide some 
insight into how it seeks for the optimum.  Figure 3 pre-
sents a plot of the value of the control parameter being 
chosen for testing by OptQuest at each iteration during 
Test #02 above.  With only a limited number of runs possi-
ble, it appears that the first nine values chosen include the 
upper and lower limits of the allowable range, then seven 
values evenly spread across the entire range.  For all other 
attempts to apply OptQuest to this model, including some 
additional test not reported here, this same set of tested 
values appears, albeit sometimes in a different sequence 
within the first ten iterations.  After this quick exploration 
of the full range, OptQuest appears to focus its limited re-
maining effort (six simulations only) on the most promis-
ing region of the solution space (i.e., iterations 10 through 
13 in particular involve control parameter values surround-
ing the best solution found in the initial exploration of the 
full range of control parameter values).  

 

Figure 3: Control Parameter (MaxSkip) Value v. Op-
tQuest Iteration Number for Test #02 

4 THE SECOND EXAMPLE: OPTIMAL  
ORDER ACCEPTANCE/REJECTION IN  
A MAKE-TO-ORDER ENVIRONMENT 

4.1 The System under Investigation 

The second example scenario is a much more complex one, 
dealing with a facility facing random demand for a broad 
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range of items, each produced in a make-to-order fashion, 
where the manufacturer also guarantees delivery dates, 
based on a fixed flow allowance.  Since the potential for 
tardiness penalty losses, assumed to be linearly related to 
job tardiness, is high in this environment, the facility is 
also assumed to have the ability to reject (or refuse to ac-
cept) customer orders under severe circumstances. 

The origin of this model is a Ph.D. project in the gen-
eral area of workload control (or input control), focusing 
on identifying under what circumstances the ability to re-
ject jobs might be beneficial, and on exploring the per-
formance of alternative accept/reject rules under different 
environmental conditions.  The model is highly flexible 
and parametric, and its main features can be highlighted as 
follows: 

 
• The facility arrangement is a hybrid job/flow shop 

similarly to one investigated in previously re-
ported order review and release research (Phili-
poom and Fry 1992).  The shop includes 10 ma-
chines arranged in 4 workcenters (2 machines in 
workcenters 1 and 3 and three machines in each of 
workcenters 2 and 4). 

• 143 different job types are possible, representing 
each possible 1-step through 4-step path through 
the facility that visits each workcenter no more 
than once and which is constrained to pass 
through any workcenters visited in increasing 
numerical sequence.  Each job type is equi-
probable with job inter-arrival times being dis-
tributed according to a gamma distribution. 

• Mean processing times at each workcenter are 
known but processing time uncertainty is present 
(times are distributed according to a gamma dis-
tribution). 

• In addition to the 143 different possible routings, 
each arriving job can also be one of two priority 
classes.  This is important in two respects: 
− “Hot” orders bring in more revenue than 

“regular” orders. 
− “Hot” orders are promised earlier due dates 

than “regular” orders, i.e., they are given a 
smaller flow allowance. 

• The maximum possible revenue from a job is ob-
tained if it is completed on time, with the revenue 
being proportional to a jobs total expected work 
content.  Actual revenue for a customer job can be 
less than the maximum possible for two reasons: 
− The job is rejected at the point of arrival, with 

revenue loss being equal to the maximum 
possible revenue. 

− The job is accepted but it completes tardy, thus 
incurring a penalty linearly dependent upon its 
tardiness.  If system congestion is high 
enough, a job’s tardiness penalty may be larger 
than its maximum revenue (representing a lar-
ger loss than if the job had been rejected). 

 
Control of this facility involves three primary deci-

sions that can best be considered from the perspective of an 
arriving job: 

 
• Accept/reject: at the time of arrival, a job may ei-

ther be accepted and allowed to enter the system, 
or rejected if the current state of the system is 
such that acceptance of the job may lead to unac-
ceptably high tardiness penalties. 

• Order release: if the job is accepted, it does not 
proceed immediately to the shop floor but is in-
stead held in a pre-shop pool known as the order 
release pool.  Jobs are released from this pool to 
the shop based on the active order release rule. 

• Dispatching: once jobs have been released, their 
progress through the shop is controlled by simple 
dispatching rules at the machines in the system. 

 
The simulation model of this facility has three alterna-

tive policies for each of the three primary decisions built 
into it, chosen after surveying the available literature on 
input control (see Bergamischi et al. 1997 for a good sur-
vey of research in this general area).  This means that in 
order for a user to completely specify how the system 
should be controlled, the active rule for each primary deci-
sion needs to be chosen, which may also require additional 
rule control parameters (depending on the specific rules 
chosen), to be defined. 

The alternative accept/reject rules available to be se-
lected can be briefly described as follows: 

 
• Full acceptance (FA): accept all arriving jobs (this 

represents a base case scenario, whose performance 
should be worse, in certain situations, than rules 
permitting jobs to be judiciously rejected). 

• Total accepted load (TAL): if the sum total of the 
work that has been accepted but not yet completed 
exceeds some ceiling, reject the arriving job.  The 
amount of work “accepted but not yet completed” 
is dynamically updated as operations are com-
pleted at machines (and whenever an arriving job 
is accepted).  Use of this rule requires that two ad-
ditional control parameters be set, in order to de-
fine the rejection ceiling associated with each of 
the two classes of job. 

• Busiest machine accepted load (BMAL): if the to-
tal uncompleted load on the busiest machine on 
the route of an arriving job exceeds some ceiling, 
reject the job.  Again, the uncompleted workload 
at each machine is dynamically maintained, being 
decremented whenever an operation at a machine 
completes, and incremented whenever a job is ac-



Rogers 

 

cepted.  Use of this rule also requires two addi-
tional control parameters to be set (to define the 
machine load-based rejection ceiling associated 
with each of the two classes of job). 

 
The alternative order release rules available to be se-

lected can be briefly described as follows: 
 
• Immediate release (IMM): do not hold jobs in the 

release pool at all, instead release any accepted job 
to the shop floor immediately upon acceptance.  

• Total released shop load (TRL): if the sum total 
of the work that has been released but not yet 
completed exceeds some ceiling, keep all jobs in 
the order release pool.  The amount of work “re-
leased but not yet completed” is dynamically up-
dated as operations are completed at machines 
(and as each new job is released).  Use of this rule 
requires that one additional control parameter be 
set, i.e., the release ceiling. 

• Busiest machine released load (BMRL): if the to-
tal released but uncompleted load on the busiest 
machine on the route of a job trying to leave the 
release pool exceeds some ceiling, keep the job in 
the pool.  The released but uncompleted workload 
at each machine is dynamically maintained and 
decremented whenever an operation at a machine 
completes (and incremented whenever a job is re-
leased).  Use of this rule requires that one addi-
tional control parameters be set, i.e., the machine 
load-based release ceiling. 

 
The alternative dispatching rules available to be se-

lected can be briefly described as follows: 
 
• First-in-System-First-Served (FSFS): jobs with 

earlier acceptance times into the system are given 
priority. 

• Earliest Due Date (EDD): jobs with earlier due 
dates are given priority. 

• Slack per operation remaining (S/OPN): jobs with 
smaller values of slack divided by the number of 
operations that still need to be performed are 
given priority. 

4.2 Applying OptQuest to this System 

Given the above system description, a challenge for Op-
tQuest can now be stated: select the best set of decision 
policies, including values for any of the control parameters 
for the selected rules, so as to maximize the proportion of 
total possible revenue that is achieved (i.e., so as to mini-
mize the sum of the rejection and tardiness losses). 

In general, OptQuest could be asked to take on this 
challenge for different sets of values for the uncontrollable 
parameters of the model (i.e., those parameters which de-
fine a specific control situation/problem and are viewed as 
beyond the control of the facility operators).  There are five 
main uncontrollable factors that can be set to define differ-
ent situations in which an “optimum” control policy for the 
facility needs to be chosen.  In the OptQuest tests reported 
here, these uncontrollable factors have not been varied, but 
instead have been fixed at their default values.  For infor-
mation, however, these factors are briefly described below: 

 
• Average load: this permits the load faced by the 

facility if all jobs were accepted to be varied.  By 
default, this is set so as to give an average ma-
chine utilization of 85%. 

• Proportion of urgent orders: this permits the pro-
portion of the demand that is deemed to be “hot” 
(offering greater profit margin but requiring faster 
delivery) to be varied.  By default, this is set at 25%. 

• Demand process variability: this permits the coef-
ficient of variation of the inter-arrival time distri-
bution to be varied.  By default, this is set at 10%. 

• Service process variability: this permits the coeffi-
cient of variation of the machine service time distri-
bution to be varied.  By default, this is set at 10%. 

• Due date tightness: this permits the flow allow-
ance and the slope of the tardiness penalty func-
tion to be varied to represent “tight” or “loose” 
due dates (and “severe” or “gentle” tardiness 
penalties). 

 
It might be expected that the optimal control policy for 

this system would be a function of these five uncontrolla-
ble factors.  Even if it was true that one choice of control 
rules dominated all others, the optimal choice of control 
rule parameters would certainly depend on at least some of 
these factors.  E.g., we might expect the accept/reject rule 
limits to be lower in more “severe” situations, in terms of 
higher average load, higher demand or service process 
variability, and tighter due dates. 

The current design of OptQuest (or of the model, de-
pending on your perspective) does not permit the problem 
stated in the first paragraph of this subsection to be tackled 
in one bite for a reason I will try to explain.  Although the 
choice of control policy for each of the three primary deci-
sion dimensions can be made known to the simulation by 
simply setting the value of an Arena variable, the way Op-
tQuest treats the simulation as a black box creates a prob-
lem concerning the decision rule parameters.  To make 
things more concrete here, consider the situation for the 
accept/reject rules.  There are four additional parameters 
that might be relevant to the simulation’s execution, de-
pending on the rule that has been chosen.  However, none 
of these are relevant if the FA rule is active, while for the 
other two rules, only two of the four parameters have any 
effect on the simulation (e.g., if the TAL rule is active, its 
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two control parameters specifying the rejection ceilings for 
the two job classes are very relevant, while the two control 
parameters associated with the BMAL rule are irrelevant). 

OptQuest, however, includes no capability to define 
these kinds of relationships between possible controls, so in 
order to try to solve the problem in one fell swoop, five sepa-
rate controls would need to be offered to OptQuest. (the 
variable indicating the selected rule plus the four control pa-
rameters relevant to one, but only one, of the three rules).  
Once presented with this information, OptQuest might waste 
much time and effort asking for simulations to be run that it 
thinks are different from others already run but which are 
effectively identical because the only things that have 
changed are the values of completely irrelevant variables. 

Thus, instead of setting up one search for OptQuest to 
perform, allowing it free rein to choose from the full set of 
allowable accept/reject, order release, and dispatching rule 
options, multiple OptQuest runs are required.  Specifically, 
since each accept/reject option and order release option 
involves at least one parameter specific to that rule, four 
distinct scenarios need to be run in order to cover the com-
plete solution space.  These scenarios correspond to the 
following pairs of accept/reject rule and order release rule: 
{TAL, TRL}; {TAL, BMRL}; {BMAL, TRL}; and 
{BMAL, BMRL}. 

Note also that: (i) the FA accept/reject rule does not 
have to explicitly tested, since setting the rejection ceilings 
for either of the other two accept/reject rules high enough 
is equivalent to full acceptance; (ii) the IMM order release 
rule does not have to explicitly tested, since setting the re-
lease limits for either of the other two order release rules 
high enough is equivalent to immediate release; (iii) since 
the dispatching rule options have no unique parameters to 
be set (in fact, they involve no control parameters at all), 
each scenario can allow OptQuest to search as it will  
amongst the three dispatching options. 

4.2.1 Optimizing Control Parameters  
for One Accept/Reject Rule 

This section discusses the results of applying OptQuest to 
the problem of choosing optimal control parameters for 
one of the accept/reject rules.  For this test, OptQuest was 
asked to: (i) freely choose the dispatching rule; (ii) use 
only the IMM order release rule; and (iii) choose optimal 
values for the parameters of the BMAL accept/reject rule.  
A number of interesting phenomena are worth highlighting 
concerning the results of this test. 

Firstly, Figure 4 shows a plot of how iteration per-
formance varied with iteration number for this test scenario 
(recall that the performance measure of interest here is the 
percentage of maximum possible revenue that is earned).  
While control parameter choices tested during the early 
stages of the optimum-seeking simulation process show 
some poor solutions being tested, the final 20 iterations 
 

Figure 4: Performance (% of Maximum Possible Revenue 
Achieved) v. OptQuest Iteration Number (for Test#01) 

 
show that a region of the solution space with very good so-
lutions is being targeted at this point.  Although it is hard 
to tell due to the size of this graph, new “best” solutions 
were obtained on iterations numbered 1, 11, 39 and 80 (the 
performance in iteration #80 was less than 0.5% better than 
that in iteration #39, which in turn was less than 1.0% bet-
ter than that in iteration #11) . 

Next, Figure 5 shows the pairs of control parameter 
values that OptQuest tested, illustrating both how the entire 
solution space was explored and how extra attention was 
focused on a region yielding generally good performance. 

Figure 5: Control Parameter Pairings (“Hot” Job Rejec-
tion Limit, “Regular” Job Rejection Limit) Tested 

 
Figure 6, on the next page, shows the control parame-

ter pairings tested during the first 20 iterations and the last 
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Figure 6: Control Parameter Pairings Tested Early and 
Late During an OptQuest Run  

 
20 iterations, highlighting how OptQuest’s behavior during 
the initial stages of a search differs from that during the fi-
nal stages. 

Finally, if the details in the OptQuest log file are stud-
ied, a number of interesting conclusions can be drawn: 

 
• As might have been anticipated, the optimal con-

trol parameters involve setting a higher rejection 
ceiling for “hot” jobs than for “regular” jobs 
(specifically, the best solution found was setting 
the ceilings to 51.4 hours and 21.0 hours respec-
tively).  In fact, the best 31 solutions found all in-
volved a higher rejection ceiling for the jobs with 
greater profit margin. 

• A region of the solution space with a lower rejec-
tion ceiling for “hot” jobs than for “regular” jobs 
was found that yielded good solutions, the best so-
lution found in this region giving 98.2% of the 
best solution anywhere. 

• Both S/OPN and EDD dispatching rules were ca-
pable of yielding very good solutions (the top 18 
solutions were all S/OPN but the best EDD solu-
tion gave 99.2% of the best overall performance).  
FSFS was noticeably poorer but in the presence of 
a good job rejection policy, this was still able to 
provide good performance (the best FSFS choice 
yielded 96.7% of the best overall performance). 

4.2.2 Finding an Overall Optimal 

Space does not permit a full discussion of the results from 
the four high level sets of runs, referred to in section 4.2, 
that were required to carry out a full search of the solution 
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space for the best solution.  This section highlights a few of 
the main results from that search: 

 
• The best solution found overall was for the con-

trol rule choice pairing {BMAL, TRL}, combined 
with the S/OPN dispatching rule, which yielded 
86.3% of maximum possible revenue for the op-
timal choice of BMAL control parameters. 

• The {BMAL, BMRL} pairing was capable of giv-
ing very good performance also, with the best so-
lution providing a performance factor of 86.1%. 

• Neither of the sets of tests using the TAL ac-
cept/reject rule, in combination with the two order 
release rules, was capable of yielding performance 
better than 80.9%.  I.e., for the particular set of un-
controllable factors being used here, the BMAL ac-
cept/reject rule clearly outperforms the TAL rule. 

5 CONCLUSIONS 

Based on my experience so far, OptQuest is clearly a pow-
erful, capable, and easy to use tool that can be broadly ap-
plied to find better values of controllable parameters for 
systems being analyzed via simulation.  By using proven 
heuristic search techniques it can allow a simulation ana-
lyst, with very little effort, to throw chunks of computer 
time that would likely otherwise have been unused at ana-
lytically intractable problems, with a good chance that a 
better solution or two will be identified. 

There are some areas where I believe OptQuest could 
be modified/enhanced so as to improve its value to users 
such as myself.  The following items are all changes that I 
think would be beneficial: 

 
• The current log file format and organization is not 

one that is easily read into other applications.  
E.g., I like to organize all key data from multiple 
simulation scenarios in large spreadsheet tables 
that permit rapid sorting in different ways, and 
flexible charting of items of interest.  I had to 
spend much time extracting the data I wanted 
from the log files and importing it (column by 
column) into a spreadsheet for post-analysis.  It 
would be valuable if an easier way to import 
complete simulation scenario results into a 
spreadsheet could be provided. 

• Somewhat related to the preceding point, I see 
some value in being able to have OptQuest report 
in its log file the values of other performance 
measures of interest, not just the objective func-
tion or measures that the user has specified as re-
quirements which must be satisfied for a solution 
to be considered feasible.  Although there’s an 
easy work-around for this (e.g., any additional 
performance measure of interest can be added as a 
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requirement with just a lower bound of 0), it is not 
as clean as simply being able to ask for additional 
measures to be reported on as a matter of course. 

• Given that models similar to the 2nd example dis-
cussed in this paper, having control parameters 
whose relevance depends upon the chosen values 
of other control parameters, are not uncommon, 
some enhanced ability for OptQuest to deal with 
this situation would be valuable.  I.e., this would 
permit one complete search of the solution space 
rather than requiring a number of distinct searches 
to cover it all (as had to be done here). 

• Another potentially valuable addition would be the 
ability to easily extract Arena’s runtime confidence 
interval information from scenarios that have been 
run (if a user so desires).  It seems unnecessary to 
require multiple replications to be run if confidence 
intervals are to be estimated when Arena is now 
equipped with a robust and statistically respectable 
way to estimate confidence interval half-widths 
from single replication simulations. 
− There is a work-around here that involves 

modifying the model to ask for any desired 
runtime confidence interval half-width values 
to be added to the list of Arena “Outputs”, 
then these can be selected as OptQuest “Re-
quiremements” (with lower bounds of zero) 
which would cause them to appear in the log 
file.  This involves much more work than it 
should though. 

 
Given the relative youth of optimum-seeking simula-

tion tools and their rapid pace of development, my minor 
criticisms above may be obsolete by the time this paper is 
actually presented in December 2002.  Whether they are or 
not, I am convinced that OptQuest for Arena and other 
similar tools already offer considerable power to simula-
tion analysts faced with system design and control prob-
lems, and I am looking forward with anticipation to apply-
ing optimum-seeking simulation to other manufacturing 
system problems in my teaching and research. 
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