
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

RE-INTRODUCING WEB-BASED SIMULATION

Steven W. Reichenthal

Boeing
3370 Miraloma Ave.

Anaheim, CA 92803, U.S.A.

ABSTRACT

This paper re-introduces web-based simulation from a web
development point of view by first comparing the goals,
structures, operations, and communication mechanisms on
the web with those of current distributed simulation technol-
ogy, and then synthesizing a new web-based simulation
paradigm that more closely resembles the technology found
on the web than Java-HLA solutions. The resulting para-
digm is expressed through the Simulation Reference Markup
Language (SRML) and Simulation Reference Simulator (SR
Simulator) developed through research at Boeing.

1 INTRODUCTION

I feel though that we want something very declarative,
rather than procedural, as a base. I would like it to support
lazy [evaluation], so that when a bit of embedded video
becomes covered by another window, the bandwidth can
be saved, or if I can’t see the output of a simulation, the
CPU can be saved. “If you never have a dream, then you
never have a dream come true”. (Berners-Lee 1994)

Web technologies and distributed simulation tech-
nologies have grown up largely independently, and though
distributed simulation preceded the web, we see that the
web is now influencing distributed simulation. In the past,
web-based simulation was introduced through Java operat-
ing over the High-Level Architecture (HLA) (Page 1998).
However, let us re-introduce web-based simulation by first
comparing the goals, structures, operations, and communi-
cation mechanisms on the web with those of current dis-
tributed simulation technology, and then by synthesizing a
new web-based simulation paradigm that more closely re-
sembles the technology found on the web.

2 GOALS COMPARISON

The web focuses on information accessibility, with the
primary goal to “provide a universe of network-accessible
information, the embodiment of human knowledge”
(WWW 1992). Simulation, however, focuses on informa-
tion creation and analysis. In this context, the primary goal
is to provide knowledge, or answers to important questions
through experimentation and modeling, which would oth-
erwise be too difficult or expensive to obtain—i.e., calcu-
late knowledge. Simulation is a process that attempts to
predict aspects of the behavior of some system by creating
an approximate model of it. Both provide knowledge
through computing, however since they focus on different
aspects of knowledge, functional requirements and per-
formance may differ significantly.

3 STRUCTURAL COMPARISON

A structural look at the web reveals a foundation built upon
the Internet. Standardized web browsers operate at the top
of the architecture providing universal information acces-
sibility tools. Browsers receive information in standard
HTML documents, parse the documents and generate a
standardized hierarchical memory structure named the
Document Object Model (DOM). The memory structure
includes not only objects contained in the documents but
also a fixed set of standardized objects in the browser it-
self. Web servers operate at distributed locations, and re-
spond to requests for HTML documents using a standard-
ized Hypertext Transport Protocol (HTTP). Many standard
and ad-hoc objects flow from a web server to a browser in
a client-server fashion. Objects of this nature include:
HTML objects, graphics objects, script objects, text ob-
jects, and other objects registered as Multi-Purpose Mail
Extensions (MIME). Other web automation applications
besides web browsers and servers have emerged within the
web, for example: proxies, redirectors, filters, robots
(BOTs), spiders, and crawlers. Notice that these objects all
support the goal of information accessibility. In addition,
higher levels of information fidelity operate in the web en-
vironment using multimedia and virtual reality techniques.

Supporting the goal of knowledge through modeling,
distributed simulation architectures have a slight resem-
blance. Internet technology operates at the foundation of
distributed simulation, however for performance reasons

Reichenthal

some simulations may be restricted to an intranet or subnet.
We find within the HLA domain, simulation actors charac-
terized as federates (simulations) that operate within a
peer-to-peer federation. Federates may participate in the
function of a federation or act as observers, logging or
visualizing information that passes through the federation.
Although the HLA has been standardized and embodied in
a combination of software known as the Run-Time Infra-
structure (RTI) and the Federate Object Model file (FOM),
federates are not standardized. Federates are typically build
to suit the needs of the simulation. One reason is that HLA
is based on a premise that no simulation can satisfy all uses
and users. However, the premise ignores the idea that one
standardized simulation tool can satisfy most simulation
users, just as one standardized web browser satisfies most
web users.

4 OPERATIONAL COMPARISON

Web operation centers on the generation and display of
HTML documents--documents that include both data and
functionality. Authors generate HTML statically using edi-
tors, and software developers generate HTML dynamically
with the assistance of program code. Part of the develop-
ment includes organizing data into documents or other
structures such as relational databases. Developers also in-
sert scripts into the HTML stream to provide dynamic be-
havior in the universal browser. Scripts operate on a stan-
dard runtime environment provided by the browser that
includes both browser objects and document objects. A
document’s functionality is tested by loading it into a
browser, and perhaps using a script debugger tool. Typi-
cally the creation of HTML, development and testing of
scripts, takes place in a short development cycle, is consid-
ered relatively easy, with little software engineering disci-
pline required. Web browsers retrieve data for display
through a process of connecting to a web server, submit-
ting a query, downloading HTML. After retrieving the
data, document loading proceeds as the browser parses the
HTML data, assembles DOM objects, and compiles the
scripts using plug-in language parsers. As the document
continues to load, the browser instantiates pre-built objects,
downloads graphics, and instantiates plug-in objects. Com-
piled script behavior also executes as the document loads,
and continues to execute after the loading has completed,
as user-initiated events or timed events.

Turning to the operations that take place in distributed
simulation, we see that HLA has a process for developing
federations, called the FEDEP (Lutz 2001). Typically the
process includes traditional software development stages
such as designing, coding, and testing. Building a federation
can take a significant amount work and require a high degree
of engineering skill, as the application development interface
(API) of the RTI itself includes over 150 members. As fed-
erates are developed they are tested both independently and
with other federates. Data used in the simulation is pre-
processed and associated with the program logic as federates
initialize and join the running federation. Federates inter-
change data using publish-and-subscribe mechanisms built
into the HLA. Federates also send and receive messages,
called interactions, to other federates. Finally, federates re-
sign from the federation. Once complete, analysts examine
the data generated from the simulation.

5 COMMUNICATION COMPARISON

Communication between a browser and a server takes
place using the standardized hypertext protocol (HTTP)
that operates over TCP/IP. The browser establishes a short
client-server connection, sends and receives data, then dis-
connects. Response time as perceived by the user plays a
semi-important role, as web users have grown accustomed
to unpredictable wait times. Thus, infrequent user-initiated
bursts of data characterize the pattern of communication.
Users do not tolerate random errors or omissions in text,
thus HTTP communication is lossless.

Communication in HLA is mostly opaque and non-
standard. One RTI may implement communication using a
proprietary protocol, another may use CORBA, and yet
another may simply use inter-process communications.
Regardless of the protocol, the communication is peer-
peer, which affords much greater flexibility than client-
server. Since simulation demands high computational per-
formance, the internet may slow a simulation down signifi-
cantly. Frequent short bursts of data characterize the pat-
tern of communication in distributed simulation.
Distributed simulation may also cause problems in corpo-
rate internets where firewalls may block the communica-
tion, or where IT systems shut down due to network flood-
ing. Thus HLA simulation typically takes place within a
single subnet, rather than across the internet. Furthermore,
the flexibility available in some RTI implementations per-
mits both lossless and lossy communications.

6 INTRODUCING WEB-BASED SIMULATION

The foregoing comparisons set the stage for web-based
simulation. Ideally web-based simulation has the best of
what the web has to offer and the best of what HLA has to
offer. The notion of web-based simulation is probably as
old as the web itself. However, past representations charac-
terized web-based simulation as the Java programming
language operating over HLA. Unfortunately, that architec-
ture bears only a slight resemblance to the web. Therefore,
rather than looking at the web-based simulation from the
eyes of a simulation developer, we look at web-based
simulation from the eyes of a web developer. Given this
point of reference, the primarily goal of web-based simula-
tion is to enable simulations to be served, received, and
processed in a standard fashion using Internet technologies

Reichenthal

and the World Wide Web. We present web-based simula-
tion using the Simulation Reference Markup Language
(SRML), and the Simulation Reference Simulator (SR
Simulator). SRML and the SR Simulator were both devel-
oped at Boeing and are currently in use on several major
simulation projects across the company. Just as HTML
represents web documents, SRML represents simulation
models. Likewise, as the web browser represents a univer-
sal client application, so the SR Simulator represents a uni-
versal simulator. As HTML contains both declarative and
procedural definitions, SRML binds the declarative with
the procedural.

7 DECLARATIVE AND PROCEDURAL

SRML is an XML-based language that provides generic
simulation markup for adding behavior to arbitrary XML
documents. XML documents are fundamentally declara-
tive. XML consists of elements specified using tags (words
bracketed by '<' and '>'). Elements can have attributes (de-
scribed by a name-value pairs), and can contain embedded
elements:

<elementname1 attributename1='value1'
 attributename2='value2' ...>
 <embedded-element1 ...>
 ...
 </embedded-element1>
 ...
</elementname1>

These constructs can naturally describe hierarchically

related and networked data—literal data and meta-data. An
XML Schema is an XML document that permits a modeler
to specify rules about element relationships and attributes
that can be validated with software. XML is said to be a
declarative language because the tags specify “what” with-
out specifying “how”. In other words data structure is ex-
plicitly represented while operations are either applied or
implied externally to the declaration. Procedural languages
like Java, JavaScript, and C++ explicitly represent opera-
tions as algorithms. A semantic bridge in XML between
the declarative and the procedural lies in this construct:
“<elementname1 ...>”. Programming languages that
process XML, provide the meaning or behavior of ele-
mentname1, but in a separately compiled program. SRML,
also allows the semantics and behavior of elementname1 to
be specified within the XML constructs using Script tags.
This resembles the way that script is added to HTML, yet
much more flexible. Rather than just the document scope
and procedure scope provided by HTML, SRML intro-
duces item and item class scopes. The advantage of these
new scopes enables the broad functionality requirements
needed by simulations, which would otherwise be cumber-
some in HTML.
8 WEB-BASED SIMULATION
STRUCTURE AND OPERATION

In web-based simulation the universal SR Simulator is a
software component that can be plugged-in to a web
browser or other tool. Simulations can run in many envi-
ronments including spreadsheets and even custom embed-
ded applications. A single software component can support
all of these environments. A modeler can choose any host
environment that is capable of creating a Simulation object
and using its interface. Possible hosts include Microsoft
Internet Explorer, Microsoft Office applications, Microsoft
Visual Basic, and Java. An SR Simulator provides a class
of Simulation objects. Each Simulation object encapsulates
a simulation instance (or run), and is primarily responsible
for providing the runtime environment. Since a Simulation
is an object that embodies a particular execution of a simu-
lation, many simultaneous simulations can exist on the
same computer, or distributed across a network as a client
or server. Figure 1 shows the architecture of the SR Simu-
lator in its external environment.

Simulation Reference Simulator

DOM
Plug - Ins

Host (e.g. Web Browser)

Item Manager
Event Manager Random Numbers

Figure 1: SR Simulator Architecture

The SRML runtime environment is a collection of

software objects that can read SRML input, build and man-
age the corresponding simulation items, connect those
items together, and provide an event-driven mechanism for
items to communicate. It also provides simulation support
in the form of a random number generator, simulation
primitives such as time averages and data structures, math
functions, statistics functions, and the ability to generate
outputs as defined by the model.

Developing a simulation in SRML is like building a
web page, and thus the modeling process for a web-based
simulation resembles the web page authoring process,
whereas the distribution process resembles the FEDEP
with an HLA plug-in for distribution. In that way, federates
can be rapidly developed and naturally extended when
HLA is desired or required. Simulation models combine
XML, scripts, links to sub-models, and plug-in declara-
tions. One main difference between SRML and HTML is
that SRML is used with domain-specific XML documents
as the means for providing simulation behavior. When a
model is loaded, the component pieces are assembled,
much the same way that an HTML page consisting of data
specified externally is assembled. The resulting assembly
has a memory representation within the DOM used by the
simulator. During simulation execution, the HLA plug-in

Reichenthal

operates seamlessly with the simulator so that the model
has minimal awareness that other objects exist externally.
In addition to functionality provided by HLA, additional
objects move from simulator to simulator using HTTP or
similar protocol.

9 SRML LANGUAGE CONCEPTS

The things a modeler describes in SRML are referred to as
items. An item can represent a physical thing, such as a
piece of equipment, or a person, or an entire system of
other items. An item may also represent a process or a step
in a process. Items can have properties. For example, a
piece of equipment might have a ‘serial number’ property,
and a process might have ‘duration’ property. SRML pro-
vides a natural way to express items, their properties, and
complex item relationships, using the grammar of XML
with a small set of pre-defined elements and attributes that
have specific meanings and rules. Items and properties cor-
respond to elements and attributes in the XML. With the
exception of a few pre-defined element names, such as
ItemClass, SRML uses the elements and attribute names
that a modeler defines. This makes it possible to create a
domain-specific XML schema to validate a system’s struc-
ture and to provide data types for the attributes. A domain-
specific schema works in conjunction with the SRML
schema when using XML namespaces. The following code
shows a sample model in SRML.

<Simulation Name='ControllerSimulation'>

<Controller Name='TS293847' Operable='1'
Pings='0' Health='1'>

<Script Type='text/javascript'>
<![CDATA[
function poll()

{
Items(1).queryStatus();
Items(2).queryStatus();
}

function receive(Name, Value)
{
Health=math.min(Health,
Value);
Pings++;
}

]]>
</Script>
<Sensor Name='TSM5865'
 Quantity='2'>

<Script
Type='text/javascript'>
<![CDATA[
function queryStatus()

{
Location.
receive(Name,
Random());
}

]]>
</Script>

</Sensor>
</Controller>

</Simulation>
Figure 2 shows a simplified conceptual model of an
item. Internally an item has a unique system-generated
ItemID and a script. It has an association with a DOM
node—from the element. It can both serve as a location, and
belong at a location along with other items. It can have links
to other items, and be a target for a link. Also, it can belong
to an item class, which in turn can have super-classes. An
item gets its properties directly from DOM attributes, and its
behavior from script. The ItemClass element allows the
modeler to generalize groups of common items, yet an item
does not need to have a corresponding ItemClass.

Item

ItemID
[Script Object]

ItemClass

Name
[Script Object]

ItemClass

Location

Items
SuperClasses

DOM Node

Node

item Target

Links

DOM Attribute

properties

Attributes

{ordered}

Figure 2: Simplified Item Conceptual Model

The following example shows the definition of a Ve-

hicle element and Name attribute in XML, which corre-
sponds to a Vehicle item that has a Name property with a
value of ‘Challenger’, and a VIN of ‘N3462983’:

<Vehicle Name='Challenger' VIN='N3462983'/>

10 ITEM BEHAVIOR

The modeler provides an item’s behavior inside a Script
element using a language such as JavaScript or VBScript,
and specifying the Type attribute as either ‘text/javascript’,
‘text/vbscript’, or any other simulator-supported language.
Refer to the following example:

<Vehicle ID='AirforceOne' Running='1'>

<Script Type='text/javascript'>
<![CDATA[
var Occupied=0;
function turnOn()
 {
 Running=1;
 }
function turnOff()
 {
 Running=0;
 }
]]>
</Script>

</Vehicle>

11 ITEM CLASSES

While SRML allows the modeler to provide specific attrib-
utes and behavior for individual items, it also provides a

Reichenthal

generalization mechanism for creating classes of items. An
item class is analogous to class in object-oriented terms, in
that it describes the attributes and behavior for its instances
while also providing a type of inheritance. Any number of
item classes may exist in a model by using an ItemClass
element and specifying a unique Name. Within the class is
an embedded instance prototype element that has a tag
name which matches the Name attribute of the item class.
This prototype can have attributes with default values and
data types validated by an XML schema. Refer to the gen-
eral form of an ItemClass:

<ItemClass Name='itemclassname1'
 SuperClasses='itemclass1 itemclass2…'
 property1='value1' …>
 <!-- The following element defines the
 behavior for the class; not individual
 instances -->

<Script Type='script-language'>
code
</Script>
<!-- The following element defines the
prototype for the instances -->
<itemclassname1 property1='value1' …>
 <!-- The following element defines the
 behavior for the instances -->

<Script Type='script-language'>
code
</Script>

</itemclassname1>
</ItemClass>

The highlighted area indicates the prototype item, and

the bold text shows the correspondence between the name
of the prototype and the name of the item class. The spe-
cific example below, which also highlights the prototype
item, demonstrates the definition of an item class called
Counter. Each of the ten instances created from this class
will have a method called Increment and will have its own
Count. As an item itself, the ItemClass can also have prop-
erties and behavior that will be shared by the instances.
The example defines an Instances property for the class
that keeps track of the number of individual Counter in-
stances. Any of the Counter instances can access its item
class, through its intrinsic ItemClass property. Notice how
the item accesses the Instances property in its item class in
the code. In the note below, the code within the instance is
directly updating the Instances value of the item class.

<Simulation>
 <ItemClass Name='counter' Instances='0'>

<Counter Count='0'>
<Script Type='text/javascript'>
<![CDATA[

 ItemClass.Instances++;
 Function Increment ()
 {
 Count++;
 }
]]>
 </Script>
 </Counter>
</ItemClass>
<Counter Quantity='10'/>

</Simulation>

12 ITEM QUANTITIES

A situation may arise when a large quantity of a particular
item or structure needs to occur. Within any element, the
modeler can provide the Quantity attribute, which instructs
an SRML simulator to duplicate the element and its con-
tents. For example, the following structure defines a total of
240 eggs, in a total of 20 egg cartons in two refrigerators.

 <Refrigerator Quantity='2'>

<EggCarton Quantity='10'>
 <Egg Quantity='12' />
</EggCarton>

</Refrigerator>

13 LINKS

XML provides an ideal structure for describing hierarchi-
cal containment relationships; however, situations may
arise when items at various locations in a simulation need
to have non-hierarchical connections to other items. There-
fore SRML provides two linking mechanisms. The first in-
volves using the Link element where the modeler provide
the name and an XPath (Clark and DeRose 1999) expres-
sion to identify the target. The second mechanism uses the
Links element where the modeler provides a name and
supply inner links. When the modeler uses a schema and
provides attributes of type IDREF or IDREFS (Bray, et. al.
2000), SRML treats them in the same way it treats links.

14 INTEGRATION, DISTRIBUTION,
AND COMMUNICATION

With the inherent modularity provided by XML, a single
document may suffice for representing a large simulation.
Many simulated items may take similar forms, and thus the
mechanism of item classes provides the integration of
common behavior. However, managing a single monolithic
XML document does not work well when the pieces are
developed independently, or when they need to be reused.
External scripts provide a simple way to detach the behav-
ior from the structure, thus allowing code reuse at the cost
of some encapsulation. These are specified by adding a
Source attribute to a Script element. For example:

<Script Type='text/javascript'
Source='file:///Vehicle.js'/>

The entire behavior of an item or item class can thus

be specified separately. The reason that encapsulation is
slightly compromised comes from the fact that the struc-
tural aspects of the item, being in XML, have been sepa-
rated from the behavioral aspect, which is in a separate
script. A more sophisticated technique known as embedded

Reichenthal

externals, allows portions of one simulation model to be
extracted from another, thus preserving encapsulation at
the potential cost of a larger runtime footprint. You can
specify an embedded external in several ways:

<Vehicle
Source='http://srml.boeing.com/Vehicle.xml'/>
<ItemClass Name='Vehicle'
Source='file://Vehicle.xml'/>
<Vehicle Source='VehicleComponent.Tank'/>

In the first case, the vehicle is defined completely in

the XML document: Vehicle.XML, which is similar to cre-
ating an instance from an external item class—many such
identical vehicles can be added to the simulation model us-
ing the same source file. In the second case, the item class
defined in the external file is included in the current model,
thus making it available for instancing or sub-classing. The
third case shows how separately compiled component-
based objects, known as external items, are plugged into
the simulation. External items coexist with items in a simu-
lation model, and also provide the capability for entire
simulation models to communicate using any combination
of CORBA, SOAP, COM, or HLA.

15 CONCLUSION

This paper re-introduced web-based simulation from a web
development point of view using the SRML and the SR
Simulator as models that parallel the goals, structure, and
behavior of the web, while enabling the benefits of distrib-
uted simulation through the HLA.

REFERENCES

Berners-Lee, Tim. 1994. Available online via
<http://www.w3.org/Bugs/GraphicalCom
position.html> [accessed June 1, 2002].

Bray, Tim, et. al. 2000. Extensible Markup Language
(XML) 1.0 (Second Edition). Available online via
<http://www.w3.org/TR/2000/REC-xml-
20001006> [accessed June 1, 2002].

Clark, James and DeRose, Steve. 1999. XML Path Lan-
guage (XPath) Version 1.0. Available online via
<http://www.w3.org/TR/xpath> [accessed
June 1, 2002].

Lutz, Bob. 2001. HLA Federation Development and Exe-
cution Process (FEDEP). Available online via
<http://www.sisostds.org/stdsdev/fed
ep/index.htm> [accessed June 1, 2002].

Page, Ernest H. 1998. Web-Based Simulation. Available
online via <www.mitre.org/pubs/edge/
august_98/wbs.html> [accessed June 1, 2002].

WWW. 1994. Available online via <http://www.
w3.org/WWW/> [accessed June 1, 2002].
AUTHOR BIOGRAPHY

STEVE REICHENTHAL is a simulation developer at
Boeing with the Phantom Works organization and is an ad-
junct professor at the California State University in Fuller-
ton. He received his Masters degree in Computer Science
in 1993 and his MBA degree in 2000. His email address is
<steven.w.reichenthal@boeing.com>.

http://www.w3.org/Bugs/GraphicalComposition.html
http://www.w3.org/Bugs/GraphicalComposition.html
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/xpath
http://www.sisostds.org/stdsdev/fedep/index.htm
http://www.sisostds.org/stdsdev/fedep/index.htm
http://www.mitre.org/pubs/edge/ august_98/wbs.html
http://www.mitre.org/pubs/edge/ august_98/wbs.html
http://www. w3.org/WWW/
http://www. w3.org/WWW/
mailto:steven.w.reichenthal@boeing.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 847
	02: 848
	03: 849
	04: 850
	05: 851
	06: 852

