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ABSTRACT

The Web-based Environment for Systems Engineerin
(wese) is a web-based modeling and simulation environme
in which the level of abstraction of a model can be configure
statically (prior to simulation) ordynamically(during sim-
ulation) by substituting amodule(set of components) with
an equivalent component or vice versa through a proce
called Dynamic Component Substitution (DCS). DCS ca
considerably improve the overall efficiency of simulations
by enabling dynamic tradeoffs between several modelin
and simulation related parameters. However, identifyin
ideal sequence of DCS is a complicated task. This pap
proposes a novel methodology calledDCS performance pre-
diction methodology(DCSPPM) to identify ideal sequences
of DCS. DCSPPM utilizes estimates of the changes induced
by eachatomic DCS along with model characteristics to
predict the changes induced by a combination of substitu
tions. Our studies indicate that the proposed methodolog
provides good estimates (maximum error< 8%) of the
changes induced by DCS.

1 INTRODUCTION

Web-based simulations are steadily growing in importanc
because they are an effective solution to address seve
issues exacerbating modeling, simulation, and analysis
modern systems (Rao and Wilsey 2000). To ease we
based modeling and distributed simulation, a Web-base
Environment for System Engineering (wese) has been de-
veloped (Rao and Wilsey 2000).wese provides a hierarchi-
cal, component-based modeling language called the Syste
Specification Language (SSL). In SSL, a system is repre
sented as a set of interconnected components. A compon
is a well definedatomicentity which is viewed as a “black
box” — i.e., only its interface and functionality is of inter-
est and not its implementation. A set of components tha
model a sub-system can be grouped into amodule. Modules
are the hierarchical building blocks of SSL. They can be
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reused (through a well-defined interface) in a hierarchica
fashion to develop larger systems. Modules can be viewe
as components at a higher level of abstraction. In addition t
wese, component-based modeling techniques are also us
in other tools because they offer several advantages (Ra
Chernyakhovsky, and Wilsey 2000).

In wese, a model may be transformed to a functionally
equivalent model by substituting a module (i.e., a set of
components) with aequivalent componentor vice versa. The
equivalent component of a module must satisfy the following
criteria: (i) it must have an interface that is identical to tha
of the module, and (ii) its functionality must be similar to
that of the module. In this work, we do not deal with issues
of establishing equivalence of a module with a componen
Instead we leave the decision of equivalence to an orac
which may or may not be the modeler. In other words, whe
an equivalent component is specified for a module,wese
assumes that it satisfies the necessary criteria. Substituti
a module with its equivalent component or vice versa is
synonymous to varying the level of abstraction and the
resolution of the model (Rao and Wilsey 2000). Figure 1
shows different transformations that can be applied to
typical full adder (digital logic). For example, Figure 1(b)
illustrates the modulesexclusive-or gate and2-bit
mux (shown in Figure 1(a)) substituted with equivalent
components. Transformations to a model can be performe
staticallyor dynamically. Static transformations occur prior
to simulation while dynamic transformations occur during
simulation.

In wese, static and dynamic transformations to a mode
are effected through a process called Dynamic Compone
Substitution (DCS) (Rao and Wilsey 2000). DCS can be
used to enable optimal, dynamic tradeoffs between sever
interrelated modeling and simulation parameters such a
modeling costs, resolution of the model, accuracy of re
sults, and simulation performance (Rao, Chernyakhovsk
and Wilsey 2000, Rao, Wilsey, and Carter 2001). It ha
shown to be an effective technique to improve the overa
efficiency of a simulation study (Rao and Wilsey 2000, Rao
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Figure 1: Functionally Equivalent Models for a Full Adder
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Wilsey, and Carter 2001). For example, parts of a mod
that are inconsequential to a given study can be abstrac
in order to improve the overall simulation time. However
the impact of a DCS is dependent on the model;i.e., a
given DCS may improve, deteriorate, or have no impact o
the simulation performance. Therefore, it is crucial to iden
tify and utilize ideal combinations (or sequences) of DC
in order to improve the overall efficiency of a simulation
study. However, to determine an ideal sequence of transf
mations, exhaustive analysis of the possible combinatio
of transforms must be performed. The analysis is furth
complicated in the case of web-based simulations becau
they involve several asynchronous, concurrent operation
Exhaustively analyzing combinations of transformations re
sults in combinatorial explosion of the problem space an
is not a realistic approach even for medium sized mode

In an endeavor to engineer a more practical approach
identifying and utilizing efficiency improving substitutions,
this paper proposes a novel methodology calledDCS predic-
tion methodology(DCSPPM). DCSPPM identifies efficiency
improving DCS transformations using quantitative measur
for generated through a combination of: static analysis
the model, empirical measures of the event granulariti
(time taken to process an event) of components, estima
of the communication latencies between workstations us
for parallel simulation, and by applying heuristics to predic
synchronization overheads. This paper presents the des
implementation, and testing of DCSPPMin wese. Section 2
presents an overview ofwese. Section 3 presents a detailed
description of DCSPPMalong with the issues involved in the
implementing DCSPPM in wese. Some of the experiments
conducted to evaluate the accuracy of the estimates g
erated by DCSPPM are discussed in Section 4. Section 5
concludes the paper and presents some of the ongoing wo
n
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2 WESE

This section presents only a brief overview ofweseto aid
further discussions in the remainder of the paper. A de
tailed description ofwese and DCS is available in the lit-
erature (Rao, Chernyakhovsky, and Wilsey 2000, Rao a
Wilsey 2000, Rao, Wilsey, and Carter 2001).wese pro-
vides a component based modeling language, a framewo
for developing a web-based repository of components, a
the infrastructure for distributed simulation. An overview
of wese is shown in Figure 2. wese provides both an
HTML interface and a text based frontend that can be us
to interact with thewese server. The server controls and
coordinates the various parallel and distributed activities o
the system. The primary input towese is the model of the
system described using the System Specification Langua
(SSL). The specification of a model or an SSL design fil
consists of a set of interconnectedmodules. Each module
consists of three main sections, namely: (i) thecomponent
definition sectionthat contains the details of the component
to be used to specify a module (such as the Universal R
source Locator (URL) of a factory and name of the sourc
object along with initial parameters); (ii) thecomponent
instantiation sectionthat defines the various components
constituting the module; and (iii) thenetlist sectionthat
defines the interconnectivity between the various instan
ated components. SSL permits an equivalent compone
to be associated with each module. DCS is performed b
replacing the module with its equivalent component or vic
versa.

SSL also allows an optionallabel to be associated with
each module. Thelabel can be used as a component defini
tion in subsequent module specifications to nest one modu
within another. This technique can be employed to reus
module descriptions and develop hierarchical specification
As shown in Figure 2, the input SSL source is parsed into a
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object-oriented (OO) in-memoryintermediate form(SSL-
IF). Hierarchical SSL models are elaborated or “flattened
prior to simulation by the elaborator (Rao, Chernyakhovsky
and Wilsey 2000). Elaboration is a recursive process th
flattens a hierarchical model by substituting each modul
reference (made through the use oflabels) with a unique
instance of the module.

Thewese server also performs the task of collaboratin
with the distributed factories and coordinating the simula
tions. The DCSPPM module houses the implementation of
the proposed DCSPPM. A detailed description of DCSPPMis
presented in Section 3. Thesimulation manager(Figure 2)
performs the activities associated with coordinating with
the object factories (via thefactory manager) to setup a
distributed simulation. Thefactory managerperforms the
tasks of interacting with the distributedwese factories using
a predefined protocol. Awese factory can be viewed as a
web-based repository of components with added capabili
to simulate them. Parallelism occurs at the factory leveli.e.,
each factory is a parallel, asynchronous simulation infras
tructure (Rao, Chernyakhovsky, and Wilsey 2000). Paralle
simulations are performed by utilizing components (or sim
ulation objects) from different factories. awese factory
is built from sub-factories andobject stubs. Object stubs
contain attributes of the a component such as interface d
scription, cost, and formal specifications. Thesimulation
sub-systemof a wese factory is built around thewarped
simulation kernel.warped is an API for a general purpose
discrete event simulation kernel with different implementa
tions (Radhakrishnan et al. 1998).wese utilizes the Time
Warp (Radhakrishnan et al. 1998) based simulation kern
of warped. It provides the infrastructure for distributed
simulation and also performs the task of enabling DCS. A
more detailed description ofwarped and Time Warp are
available in the literature (Jefferson 1985, Radhakrishna
et al. 1998).

In wese, an event-driven mechanism has been em
ployed to sequence the various phases involved in DC
A component can trigger DCS by merely scheduling an
appropriate kernel event.wese also provides a simple API
for mapping states of components during DCS.

3 DCS PERFORMANCE PREDICTION
METHODOLOGY

The DCSPPM has been developed to ease exploration o
different configurations of a model to determine sequence
of efficiency improving DCS transformations. Prior to
DCSPPM, several techniques were explored to predict th
changes in performance induced by DCS (Rao, Wilse
and Carter 2001). However, the results obtained from the
techniques had considerable errors (in the range of±30% to
±50%), particularly in parallel simulation scenarios. Since
the error factors were large, the earlier techniques we
-

practically unusable. Consequently, one of the primar
motivations for developing DCSPPM was to design a more
accurate methodology.

In DCSPPM, identification of DCS transformations is
performed by comparing the empirical estimates generate
by DCSPPM for each DCS transformation. The empirical
estimates generated by DCSPPM indicate thechangesin-
duced by a transformation on various model and simulatio
related parameters such as: modeling costs, observabil
of the model, and change in simulation performance. Th
estimates can also be viewed as weights associated with ea
transformation. Consequently, identifying ideal sequence
of transformations can be reduced to an optimization prob
lem of choosing a sequence of transformations such th
the sum of their weights is optimal.

For example, consider a scenario that involves thre
DCS transformations, sayt1, t2, andt3, and DCSPPMis used
to estimate the changes induced by these transformation
An example of the change in observability generated b
DCSPPM would be−10%,−5%, −5% for t1, t2, and t3,
respectively. Let the change in simulation times estimate
by DCSPPM be +10%, −5%, and−5%. Positive values
indicate increase in the quantitative estimate of the give
parameter while negative values indicate decrease. Let
assume that the objective is to minimize simulation time
with minimal decrease in observability. In this case, an
ideal sequence of DCS can be chosen by selecting tho
transformations which decrease in simulation time is bette
than the decrease in observabilityi.e., t2 and t3 are the
candidates whilet1 is not. In other words, a solution to the
given problem would be to use transformationst2 and t3
and ignore transformationt1.

It must be noted that the modeling and simulation cost
are independent of each other. However, in practice the
must be simultaneously optimized in order to enable idea
tradeoffs. The quantitative estimates generated by DCSPPM

are a measure of thechangesinduced by a transform and
are not absolute measure. In other words, the goal is
identify the best combination given a set of choices an
not the absolute optimal configuration for a given model
In DCSPPM, the changes induced by a transformation on
the various parameters are estimated through a combinati
of: static analysis of the model, empirical measures o
the event granularities (time taken to process an even
of components, estimates of the communication latencie
between workstations used for parallel simulation, and b
applying heuristics to predict synchronization overheads
A detailed description of the techniques used by DCSPPM

to generate the quantitative estimate is presented in th
following sub-sections.
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3.1 Estimation of changes in Modeling Parameters

The model related quantitative estimates generated
DCSPPM are: change in cost of model, changes in obser
ability, and change in level of abstraction. These quantitativ
estimates are dependent solely on the components consti
ing the model. The changes in modeling costs is an abstr
quantity that characterizes the overheads involved in dev
oping or using the components. It is an important measu
particularly in web-based simulations because compone
obtained by third-party model developers may be used. T
third party components may are typically offered as valu
added services based on different pricing schemes (R
Wilsey, and Carter 2001). In DCSPPM the cost of a model
is computed as the sum of the costs of the componen
constituting the model. Different schemes may be used
determine the cost of a component. Inwese, the number of
lines of source code for each component have been used
a measure of cost. The cost of each component is availa
as a part of theobject stubassociated with each componen
in a wese factory (please refer Section 2). The cost o
the components is collated by the DCS module present
the wese server (Figure 2). The changes induced by
transformation to the modeling costs is computed as t
percentage change in the overall cost of the model when
module is substituted by its equivalent component (or vic
versa).

The change in the total number of ports in the mode
is used as a measure of the change in observability.
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wese, a port is a conceptual point through which som
interaction occurs with a component and a set of po
constitutes the interface of a component. The number
ports of a component are a part of the SSL descripti
of the model. The total number of ports are compute
by summing up the number of ports of each compone
in the model. When a DCS transformation is applied
a model, the components constituting the model chang
Correspondingly, the total number of ports in the mod
also change. The percentage change in the total numbe
ports induced by a transform, is reported as a measure of
change in observability. In DCSPPM the change in the level
of abstraction is estimated by computing the percenta
change in the total number of components and hierarchi
levels. The change in observability and level of abstracti
is computed by statically analyzing the elaborated SS
description of the model. The object-oriented nature
SSL-IF has been utilized to implement the static analys
The DCSPPM module, present in thewese server (Figure 2)
handles the task of generating the estimates using the ab
methodology. The time complexity of this phase of DCSPPM

is O(c), wherec is the total number of components in th
model.

3.2 Estimation of changes in Simulation Performance

The simulation parameters are dependent on the mode
well as the hardware platform used for simulation. Th
primary parameter computed by DCSPPM is the overall



Rao and Wilsey

f

-
n

n

t

e

e

n

l

t

-

i

d

s

n
-

g

l

,

f

e

change in simulation time when a transformation is applied
to a model. The change in simulation time is measured in
terms of the change in the granularity of the model. The
granularity of a model is in turn determined by the granularity
of the components constituting the model, the platform
used for simulation, and the configuration of the simulation
(such as number of processors used and partitioning o
components).

The granularity of a component represents the aver
age time taken by the component to process an event. I
DCSPPM, three factors contribute to the granularity of a
component; namely (i) average time taken to process a
event; (ii) communication costs involved in receiving the
event over communication networks (if any); and (iii) syn-
chronization overheads. These parameters have shown
determine th e overall time taken to simulate a model (Bal-
akrishnan et al. 1997). The techniques used to estimat
these three parameters are discussed below.

3.2.1 Event Processing Cost

The event processing cost represents the average time tak
to execute one event. The cost of processing an event als
includes the simulation kernel overheads such as state savin
overheads and event scheduling costs. The event processi
costs of a component are experimentally determined by
setting-up a temporary “test” simulation and monitoring
the time taken to execute each event. The granularity
estimation is performed by thewese factory which houses
the component. It must be noted that the simulation is
also performed by the same factory (or workstation). The
wese factory provides an API that must be used by the
component-developer to define the test simulation to be
used. The granularities are assumed to follow a Norma
distribution in concordance with statistical theories (Hogg
and Craig 1995, Jain 1991). Suitable (95%) confidence
intervals are also computed and stored in the stubs.

The API also provides support for estimating the event
processing costs for components that have multiple, distinc
regions — the time taken to process an event significantly
varies (based on the modeler’s discretion) from event to
event. In this case, each distinct region is assumed to fol
low a Normal distribution (as before) and the overall event
processing is defined as a weighted average of each ind
vidual distribution. The weights may also be replaced with
suitable probability values which indicate the probability
with which a given type of event may be received by the
component. The resulting weighted average also follows
a Normal distribution with a given mean and variance. In
wese, granularities of each unique components is compute
once and reused. The worst case time complexity of this
phase in DCSPPM is O(c).
o

n
o
g
g

-

3.2.2 Estimation of Communication Costs

Communication latencies strongly influence the overall time
taken for parallel simulations (Balakrishnan et al. 1997).
In wese, communication latencies arise when component
from two distinct wese factories are used to develop a
module;i.e., the events generated by the components have
to be delivered to the target component via communication
networks. On the other hand, event exchanges betwee
components on the same factory is performed through sim
ple pointer manipulation (by thewarped kernel) and the
overheads are included as a part of the the event processin
costs (as explained above).

In DCSPPM, the communication latencies between com-
ponents is estimated using the following 3 steps:

1. Levelization: During the first phase of analysis,
the components and modules constituting a mode
are “levelized” (or ordered) such that the inputs
of a component are at a lower level. Figure 3(a)
illustrates an example of a levelized model. Lev-
elization captures the flow of “inputs to outputs”
in the model (from left to right in Figure 3). In
other words, events in the model flow from a lower
level to a higher level. The levels represent inher-
ently serial blocks of computations in the model.
Any parallelism in the model occurs in between
components in each level. Since levelization re-
quires each interconnection to be inspected, the
time complexity of this phase isO(n), wheren is
the total number of netlists (or interconnections)
in the model.

2. Grouping: Next, the components at each level are
grouped together based on their source factories
as shown in Figure 3(b). That is, all the compo-
nents in a group reside on a given factory. The
groups in each level represent the parallel entities.
Note that, processing of events within a group pro-
ceeds sequentially (based on the construction o
the simulation infrastructure ofwese). The time
complexity of the grouping step isO(c).

3. Estimation: During the last phase, the average
communication latencies betweengroupsof com-
ponents is estimated. Communication delays arise
when events are exchanged between thegroups;
within a group the communication costs are zero
(as explained earlier). Grouping of components
based on factories eases identifying pairs of be-
tween which communication latencies need to be
measured. Estimation of communication latencies
is performed by thewese factories and is coordi-
nated by thewese server. Latencies are estimated
by exchanging a number of messages between th
two factories, measuring the round trip time for the
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Figure 3: An Example of Levels and Groups

messages, and computing an average. Onewese
factory acts as a server while the other acts as
client. Estimation proceeds in a “lazy” manner
i.e.,estimation of latencies between a given pair o
wese factories is performed only once. The wor
case time complexity of the estimation phase
O(c/2).

The estimated average communication delays is then ad
to the overall granularity of the component (i.e., total gran-
ularity = event processing costs + communication latenc
If a component has multiple sources, then the average
the communication delay from each source is used. It m
be noted that the average communication delay is also
sumed to follow a Normal distribution with a given mea
and variance.

3.2.3 Estimation of Synchronization Overheads

wese is a Time Warp synchronized parallel simulation e
vironment. Therollbacks that occur in a Time Warp sim-
ulation are a direct measure of the synchronization ov
heads. In DCSPPM the synchronization overheads are rep
resented as the probability with which a component wou
be rolled-back during simulation. In a Time Warp sim
ulation, rollbacks imply that some of the events must b
reprocessed. Accordingly, the overall granularity of th
component is increased by this probability factor to accou
for synchronization costs —i.e., the average granularity of
the component increases (by a given percentage) beca
of rollbacks (total_granularity = total_granularity +
(total_granularity ∗ rollback_probability)).

DCSPPM uses a heuristic to estimate the probabilit
of a rollback. The intuition behind this heuristic is that
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component will be rolled-back if, concurrent events (events
with same simulation time) arrive at different times (real
time). The probability of such occurrences increases as th
variance in event arrival times at the inputs of componen
increases. For example, if all the inputs were being generate
by components on the same factory, then the probability
of a rollback is almost zero. On the other hand, if the
inputs were being generated by components with differen
total granularities, on different factories, the probability of
a rollback increases.

The levelized and grouped model (generated earlier) i
also used to estimate synchronization costs. The estimatio
proceeds from the lowest layer to the highest layer, tracing
the “natural” flow of events in the model. At each level,
the synchronization costs for each component is compute
using the proposed heuristic and the total granularity of the
components from earlier levels. The rollback probability of
components at a lower level is also taken into consideratio
in order to account for cascading rollbacks. The results from
the static analyses are stored back into the intermediate for
for future references. The time complexity of this phase of
DCSPPM is O(c ∗ n).

3.3 Identifying Efficiency Improving Sequences of DCS

Having estimated the cost, observability, and average granu
larity of each component, the overall cost, observability, and
average granularity of the complement model is computed
This performed my merely summing up the attributes of
each component in the model. Changes induced in thes
attributes by a DCS transformation (i.e., when a module is
replaced by a component) is also computed. The chang
in attribute value is computed as follows. Let a given DCS
transformation substitute a modulem containing the set of
componentsm = {c1, c2, · · · , cn} by cEC(cEC /∈ m). Then,
the change in a given attributea, represented by1(a), is
computed as:

1(a) = (
∑
∀ci∈m

ci.a)− cEC.a

wherecx.a represents the quantitative estimate of attribute
a for componentcx . Moreover, each DCS transformation
also involves additional overheads during simulation. These
overheads are estimated in terms of the number of kerne
events generated to achieve DCS. Inwese, three kernel
events (twoupdate events, and onestate-value event)
are scheduled for each port in the module being substituted
An average granularity for each kernel event is estimated
by eachwese factory and that average is multiplied three
times by the number of ports in the module to obtain
the DCS overheads —i.e.,DCSoverhead = 3∗ |ports| ∗
(average DCS cost of one port). The number of ports in
a module is obtained from SSL-IF. All arithmetic operations
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are performed using statistical operations defined for Norm
distributions (Hogg and Craig 1995). The worst case tim
complexity of this phase of the algorithm isO(c).

DCSPPM utilizes the above described techniques t
generate quantitative estimates of the changes induced
a DCS transformation in modeling costs, observability o
the model, and simulation performance. These estima
are then used to identify an ideal sequence of DCS bas
on the user’s requirements (as explained in Section 3). T
modeler may also manually choose the sequence of D
based on the estimates generated by DCSPPM. The overall
time complexity of DCSPPM is O(3.5c+ n+ cn), wherec
is the total number of components andn is the number of
interconnections (or netlist entries) in the model. In gener
assumingc << n, O(DCSppm) ≈ O(n).

3.4 Assumptions underlying DCSPPM

DCSPPMis a static parameter estimation methodology. Se
eral assumptions regarding the model characteristics and
simulation platform have been made during its design a
implementation. The assumptions underlying DCSPPM are:
(i) the underlying simulation kernel scales linearly with
respect to the number of events; (ii) the overheads of e
abling DCS is linear with respect to the number of por
in a module; (iii) workload on the workstations does no
significantly change during simulation; (iv) communicatio
latencies do not change considerably during simulation; (
overall granularity of the models does not skew considerab
i.e., the probability with which a component may receiv
events with different granularities is the same; and (vi)
the model has several different paths from inputs to outpu
then the probability with which each path is taken is equa
The last two assumptions imply that DCSPPM assumes that
the behavior of the model (in a given simulation-run) doe
not deviate significantly from its average behavior. If th
behavior is skewed then, in such scenarios the estima
generated by DCSPPM will be inapplicable.

4 EXPERIMENTS

The experiments conducted to evaluate the accuracy of
estimates generated by DCSPPMare presented in this section
The experiments were conducted using a set of digital log
circuits (real world models) and a set of synthetic model
The synthetic models were used to obtain larger benchma
with a broader range of characteristics and behaviors. Th
were developed suitably re-targeting the Performance a
Scalability Analysis Framework (PSAF) (Balakrishnan et a
1997) backend. PSAF provides a platform-independe
Workload Specification Language (WSL) that allows cha
acterization of simulation models using a set of fundamen
performance critical parameters. Awese-specific backend
was developed for PSAF in order to obtain the synthet
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models. A more detailed description of PSAF along with
the API for developing new PSAF-backends is available i
the literature (Balakrishnan et al. 1997).

Some of the characteristics of the benchmarks used
the experiments are shown in Table 1. These benchma
were described in SSL by suitably utilizing component
from variouswese factories. Larger models were built from
smaller sub-modules using the hierarchical model techniq
supported by SSL. The models also included equivale
component specifications for modules, that get used duri
DCS. For example, the4-Bit-Adder (shown in Ta-
ble 1) is implemented using a set ofFull Adders . Each
Full Adder is specified using a set of basic gates alon
with auxiliary component specifications (Figure 1). Paralle
simulation experiments were conducted by suitably mod
ifying the SSL descriptions to utilize components from a
given number ofwese factories. For parallel simulation, the
wese factories are deployed on a network of shared memo
multiprocessor (SMP) workstations running Linux. Each
workstation consists of two 166MHz Pentium Pro Proces
sors with 128MB of memory. Two factories are deployed
per workstation and the workstations are networked usin
fast Ethernet.

The time taken for analyzing different configurations
of the models, using a varying number ofwese factories
is shown in Table 1. The number of modules (show
in Table 1) in each benchmark also indicates the numb
of DCS transformations that had to be analyzed. Th
timing information shown is the graph is the average of 1
runs. The analysis times shown in Table 1 also include th
time taken to estimate the communication latencies betwe
differentwese factories. Figure 4(a) illustrates the averag
analysis time without communication delays for the differen
model configurations. The timing in Figure 4(a) has bee
normalized with respect to the number of interconnection
(or netlists) present the models. As shown in Figure 4(a
the time for analyzing a model varies linearly with respect t
the number of interconnections (or edges) in the model. Th
graph confirms the expected time complexity (Section 3) o
DCSPPM to be approximatelyO(n), wheren is the number
of interconnections in the model.

The graphs in Figure 4(b) and Figure 4(c) presen
the error in the estimates of simulation time generated b
DCSPPMfor both static and dynamic component substitutio
cases. The error percentages were computed by compar
the predicted changes in simulation time against the o
served changes. The error value indicates the deviation
the observed data from the 95% confidence interval of th
corresponding value predicted by DCSPPM. The simulations
involving dynamic transformations did not involve any static
transformations (and vice versa) in order to clearly distin
guish the results obtained in the two cases. In addition, n
additional jobs were run on the various workstations use
for simulation — i.e., the load on the workstations was
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Table 1: Details of Modules used for Experiments
Model Total Number of Total DCS Analysis Time (sec)
Name Hierarchies Modules Components Netlists 1 Fo 2 Fo 3 Fo 4 Fo

4-Bit-Adder 3 4 30 82 0.73 2.51 5.16 6.48
32-Bit-RCA∗ 4 64 192 1088 9.10 10.30 12.32 13.25
64-Bit-RCA∗ 5 128 884 2224 17.82 18.42 19.82 20.36
SM+1 4 200 2000 4375 31.06 30.90 31.47 31.48
SM+1 4 300 3000 6850 46.73 45.62 45.19 44.58

Note: ∗RCA = Ripple Carry Adder;+SM = Synthetic Model;oF = Factory
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Figure 4: Results from Empirical Evaluation of DCSPPM
be
e

er
ds
n

-
ly
x

gh
el

e
on
ue
y

o

ni-
hs

he
n

o-
ed
i-
ed

o

almost a constant throughout the experiments. It must
noted that the errors in estimates of model related param
ters (such as change in costs and observability) were z
because they are deterministic estimates. In other wor
they are generated through static analysis of the model a
not using empirical estimates.

As illustrated by the graphs in Figure 4(b) and Fig
ure 4(c), the estimated change in simulation time close
reflects the observed change in simulation time. The ma
imum error in the estimations was about 8% even thou
the predicted variance in the estimated values are relativ
small (±2% to±7%). As illustrated by the experiments, the
predicted changes in simulation time (with 95% confidenc
intervals) closely track the observed changes in simulati
time demonstrating the accuracy of the estimation techniq
used in DCSPPM. The estimates in the case of 1 factor
simulations (inherently sequential) are accurate because
-
o
,
d

-

y

f

the absence of non-deterministic factors such as commu
cation latencies and rollbacks. As illustrated by the grap
in Figure 4, the estimates generated by DCSPPM closely
track the actual changes that occur during simulation. T
experiments highlighting the effectiveness of the estimatio
methodology used inwese.

5 CONCLUSIONS

The design and implementation of DCSPPM, a methodology
for performance estimation of static and dynamic comp
nent substitution, was described in this paper. DCS, coupl
with DCSPPM, is an effective technique to enable more opt
mal tradeoffs between several model and simulation relat
parameters. They makewese a controlled environment for
conducting simulations — a model developer can utilize
the estimates to intelligently fine tune the simulations t
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achieve maximum efficiency. DCSPPM has a polynomial
time complexity and significantly reduces the overheads i
volved in exhaustively analyzing all possible combination
of DCS transformations. For example, a straightforwa
“greedy” algorithm (similar to 0/1 Knapsack algorithm)
can be employed to obtain a sequence of transforms t
optimize a model for a given combination of the modelin
and simulation parameters (an optimizing function alon
one or more axes). It must be noted that DCSPPM aims to
identify the best combination given a set of choices and n
the absolute optimal configuration for a given model. Th
experiments presented in this paper show that the predic
changes closely track (with an error of±8%) the observed
changes, highlighting the effectiveness of DCSPPM. The
estimates may also be used as indicators for further mo
development and refinement. Currently, work is unde
way to relax some of the assumptions underlying DCSPPM.
Studies are also being conducted to adapt DCSPPM for con-
servatively synchronized parallel simulations. As indicate
by our studies, DCSPPMprovides a effective methodology
to estimate the changes induced by a sequence of DCS
several modeling and simulation parameters.
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