
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

DOCUMENTATION OF DISCRETE EVENT SIMULATION MODELS FOR
MANUFACTURING SYSTEM LIFE CYCLE SIMULATION

Jan Oscarsson
Matías Urenda Moris

Centre for Intelligent Automation

University of Skövde
PO-BOX 408

S-541 28 Skövde, SWEDEN

ABSTRACT

The concept of life cycle simulation appeals to most pro-
duction engineers. There is a problem with simulation
models of manufacturing systems; they may be highly
complex and time consuming to develop. They embrace a
considerable experience, which is gained through the de-
velopment process of the simulation model. It is therefore
not enough to develop an accurate simulation model. The
model must be understood, updated, re-used and inhered
by others. One way to achieve these goals could be through
use of a standardised documentation, which in turn ex-
plains the model and how it has been developed. This pa-
per presents a method for how simulation models can be
documented by standardised notations. The documentation
is adapted to different users of the simulation model.

1 INTRODUCTION

The concept of life cycle simulation appeals to most pro-
duction engineers. A manufacturing system has a life cy-
cle, precisely as a product has its lifecycle. Normally the
life cycle of the manufacturing system is much longer than
the product life cycle. During its life the manufacturing
system will go through a number of changes. The changes
can be driven by various reasons:

• Introduction of a new product
• Rationalization of the production
• Changed legal provisions
• …

The manufacturing system is normally not ‘new born’ each
time a change is made. Often, a move from one configura-
tion to another is made by keeping the basic structure of
machines and layout intact. Changes are made to accesso-
ries such as tools, fixtures and pallets. Other equipment, for
instance conveyors and AGV’s used for material handling

may also be re-designed or changed in accordance with
new product or production demands. By regular and care-
ful maintenance a manufacturing system, e.g. a machining
line, may have a technical life of 20 years or more. During
this life span the system probably will undergo numerous
changes, amendments or major re-configurations.

Product designers use CAD models and digital mock-
ups as point of departure for work during the product life
cycle. Similarly, the production engineer can use a simula-
tion model over the manufacturing system as his starting
point for work during the manufacturing system life cycle.
This simulation model can be a ‘digital factory’, matching
the ‘digital mock-up’.

Simulation models of a manufacturing system can be
made using different simulation technologies. This paper is
limited to discrete event simulation technologies, mainly
used for material flow analysis. There are two basic ap-
proaches to build such a model, either to use a simulation
language or a simulation package. The two basic ap-
proaches can be categorized as (Randell 1999):

• Languages e.g. SLAM, GPSS/H, SIMAN. These

are high-level languages that offer the program-
mer more flexibility and a more powerful lan-
guage than the simulation packages can give.
However this approach is much more time con-
suming than using a simulation package.

• Simulators e.g. Witness, ProModel, TaylorII.
These are data driven systems with little or no
programming required. This approach is fast and
easy but more limited in application.

There is a third approach that is derived from these two:

• Hybrid systems e.g. Arena and QUEST which

combines the flexibility of a simulation language
i.e. SIMAN and SCL respectively, with the user-
friendliness of a data driven system. The aim is to

Oscarsson and Urenda Moris

exploit the speed of the simulator package and still
have the flexibility of the simulation language.

This paper is concerned mainly with simulation packages
of the hybrid type.

2 BACKGROUND

One particular aspect on simulation of a manufacturing
system is that it is not continuously ongoing; it is done
only when required. Compared to the product life cycle the
manufacturing system life cycle is longer and normally
changes are made less frequently. The system may be in
operation for a year’s time with no changes being made at
all. Another aspect on life cycle simulation is the change of
staff. The people working with the manufacturing system
are continuously exchanged. People moves to new posi-
tions, retires etc. This means that the knowledge about the
manufacturing system continuously needs to be up-dated,
including the knowledge about the simulation model.

There is a problem with simulation models of manu-
facturing systems; they may be highly complex and time
consuming to develop. They embrace a considerable ex-
perience, which is gained through the development process
of the simulation model. It is therefore not enough to de-
velop an accurate simulation model. The model must be
understood, updated, re-used and inhered by others. One
way to achieve these goals could be through use of a stan-
dardised documentation, which in turn explains the model
and how it has been developed. It may also give careful
notes about the syntax used and the model structure. The
task of documenting systems or processes, e.g. data sys-
tems, businesses process, etc. has been subject to much
work in order to develop notations providing a common
language to describe such systems.

Today several notations are used in different engineer-
ing applications e.g. Unified Modelling Language (UML),
Integration DEFinition language 0 (IDEF0) and Jackson
Structured Programming (JSP). Some of these notations are
specific for a special task and have been accepted in their
respective fields, UML in software development, IDEF0 in
business processes and JSP in procedural programming. On
the other hand, simulation models rarely are documented by
such recognised and accepted notations. There are a lot of
suggestions regarding the importance of documenting the
development process for simulation models, but only few
suggestions about how to document the model itself (Richter
and März 2000, Banks, Carson and Nelson 1996) The lack
of a more uniform and accepted way of documenting
simulation models leads to poor or scare documentation of
the logic and structure of the model. In the software develop-
ment area many systems are very difficult to change because
of poor documentation. Often, simulation models suffer
from the same kind of problems. This makes the re-use of
experience and of the model itself very difficult.
Discrete-event simulation procedures are different to
software development in the sense that the developer does
not necessarily need to write his own code, instead may
predefined functions and features provided inside the simu-
lation package be used. Even if the user can write user de-
fined functions, the structure and platform of the software
is predefined, particularly for hybrid simulation systems.

3 CRITERIA

A suitable notation for documentation has to be defined if a
simulation model shall be documented in the perspective of
life cycle simulation. This is of major importance since
documentation is not for free. According to (Pressman
1992) 20 to 30 percent of the cost in software development
are spent on documentation. This could be one reason for
why there is a difference between how textbooks treat the
need for documentation and how it is done in reality. In
many cases documentation is done sparsely.

Despite the cost and the inconvenience, which some
may argue that documentation cause, it is essential for the
use, credibility and re-use of the model. Not having enough
documentation of a simulation study may be more costly
and cause more inconvenience than the opposite. This pa-
per does not aim to consider all the documentation pro-
posed to a simulation study. The aim is to concentrate on
the documentation that is necessary to document the model
itself, and not the entire project documentation.

Lehman (Lehman 1977) expresses the importance of
directing program documentation in a research simulation
study to different audiences. He identifies three audiences:

• The programmer itself.
• The researcher interested in the program and its

model.
• The reader with no desire or need to understand

the inner detail of the program.

These three audiences can easily be mapped to a non-
research simulation study with the equivalence of:

• The programmer, or the original simulationist.
• The new engineer/simulationist who is going to

either study the model or re-use it
• Others who want to understand the main frame,

but not necessary all details in the model.

Lehman also differentiates between internal documentation
within the programme and external documentation in a
separate document. The internal documentation refers to
explicit code documentation, in the heading of each proce-
dure/routine and in the code itself giving comments. The
programmer should follow the general guidelines/rules
given in programming conventions (Eklund, Mellin and
Brimark 1998). This documentation is understood to be of

Oscarsson and Urenda Moris

value for the first and second audience, but Lehman sug-
gests that a detailed specification of the conceptual model
is even of greater value for the second audience. Finally he
makes the point that the third audience should get some
kind of user manual, a non-technical external description.

It is clear that simulation model documentation has to
be developed for all different types of audience. There is
also a need for documentation at different levels of abstrac-
tion, offering a way for communication and learning
among a project group. There is a need for describing
complex models from different views, providing a holistic
view of the model.

3.1 Criterions to Consider in
the Selection of Notations

From literature (Eklund, Mellin and Brimark 1998, NIST
1993) and experiences made in industry a number of crite-
rions to be fulfilled by a notation have been identified. The
following criterions have been identified:

• Neutral notation. The need for a neutral notation,

not limited to any specific languages, software or
systems. The main reason for this is that there is
no language or software, which is a standard in
simulation engineering, and there will probably
never be. Because of this, the notation(s) should
be able to support the development in e.g.
QUEST, Arena or a simulation language. A neu-
tral notation offers a possibility to e.g. first docu-
ment a QUEST model and at the same time trans-
late that documentation into an Arena model for
the purpose of re-use.

• Generic notation. The need for a generic notation
that can describe different systems of various pur-
pose, complexity and scope. A simulation depart-
ment may work with different types of simulation.
The simulation task may be simulation of a produc-
tion system, ergonomics in an assembly line or a
robot cell. A generic notation would support the
standardisation in documentation procedures.

• A recognised notation. The importance of using a
known and well-recognised notation is beneficial.
If there are any interpretation difficulties because of
the use of an “in-house” solution, the notation may
need an additional documentation in order to be
understood and that is not the point. Using a nota-
tion that to some degree is considered as a standard
or at least well recognised will improve the com-
munication and support the model maintenance
during its life cycle. It is as talking the same lan-
guage, it helps when working together!

• User friendly. Notations help the reader to over-
come the differences between the abstract code
level and the natural language (Eklund, Mellin
and Brimark 1998). To fulfil that purpose they
need to visualise what is abstract, in other words
be intuitive and descriptive. There is always a bal-
ance between the descriptive and intuitive ap-
proach and the extendibility of the notation (Sinan
1998). If the notation is too simple and intuitive it
may lack the possibility to describe the simulation
model in detail.

• Descriptive in several levels. A notation with the
possibility to modulate and describe different lev-
els of abstraction gives the user the possibility to
study the system from a top-down or bottom-up
point of view. The user may choose to use a top-
level view in order to describe the system for an
audience of category three, or a bottom-level for a
co-programmer.

• An in-house competence. The documentation
has, mostly, as a target customer the client’s or-
ganisation. This means that the client should be
included in the selection of notation. Some com-
panies have already standards they use in
documentation. In these standards one company
might have chosen to use the complete IDEF
family, another UML etc.. The consultant should
not be surprised if he is the one with the need to
adapt. In that case he should remember that the
successful use, credibility and re-use of the model
might lie in this adaptation.

These six criterions should guide the selection of notation,
they are probably not the only ones, but these are among
the most important ones and could serve as a base in future
consideration of notations for simulation studies.

4 MODEL DOCUMENTATION NOTATIONS

A survey over a number of potential notations used in dif-
ferent areas has been made. For each of the notations an
evaluation has been made regarding the criterions identi-
fied. The sixth criterion, an in house competence, cannot
be evaluated for obvious reasons. It is up to each individual
company or organisation to find out their competence.
Nevertheless this is something, which at the end of the day
may be of a much higher priority than all other criterions.

For documentation of discrete event simulation mod-
els for manufacturing industry the following recommenda-
tions is made:

! For low-level documentation intended for the

programmer use flowcharts and comments in the
code. If there is a need to be more precise in the
description of the structure and behaviour of the
system use UML diagrams. Concentrate on struc-
ture and behavioural diagrams.

Oscarsson and Urenda Moris

! For conceptual documentation, use IDEF0 to de-

scribe the flow in the system. Decompose to a
more detailed level when it is necessary to de-
scribe the system flow more accurately. Combine
the IDEF0 models with Flowcharts to visualise a
more physical structure of the system.

! When describing the system for people with no
interest in details, choose the simulation. An ani-
mation of the simulation, perhaps in 3D with
fairly realistic graphics is by far the clearest
documentation of system behaviour. It supports
communication in a project group, and thanks to
its dynamic behaviour illustrates more than many
diagrams can do together.

4.1 IDEF0

IDEF (Icam DEFinition) was developed within the US Air
Force program for Integrated Computer Aided Manufactur-
ing (ICAM) during the early 80s. Originally the IDEF
package contained three different techniques for modelling
(NIST 1993):

1. IDEF0, used to produce a “function model”.
2. IDEF1, used to produce an “information model”.
3. IDEF2, used to produce a “dynamic model”.

Today several other modelling techniques have been im-
plemented in the IDEF family, but the consideration that
follows will focus on IDEF0.

IDEF0 (Integration DEFinition language 0) is a
method designed to model the decisions, actions, and ac-
tivities of a system or organisation. The methodology focus
on describing a system in terms of their activities and in-
formation flows instead of its (data) structure and by doing
so it is different to the JSP notation. IDEF0 is based on
SADT (structured Analysis and Design Technique) devel-
oped for software engineering projects.

The methodology combines both graphics and text, and
presents them in an organised and systematic way making it
easy to understand and use. It can be used in both top-down
and bottom-up approaches and one of its major advantages
is the built-in decomposition methodology it possesses. Each
activity or function can be decomposed and be easily tracked
without loosing the overall picture. This gives IDEF0 the
ability of reaching the level of detail necessary for the analy-
sis, and at the same time give the project team the possibility
to choose, in there communication, the adequate level of ab-
straction increasing the consensus and understanding among
different project members.

• Neutral notation. IDEF0 is neutral, but it does

not give much support in programming tasks. The
notation syntax gives the user a possibility to de-
compose activities to very small fractions, but it is
still not suitable for describing simulation pro-
gramme logic.

• Generic notation. IDEF0 is a generic notation for
system analysis. The notation is good at represent-
ing activities and processes in a structured way. It
is ideal to describe the flows in a simulation
model.

• A recognised notation. IDEF0 is well recognised
among people working with engineering. Others
working with software engineering background
would probably recognise it if the name of SADT
were used since it is the same methodology. This
supports the communication between different
groups, which is an advantage when presenting a
simulation model.

• User friendly. IDEF0 is a logical and descriptive
notation that does not require too much work to
understand and use. The semantic and syntax are
simple and the textual descriptions adds user
friendliness to the notation. Some difficulties can
be experienced when the user have to decide a
flow to either be an input, mechanism or control
flow. Another difficulty is to find suitable names
to the more abstract activities. But looking at the
whole picture, IDEF0 is user friendly.

• Descriptive in several levels. This is one of the
strongest features of IDEF0. The notation gives
the user the opportunity to either decomposed or
abstract activities. The user can choose to either
follow a bottom-up or a top-down methodology.
And he can choose to describe parts of the model
flows at a conceptual level, and others at a more
detail level. This flexibility is of great value.

IDEF0 is well suited for documenting the flows in a simu-
lation model. It does not cover all the aspects of the model
documentation and do not say much about low-level logic,
structure or dynamics. It cannot handle parallel processes
well, but it plays an important role in giving an overall un-
derstanding of the simulation model. The quality of being
comprehensive and broadly used among engineers makes
the IDEF0 model documentation a good choice.

4.2 UML

UML stands for Unified Modelling Language and it is a
“modelling language for specifying, visualizing, construct-
ing and documenting the artefacts of a system-intensive
process.” (Sinan 1998) This means that UML can be used
in software engineering, in business modelling and in oth-
ers non-software systems. UML was developed by Ra-
tional Software Corporation and three methodologists in
the information system and technology industry, Grady
Booch, James Rumbaugh and Ivar Jacobson. The language
have gained significant industry support from various or-

Oscarsson and Urenda Moris

ganisations via the UML Partners Consortium and has been
submitted to and approved by the Object Management
Group (OMG) as a standard.

Compared IDEF0, UML includes a wide range of dia-
grams and complementary notations based on the same
metamodel. The metamodel is based on the object-oriented
paradigm and is divided in three different packages, the
Foundation package, the Behavioural Elements package
and the Model Management package. All these packages
are related, but within each package the elements have a
stronger relation to each other’s than to other packages.
The Metamodel elements are organised into diagrams. Dif-
ferent diagrams are used for different purposes depending
on the angle from which the system is viewed, see figure 1.

Figure 1: Model View and Diagrams (Sinan 98)

• Neutral notation. UML is considered to be a lan-

guage, with a syntax that is neutral and can be
used to design and document any kind of pro-
grammes. It is based on the object–oriented para-
digm, which makes it very suitable to document
or even design simulation models. The UML no-
tation supports all the features in QUEST’s logic.
This means that it is up to the producer of the
model to decide how much to document, the nota-
tion places no limits.

• Generic notation. UML is a generic language. It
is used for specifying, designing and documenting
software systems, as well as for business model-
ling and other non-software systems. From a
simulation modelling point of view it covers more
of the software documenting and constructing as-
pects of the model, but not the process flow as
well as IDEF0.

• A recognised notation. It is a relatively new no-
tation even if much of its contents come from
older notations. In the software engineering arena
it is well recognised. Engineers on the other hand
normally have herd of the language, but they
probably do not understand it and much less us it.

• User friendly. UML feels abstract and difficult to
embrace at first sight. With use and practice this
surely changes, but the question is if people
adopting the model will have the knowledge- or
interest in learning UML. Perhaps the UML
model will be more difficult to understand than
the simulation model itself.

• Descriptive in several levels. UML can describe
systems at many different levels, from very high-
level description to low-level diagrams. Case tools
can even generate program code directly from
UML. But it has not the flexible ability experi-
enced in IDEF0, and it lacks the same visual
strengths.

UML surely can describe the structure and behaviour of a
simulation model. The question is if it would add any value
to the documentation? It would, if the personnel working
with the model have UML experience, otherwise it would
probably not. There is always the possibility to choose
some of the diagrams in UML to describe smaller parts of
the model e.g. class diagrams to visualise the structure of
elements and their associations, or sequence diagrams to
give a more accurate description of the element behaviour.
But unless the model is of the magnitude that it is com-
pletely impossible to embrace it, UML feels unnecessary
complex to add value to the documentation.

4.3 Flow Charts

A flow chart is defined as a pictorial representation de-
scribing a process being studied or even used to plan stages
of a project. This pictorial attribute facilitates the commu-
nication among people. Despite peoples different back-
grounds they tend to understand the symbols and can easily
visualise the main features of the process. But even if it is a
widely used modelling technique it is just as often abused.
The lack of use of formal procedures sometimes makes the
interpretation ambiguous or misleading. (Pressman 1992)

Flow charts are easy to use and customised to different
processes. Several software products makes a whole set of
symbols available, more or less descriptive for visualisa-
tion and analysis of a process. Flow charts exist for differ-
ent disciplines; ranging from flow charts describing pro-
grammes to flow chart used to describe business processes
at high abstract level. Despites the different scenarios
flowcharts are based on some basic constructs, plus some
added constructs intended for special areas.

• Neutral notation. Flow charts are extremely neu-

tral. Their basic constructs can be used without
consideration of the programming language. The
notation is widely used to document programmes.

• Generic notation. Flow charts are very generic.
They are used in the most different imaginable
situations, and can be used to describe all kinds of
manufacturing systems.

• A recognised notation. Flow charts are well rec-
ognised. The user may not always recognise all
the symbols, but they usually understand the

Oscarsson and Urenda Moris

meaning from the context of the diagram. In engi-
neering contexts flow charts have been used for
decades, in operation descriptions and system
analysis. This is a major advantage when a simu-
lation model is described, people of different posi-
tions will understand the diagram and is able to
contribute to the overall discussion.

• User friendly. Mostly flowcharts are easy to un-
derstand. When they become too large they lose a
bit of its intuitive communication, and become
more complicated to track and understand. But to
describe material flows, or logic in not to large
diagrams, they fill a clear descriptive purpose.
They are more intuitive than IDEF0 diagrams, but
lack the same flexibility in decomposition that
IDEF has. A possible problem could be that they
can cause ambiguous interpretations when no pre-
cise syntax has been applied.

• Descriptive in several levels. Flow charts can be
used at different levels. They also share the de-
composition characteristic that IDEF0 posses, but
not to the same magnitude and not with the same
documentation methodology.

Flow charts are well suited to support the documentation of
a simulation model. They can be used at different levels
and are well understood by different categories of people.
Their strengths lie in their descriptive and intuitive syntax.
Their weakness is that they can be difficult to track in large
diagrams with a lot of branches.

5 CONCLUSIONS

An evaluation is always coloured by the authors experience
and expectations. Especially when the evaluation is made on
subjective matters and not mainly facts e.g. when people
evaluate the performance of a car. The interpretation of what
is a good notation for simulation is based on some funda-
mental guidelines, experience and personal intuition. Being
totally objective is impossible even when effort is put to it.

Documentation deals with storage of experience and
with communicating or making this experience accessible
to others. This means that it is not always the technically
perfect language that is the best medium for documenta-
tion. The language people understand and use is probably
the best. If we choose to write all reports in Latin, the ex-
perience and knowledge they contain would be lost, or at
least obscure for a majority of people. Documentation has
to reach people, and hopefully help them to act according
to what they may have learned.

From the point of view of documenting a simulation
model, we want people to understand and believe in the
models credibility. Good documentation will do that job,
long after the consultant had a convincing presentation and
the first newborn interest in simulation cooled. It will make
all the experience embedded in the model accessible and
the model ready to re-use.

The proposed method for documentation of simulation
models for manufacturing system simulation has been
evaluated in a number of case studies. This far it has
proven to work, providing a mean to communicate and
store knowledge over the manufacturing system life cycle.

REFERENCES

Banks J, Carson J S and Nelson B L 1996 Discrete Event
System Simulation, 2nd Ed. Prentice-Hall, pp 3-18

Eklund A, Mellin J and Brimark B 1998 Programmer-
ingsmetodik 1- föreläsningsmaterial, University of
Skövde, Sweden, pp 5-107. In swedish

Lehman R S 1977 Computer Simulation and Modelling,
Lawrence Erlbaum Associates, Inc., pp 215-223

NIST- National Institute of Standards and Technology 1993
“Integration definition for function modeling (IDEF0)”,
Processing standard publication 183, Federal Informa-
tion Processing Standards Publication, pp ii- ix, 1-115

Pressman R S 1992 Software Engineering: Practitioner’s
approach, European 3rd Ed McGraw Hill, pp 277-286,
344-349, 732

Randell L 1999 Discrete-Event Simulation Workshop, Re-
vision: 1.8, The Lund University, Sweden, pp 1-47

Richter H and März L 2000 Toward a standard process:
The use of UML for designing simulation models. In
Proceedings of the 2000 Winter Simulation Confer-
ence, Ed. J. A. Joines, R. R. Barton, K. Kang, P. A.
Fishwick, pp 394-398

Sinan S A 1998 UML in a Nutshell, O’reilly & Associates,
Inc., pp 1-126

AUTHOR BIOGRAPHIES

JAN OSCARSSON is a senior lecturer at the Centre for
Intelligent Automation at the University of Skövde, Swe-
den. He received his Ph.D. 2000 at De Montfort Univer-
sity, Leicester, UK. Currently he is the project manager of
the dAISy project, in which the current paper have been
prepared. His main research interests includes integrated
product development, the ‘digital factory’ concept and is-
sues related to systems engineering. His email and web ad-
dresses are <jan.oscarsson@ite.his.se> and <
http://www.ite.his.se/~jan/>.

MATÍAS URENDA MORIS is a Ph.D.-student at the
Centre for Intelligent Automation at the University of
Skövde, Sweden. He received his MSc in Automation
Engineering 2001 at the University of Skövde in collabo-
ration with Loughborough University, UK. His main re-
search area is DES for manufacturing, with an emphasis
on integration of simulation and logistics in a demand –
supply chain perspective.

mailto:jan.oscarsson@ite.his.se

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1073
	02: 1074
	03: 1075
	04: 1076
	05: 1077
	06: 1078

