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ABSTRACT 

This paper re-introduces web-based simulation from a web 
development point of view by first comparing the goals, 
structures, operations, and communication mechanisms on 
the web with those of current distributed simulation technol-
ogy, and then synthesizing a new web-based simulation 
paradigm that more closely resembles the technology found 
on the web than Java-HLA solutions. The resulting para-
digm is expressed through the Simulation Reference Markup 
Language (SRML) and Simulation Reference Simulator (SR 
Simulator) developed through research at Boeing. 

1 INTRODUCTION 

I feel though that we want something very declarative, 
rather than procedural, as a base. I would like it to support 
lazy [evaluation], so that when a bit of embedded video 
becomes covered by another window, the bandwidth can 
be saved, or if I can’t see the output of a simulation, the 
CPU can be saved.  “If you never have a dream, then you 
never have a dream come true”. (Berners-Lee 1994) 
 

Web technologies and distributed simulation tech-
nologies have grown up largely independently, and though 
distributed simulation preceded the web, we see that the 
web is now influencing distributed simulation. In the past, 
web-based simulation was introduced through Java operat-
ing over the High-Level Architecture (HLA) (Page 1998). 
However, let us re-introduce web-based simulation by first 
comparing the goals, structures, operations, and communi-
cation mechanisms on the web with those of current dis-
tributed simulation technology, and then by synthesizing a 
new web-based simulation paradigm that more closely re-
sembles the technology found on the web. 

2 GOALS COMPARISON 

The web focuses on information accessibility, with the 
primary goal to “provide a universe of network-accessible 
information, the embodiment of human knowledge” 
(WWW 1992). Simulation, however, focuses on informa-
tion creation and analysis. In this context, the primary goal 
is to provide knowledge, or answers to important questions 
through experimentation and modeling, which would oth-
erwise be too difficult or expensive to obtain—i.e., calcu-
late knowledge. Simulation is a process that attempts to 
predict aspects of the behavior of some system by creating 
an approximate model of it. Both provide knowledge 
through computing, however since they focus on different 
aspects of knowledge, functional requirements and per-
formance may differ significantly.  

3 STRUCTURAL COMPARISON 

A structural look at the web reveals a foundation built upon 
the Internet. Standardized web browsers operate at the top 
of the architecture providing universal information acces-
sibility tools. Browsers receive information in standard 
HTML documents, parse the documents and generate a 
standardized hierarchical memory structure named the 
Document Object Model (DOM). The memory structure 
includes not only objects contained in the documents but 
also a fixed set of standardized objects in the browser it-
self. Web servers operate at distributed locations, and re-
spond to requests for HTML documents using a standard-
ized Hypertext Transport Protocol (HTTP). Many standard 
and ad-hoc objects flow from a web server to a browser in 
a client-server fashion. Objects of this nature include: 
HTML objects, graphics objects, script objects, text ob-
jects, and other objects registered as Multi-Purpose Mail 
Extensions (MIME). Other web automation applications 
besides web browsers and servers have emerged within the 
web, for example: proxies, redirectors, filters, robots 
(BOTs), spiders, and crawlers. Notice that these objects all 
support the goal of information accessibility. In addition, 
higher levels of information fidelity operate in the web en-
vironment using multimedia and virtual reality techniques.  

Supporting the goal of knowledge through modeling, 
distributed simulation architectures have a slight resem-
blance. Internet technology operates at the foundation of 
distributed simulation, however for performance reasons 
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some simulations may be restricted to an intranet or subnet. 
We find within the HLA domain, simulation actors charac-
terized as federates (simulations) that operate within a 
peer-to-peer federation. Federates may participate in the 
function of a federation or act as observers, logging or 
visualizing information that passes through the federation. 
Although the HLA has been standardized and embodied in 
a combination of software known as the Run-Time Infra-
structure (RTI) and the Federate Object Model file (FOM), 
federates are not standardized. Federates are typically build 
to suit the needs of the simulation. One reason is that HLA 
is based on a premise that no simulation can satisfy all uses 
and users. However, the premise ignores the idea that one 
standardized simulation tool can satisfy most simulation 
users, just as one standardized web browser satisfies most 
web users. 

4 OPERATIONAL COMPARISON 

Web operation centers on the generation and display of 
HTML documents--documents that include both data and 
functionality. Authors generate HTML statically using edi-
tors, and software developers generate HTML dynamically 
with the assistance of program code. Part of the develop-
ment includes organizing data into documents or other 
structures such as relational databases. Developers also in-
sert scripts into the HTML stream to provide dynamic be-
havior in the universal browser. Scripts operate on a stan-
dard runtime environment provided by the browser that 
includes both browser objects and document objects. A 
document’s functionality is tested by loading it into a 
browser, and perhaps using a script debugger tool. Typi-
cally the creation of HTML, development and testing of 
scripts, takes place in a short development cycle, is consid-
ered relatively easy, with little software engineering disci-
pline required. Web browsers retrieve data for display 
through a process of connecting to a web server, submit-
ting a query, downloading HTML. After retrieving the 
data, document loading proceeds as the browser parses the 
HTML data, assembles DOM objects, and compiles the 
scripts using plug-in language parsers. As the document 
continues to load, the browser instantiates pre-built objects, 
downloads graphics, and instantiates plug-in objects. Com-
piled script behavior also executes as the document loads, 
and continues to execute after the loading has completed, 
as user-initiated events or timed events.  

Turning to the operations that take place in distributed 
simulation, we see that HLA has a process for developing 
federations, called the FEDEP (Lutz 2001). Typically the 
process includes traditional software development stages 
such as designing, coding, and testing. Building a federation 
can take a significant amount work and require a high degree 
of engineering skill, as the application development interface 
(API) of the RTI itself includes over 150 members. As fed-
erates are developed they are tested both independently and 
with other federates. Data used in the simulation is pre-
processed and associated with the program logic as federates 
initialize and join the running federation. Federates inter-
change data using publish-and-subscribe mechanisms built 
into the HLA. Federates also send and receive messages, 
called interactions, to other federates. Finally, federates re-
sign from the federation. Once complete, analysts examine 
the data generated from the simulation.  

5 COMMUNICATION COMPARISON 

Communication between a browser and a server takes 
place using the standardized hypertext protocol (HTTP) 
that operates over TCP/IP. The browser establishes a short 
client-server connection, sends and receives data, then dis-
connects. Response time as perceived by the user plays a 
semi-important role, as web users have grown accustomed 
to unpredictable wait times. Thus, infrequent user-initiated 
bursts of data characterize the pattern of communication. 
Users do not tolerate random errors or omissions in text, 
thus HTTP communication is lossless. 

Communication in HLA is mostly opaque and non-
standard. One RTI may implement communication using a 
proprietary protocol, another may use CORBA, and yet 
another may simply use inter-process communications. 
Regardless of the protocol, the communication is peer-
peer, which affords much greater flexibility than client-
server. Since simulation demands high computational per-
formance, the internet may slow a simulation down signifi-
cantly. Frequent short bursts of data characterize the pat-
tern of communication in distributed simulation. 
Distributed simulation may also cause problems in corpo-
rate internets where firewalls may block the communica-
tion, or where IT systems shut down due to network flood-
ing. Thus HLA simulation typically takes place within a 
single subnet, rather than across the internet. Furthermore, 
the flexibility available in some RTI implementations per-
mits both lossless and lossy communications. 

6 INTRODUCING WEB-BASED SIMULATION 

The foregoing comparisons set the stage for web-based 
simulation. Ideally web-based simulation has the best of 
what the web has to offer and the best of what HLA has to 
offer. The notion of web-based simulation is probably as 
old as the web itself. However, past representations charac-
terized web-based simulation as the Java programming 
language operating over HLA. Unfortunately, that architec-
ture bears only a slight resemblance to the web. Therefore, 
rather than looking at the web-based simulation from the 
eyes of a simulation developer, we look at web-based 
simulation from the eyes of a web developer. Given this 
point of reference, the primarily goal of web-based simula-
tion is to enable simulations to be served, received, and 
processed in a standard fashion using Internet technologies 
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and the World Wide Web. We present web-based simula-
tion using the Simulation Reference Markup Language 
(SRML), and the Simulation Reference Simulator (SR 
Simulator). SRML and the SR Simulator were both devel-
oped at Boeing and are currently in use on several major 
simulation projects across the company. Just as HTML 
represents web documents, SRML represents simulation 
models. Likewise, as the web browser represents a univer-
sal client application, so the SR Simulator represents a uni-
versal simulator. As HTML contains both declarative and 
procedural definitions, SRML binds the declarative with 
the procedural. 

7 DECLARATIVE AND PROCEDURAL 

SRML is an XML-based language that provides generic 
simulation markup for adding behavior to arbitrary XML 
documents. XML documents are fundamentally declara-
tive. XML consists of elements specified using tags (words 
bracketed by '<' and '>'). Elements can have attributes (de-
scribed by a name-value pairs), and can contain embedded 
elements: 

 
<elementname1 attributename1='value1'  
  attributename2='value2' ...>  
 <embedded-element1 ...> 
  ... 
 </embedded-element1> 
 ... 
</elementname1> 

 
These constructs can naturally describe hierarchically 

related and networked data—literal data and meta-data. An 
XML Schema is an XML document that permits a modeler 
to specify rules about element relationships and attributes 
that can be validated with software. XML is said to be a 
declarative language because the tags specify “what” with-
out specifying “how”. In other words data structure is ex-
plicitly represented while operations are either applied or 
implied externally to the declaration. Procedural languages 
like Java, JavaScript, and C++ explicitly represent opera-
tions as algorithms. A semantic bridge in XML between 
the declarative and the procedural lies in this construct: 
“<elementname1 ...>”. Programming languages that 
process XML, provide the meaning or behavior of ele-
mentname1, but in a separately compiled program. SRML, 
also allows the semantics and behavior of elementname1 to 
be specified within the XML constructs using Script tags. 
This resembles the way that script is added to HTML, yet 
much more flexible. Rather than just the document scope 
and procedure scope provided by HTML, SRML intro-
duces item and item class scopes. The advantage of these 
new scopes enables the broad functionality requirements 
needed by simulations, which would otherwise be cumber-
some in HTML. 
8 WEB-BASED SIMULATION  
STRUCTURE AND OPERATION 

In web-based simulation the universal SR Simulator is a 
software component that can be plugged-in to a web 
browser or other tool. Simulations can run in many envi-
ronments including spreadsheets and even custom embed-
ded applications. A single software component can support 
all of these environments. A modeler can choose any host 
environment that is capable of creating a Simulation object 
and using its interface. Possible hosts include Microsoft 
Internet Explorer, Microsoft Office applications, Microsoft 
Visual Basic, and Java. An SR Simulator provides a class 
of Simulation objects. Each Simulation object encapsulates 
a simulation instance (or run), and is primarily responsible 
for providing the runtime environment. Since a Simulation 
is an object that embodies a particular execution of a simu-
lation, many simultaneous simulations can exist on the 
same computer, or distributed across a network as a client 
or server. Figure 1 shows the architecture of the SR Simu-
lator in its external environment. 

 

Simulation Reference Simulator 

DOM 
Plug - Ins 

Host ( e.g. Web Browser) 

Item Manager 
Event Manager Random Numbers 

 
Figure 1: SR Simulator Architecture 

 
The SRML runtime environment is a collection of 

software objects that can read SRML input, build and man-
age the corresponding simulation items, connect those 
items together, and provide an event-driven mechanism for 
items to communicate. It also provides simulation support 
in the form of a random number generator, simulation 
primitives such as time averages and data structures, math 
functions, statistics functions, and the ability to generate 
outputs as defined by the model.  

Developing a simulation in SRML is like building a 
web page, and thus the modeling process for a web-based 
simulation resembles the web page authoring process, 
whereas the distribution process resembles the FEDEP 
with an HLA plug-in for distribution. In that way, federates 
can be rapidly developed and naturally extended when 
HLA is desired or required. Simulation models combine 
XML, scripts, links to sub-models, and plug-in declara-
tions. One main difference between SRML and HTML is 
that SRML is used with domain-specific XML documents 
as the means for providing simulation behavior. When a 
model is loaded, the component pieces are assembled, 
much the same way that an HTML page consisting of data 
specified externally is assembled. The resulting assembly 
has a memory representation within the DOM used by the 
simulator. During simulation execution, the HLA plug-in 
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operates seamlessly with the simulator so that the model 
has minimal awareness that other objects exist externally. 
In addition to functionality provided by HLA, additional 
objects move from simulator to simulator using HTTP or 
similar protocol. 

9 SRML LANGUAGE CONCEPTS 

The things a modeler describes in SRML are referred to as 
items. An item can represent a physical thing, such as a 
piece of equipment, or a person, or an entire system of 
other items. An item may also represent a process or a step 
in a process. Items can have properties. For example, a 
piece of equipment might have a ‘serial number’ property, 
and a process might have ‘duration’ property. SRML pro-
vides a natural way to express items, their properties, and 
complex item relationships, using the grammar of XML 
with a small set of pre-defined elements and attributes that 
have specific meanings and rules. Items and properties cor-
respond to elements and attributes in the XML. With the 
exception of a few pre-defined element names, such as 
ItemClass, SRML uses the elements and attribute names 
that a modeler defines. This makes it possible to create a 
domain-specific XML schema to validate a system’s struc-
ture and to provide data types for the attributes. A domain-
specific schema works in conjunction with the SRML 
schema when using XML namespaces. The following code 
shows a sample model in SRML. 

 
<Simulation Name='ControllerSimulation'> 

<Controller Name='TS293847' Operable='1' 
Pings='0' Health='1'> 

<Script Type='text/javascript'> 
<![CDATA[ 
function poll()  

{ 
Items(1).queryStatus(); 
Items(2).queryStatus(); 
} 

function receive(Name, Value)  
{ 
Health=math.min(Health, 
Value); 
Pings++; 
} 

]]> 
</Script> 
<Sensor Name='TSM5865'  
 Quantity='2'> 

<Script 
Type='text/javascript'> 
<![CDATA[ 
function queryStatus()  

{ 
Location. 
receive(Name,  
Random()); 
} 

]]> 
</Script> 

</Sensor> 
</Controller> 

</Simulation> 
Figure 2 shows a simplified conceptual model of an 
item. Internally an item has a unique system-generated 
ItemID and a script. It has an association with a DOM 
node—from the element. It can both serve as a location, and 
belong at a location along with other items. It can have links 
to other items, and be a target for a link. Also, it can belong 
to an item class, which in turn can have super-classes. An 
item gets its properties directly from DOM attributes, and its 
behavior from script. The ItemClass element allows the 
modeler to generalize groups of common items, yet an item 
does not need to have a corresponding ItemClass. 

 
 

Item 

ItemID 
[Script Object] 

ItemClass 

Name 
[Script Object] 

ItemClass 

Location 

Items 
SuperClasses 

DOM Node 

Node 

item Target 

Links 

DOM Attribute 

properties 

Attributes 

{ordered} 

 
Figure 2: Simplified Item Conceptual Model 

 
The following example shows the definition of a Ve-

hicle element and Name attribute in XML, which corre-
sponds to a Vehicle item that has a Name property with a 
value of ‘Challenger’, and a VIN of ‘N3462983’: 

 
<Vehicle Name='Challenger' VIN='N3462983'/> 

10 ITEM BEHAVIOR 

The modeler provides an item’s behavior inside a Script 
element using a language such as JavaScript or VBScript, 
and specifying the Type attribute as either ‘text/javascript’, 
‘text/vbscript’, or any other simulator-supported language. 
Refer to the following example: 

 
<Vehicle ID='AirforceOne' Running='1'> 

<Script Type='text/javascript'> 
<![CDATA[ 
var Occupied=0; 
function turnOn()  
 { 
 Running=1;  
 } 
function turnOff()  
 { 
 Running=0;  
 } 
]]> 
</Script> 

</Vehicle> 

11 ITEM CLASSES 

While SRML allows the modeler to provide specific attrib-
utes and behavior for individual items, it also provides a 



Reichenthal 

 
generalization mechanism for creating classes of items. An 
item class is analogous to class in object-oriented terms, in 
that it describes the attributes and behavior for its instances 
while also providing a type of inheritance. Any number of 
item classes may exist in a model by using an ItemClass 
element and specifying a unique Name. Within the class is 
an embedded instance prototype element that has a tag 
name which matches the Name attribute of the item class. 
This prototype can have attributes with default values and 
data types validated by an XML schema. Refer to the gen-
eral form of an ItemClass: 

 
<ItemClass Name='itemclassname1'  
 SuperClasses='itemclass1 itemclass2…'  
 property1='value1' …> 
 <!-- The following element defines the  
 behavior for the class; not individual  
 instances --> 

<Script Type='script-language'> 
code 
</Script> 
<!-- The following element defines the 
prototype for the instances --> 
<itemclassname1 property1='value1' …> 
 <!-- The following element defines the  
 behavior for the instances --> 

<Script Type='script-language'> 
code 
</Script> 

</itemclassname1> 
</ItemClass> 
 
The highlighted area indicates the prototype item, and 

the bold text shows the correspondence between the name 
of the prototype and the name of the item class. The spe-
cific example below, which also highlights the prototype 
item, demonstrates the definition of an item class called 
Counter. Each of the ten instances created from this class 
will have a method called Increment and will have its own 
Count. As an item itself, the ItemClass can also have prop-
erties and behavior that will be shared by the instances. 
The example defines an Instances property for the class 
that keeps track of the number of individual Counter in-
stances. Any of the Counter instances can access its item 
class, through its intrinsic ItemClass property. Notice how 
the item accesses the Instances property in its item class in 
the code. In the note below, the code within the instance is 
directly updating the Instances value of the item class. 
 
<Simulation> 
 <ItemClass Name='counter' Instances='0'> 

<Counter Count='0'> 
<Script Type='text/javascript'> 
<![CDATA[ 

 ItemClass.Instances++; 
   Function Increment () 
    { 
    Count++; 
    } 
   ]]> 
   </Script> 
  </Counter> 
</ItemClass> 
<Counter Quantity='10'/> 

</Simulation> 

12 ITEM QUANTITIES 

A situation may arise when a large quantity of a particular 
item or structure needs to occur. Within any element, the 
modeler can provide the Quantity attribute, which instructs 
an SRML simulator to duplicate the element and its con-
tents. For example, the following structure defines a total of 
240 eggs, in a total of 20 egg cartons in two refrigerators. 

 
 <Refrigerator Quantity='2'> 

<EggCarton Quantity='10'> 
 <Egg Quantity='12' /> 
</EggCarton> 

</Refrigerator> 

13 LINKS 

XML provides an ideal structure for describing hierarchi-
cal containment relationships; however, situations may 
arise when items at various locations in a simulation need 
to have non-hierarchical connections to other items. There-
fore SRML provides two linking mechanisms. The first in-
volves using the Link element where the modeler provide 
the name and an XPath (Clark and DeRose 1999) expres-
sion to identify the target. The second mechanism uses the 
Links element where the modeler provides a name and 
supply inner links. When the modeler uses a schema and 
provides attributes of type IDREF or IDREFS (Bray, et. al. 
2000), SRML treats them in the same way it treats links. 

14 INTEGRATION, DISTRIBUTION,  
AND COMMUNICATION 

With the inherent modularity provided by XML, a single 
document may suffice for representing a large simulation. 
Many simulated items may take similar forms, and thus the 
mechanism of item classes provides the integration of 
common behavior. However, managing a single monolithic 
XML document does not work well when the pieces are 
developed independently, or when they need to be reused. 
External scripts provide a simple way to detach the behav-
ior from the structure, thus allowing code reuse at the cost 
of some encapsulation. These are specified by adding a 
Source attribute to a Script element. For example: 

 
<Script Type='text/javascript' 
Source='file:///Vehicle.js'/> 

 
The entire behavior of an item or item class can thus 

be specified separately. The reason that encapsulation is 
slightly compromised comes from the fact that the struc-
tural aspects of the item, being in XML, have been sepa-
rated from the behavioral aspect, which is in a separate 
script. A more sophisticated technique known as embedded 
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externals, allows portions of one simulation model to be 
extracted from another, thus preserving encapsulation at 
the potential cost of a larger runtime footprint. You can 
specify an embedded external in several ways: 

 
<Vehicle 
Source='http://srml.boeing.com/Vehicle.xml'/> 
<ItemClass Name='Vehicle' 
Source='file://Vehicle.xml'/> 
<Vehicle Source='VehicleComponent.Tank'/> 
 
In the first case, the vehicle is defined completely in 

the XML document: Vehicle.XML, which is similar to cre-
ating an instance from an external item class—many such 
identical vehicles can be added to the simulation model us-
ing the same source file. In the second case, the item class 
defined in the external file is included in the current model, 
thus making it available for instancing or sub-classing. The 
third case shows how separately compiled component-
based objects, known as external items, are plugged into 
the simulation. External items coexist with items in a simu-
lation model, and also provide the capability for entire 
simulation models to communicate using any combination 
of CORBA, SOAP, COM, or HLA. 

15 CONCLUSION 

This paper re-introduced web-based simulation from a web 
development point of view using the SRML and the SR 
Simulator as models that parallel the goals, structure, and 
behavior of the web, while enabling the benefits of distrib-
uted simulation through the HLA.  
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