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ABSTRACT

Most discrete event simulation environments are based
a process-oriented, and therefore multi-threaded parad
This results in simulation environments that are very ha
to distribute over more computers, and not easy to integ
with scattered external information sources. The architect
presented here is based on the event-based DES para
which is implemented by scheduled method invocatio
Objects used in the simulation environment interact w
remote, a-synchronous subscribed clients in order to prod
representations of the simulated system. The environm
which is implemented in Java, consists of a simulati
and representation library and is integrated with seve
statistical libraries.

1 INTRODUCTION

Discrete event simulation is used for dynamically modeli
complex systems in order to analyze and understand th
systems, and in order to (re)design and engineer these
tems (Shannon 1975, Banks 1998). Statistical informat
is gathered and presented during and after the simulation
for providing insight into the most important performanc
indicators. In most cases, animation and visualization
added to provide insight and understanding into the sys
modeled during the run. Currently we see a lot of interes
object-oriented simulation environments, where real-wo
objects can be captured in the simulation environment
object representations. Many of the simulation applicatio
in logistics, business process engineering, and informa
systems modeling deal with distributed systems with d
tributed information sources. Therefore, it seems logi
to strive for a simulation environment that truly captur
the distribution, and that does not reduce the effects of
distributed nature to an artificial time delay. Most curre
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discrete event simulation packages are, however, not de
signed to cooperate in a distributed computing environment
There are several reasons why it would be interesting to
have a simulation environment that has a truly distributed
nature.

Simulation models of business processes may need t
interact in complex ways with real-time information system
components (Fishwick 1995). It might for example save a
simulation model builder a lot of time to reuse an existing
pricing component of a business system in a simulation
component. However, in order to do so, the simulation
and business system components should interact using
common communication protocol. Although such protocols
(for inter-business component communication) have not ye
matured, a simulation architecture can at least be expecte
to be extendible with such interaction mechanisms. This
implies for example separating the core simulation service
from the model components that use it. In this way the
simulation will become a central service in a distributed,
dynamic network where the exact capabilities and identity
of the acting and reacting realtime components remains
hidden for the simulation core. In the most extreme peer
to peer case, objects will use the simulation service just a
another way of scheduling their interactions.

Another issue is the lack of separation between visual-
ization and simulation in current simulation environments.
First, the place where the simulation can best be run (e.g
on a fast server) is not always the place where we want to
view the simulation (e.g. in a Web browser at a client’s
location). Second, due to the global and complex nature o
current business systems or logistical systems, the numbe
of stakeholders involved in these systems is large. More
over, these stakeholders do not reside in one location, bu
are spread all over the world. In order to provide them
with a customized view on a simulation representing their
business, there is a need to decouple visualization from th
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Figure 1: Architecture of Fully Distributed Simulation Environment
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simulation and to deliver this visualization in an interactive
way to distributed clients (e.g. a web browser or pda). Whe
several stakeholders are in this way concurrently interac
ing with the simulation, distributed simulation can become
distributed gaming.

A final argument for a distributed simulation architecture
is rooted in the need tospecifysimulations of complex busi-
ness systems. Gathering data from systems and databas
and carrying out measurements for the specification by han
is a costly procedure. However, most data needed for sim
lation studies is available in some automated form, such a
in datawarehouses, in ERP databases, or in legacy system
Since these systems probably contain the most consiste
accurate and actual information of the business system,
seems logical to use that information to specify a simulation
This implies the need to enable a simulation to interact wit
(distributed) information systems, perhaps even during th
run of the simulation. In this way generators, statistica
objects and even some of the transactional events could
automatically instantiated and initialized from underlying
data sources.

This section has clearly stated the need for a distribute
architecture on which discrete event simulations are buil
As indicated, current implementations of discrete event sim
ulation software are not sufficiently capable to support thi
distributed cooperation. The next section will present som
background on existing object-oriented simulation package
Section 3 will point out the approach that we have take
to develop a new distributed simulation and representatio
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architecture calledD-SOL, which stands forDistributed
Simulation Object Library. In this section screenshots o
a distributed supplychain example are included. The fin
section presents the conclusions and gives some poin
for further research.

2 EXISTING SIMULATION ENVIRONMENTS

This section gives an overview of current discrete eve
environments. Focusing on the distributed goal of simulatio
environments, three different levels of distribution can b
distinguished in these environments. These are:

• Integrated simulation environments
• Semi-distributed simulation environments
• Fully distributed simulation environments.

Integrated simulation environments are not suited for
distributed deployment since visualization is strictly boun
to the same runtime environment as the simulation. Fu
ther characteristics are single-user, single-computer, sing
thread implementations of the environment. Most comme
cially available simulation packages fall in this category.

Semi-distributed simulation environments share a we
based characteristic. These packages can be divided
simulation models that are executed on the client (Page
al. 1997) and simulation models that are executed on t
server and present their output to the client.
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Examples of the first category of semi-distributed en
vironments are most Java-based simulation environmen
like Silk, JavaSim, SimJava and DESMO-J (Garrido 2001
An example of the second category is the simulation pac
age that can present its results during and after the run
html-format to distant viewers on the web.

Fully-distributed simulation environments consist o
distributed simulation and visualization services. They pro
vide integration with distributed information systems and
endless variations in configuration. Figure 1 is an illustratio
of this architecture.

Since the Java programming language has strong su
port for distributed interconnectivity, it is reasonable to
assume that current Java-based simulation languages ch
acterized as semi-distributed can easily be used to depl
fully-distributed simulation models.

The next two sections will show though that curren
Java-based simulations are either based on a worldvie
that conflicts with the level of distribution that is sought
in this research or share design patterns that focus on t
easiness of model construction but conflict with a distribute
deployment.

2.1 Current Java-based Simulation Languages Based on
a Process Oriented Worldview

The main goal of environments like JavaSim, Silk, DESMO
J, etc. is to create (re)usable object-oriented simulatio
models and components while maintaining a natural proces
oriented modeling capability. Since entities in the mode
are alternately suspended and resumed to coordinate tim
ordered sequencing of entity movements in the model (Hea
and Kilgore 1998), multithreaded execution is an esse
tial aspect of the implementation for this process-oriente
modeling capability. The implication of this multithreaded
approach for the distributed goal are:

• Starvation occurs when one or more threads i
a program are blocked from gaining access to
resource and thus cannot make progress. Deadlo
is the ultimate form of starvation; it occurs when
two or more threads are waiting on a condition tha
cannot be satisfied. Deadlock most often occur
when two (or more) threads are each waiting fo
each other to do something (Sun Microsystems
1995). In a flexible network with thousands of
entities it becomes nearly impossible to contro
the stability of a multithreaded simulation model.

• Inflexibility of processing intelligence. In dis-
tributed networks, remote method invocation in
conjunction with dynamic class downloading has
facilitated dynamic transfer of business and routin
logic between the distributed nodes in a networ
(Sing 2000). The process-oriented modeling ca
s
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pability prevents this runtime learning mechanism
because processing and routing intelligence is n
stored in the stations or nodes but in the entitie
flowing through the model.

• Scalability limitations. Multithreading using op-
erating system threads is strictly limited by the
underlying operating system. Many of the curren
implementations that use operating system threa
are therefore limited to around 2000 entities in th
model and consume large portions of the underlyin
processing power.

• Since component libraries such as Enterprise Ja
Beans that are used in actual information system
are not built upon a multithreading model, the in
terchange of libraries between these realtime info
mation systems and simulation models is limited

• Since threads are fundamentally related to the
underlying operating system, entities in the mode
cannot be streamed over networks.

2.2 Current Java-based Simulation Languages Based on
an Event Based Worldview

Another worldview adopted by some discrete event la
guages is DES and its accompanying Future Event L
on which object interaction is scheduled. Two of the cor
notions most Object-Oriented implementations of this world
view share are:

Objects involved in the simulation environment do no
interact with each other by a direct method invocation
but schedule them by a constructing a simulation even
Such an event encompasses the execution time, a (rem
pointer to the object on which the method is intended
be invoked, the method itself and the arguments for th
method to be invoked. This mechanism is referred to
scheduling method invocation.

Running a simulation model merely implies executin
the time-sorted simulation events. The absolute simulati
time therefore becomes the execution time of the last ex
cuted simulation event. Figure 2 illustrates this worldview
by focusing on the way simulation events are stored (
in the eventlist, ordered on time, retrieved (2) and finall
executed (3) on the objects referred to in the simulatio
event. Examples of these simulation languages inclu
Simkit (Buss 2001).

The advantages of a DES implementation are its sing
threaded approach, its increased flexibility (Buss 2001
and the lack of requirements on objects involved in th
simulation.
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3 ARCHITECTURE OF A FULLY DISTRIBUTED
SIMULATION ENVIRONMENT

The architecture presented in this paper and illustrated
Figure 1 focuses on two remote network services. The fir
service is a DES-based remote simulation service which
described in subsection 3.1. The second service is a syst
representation service described in subsection 3.2.

Before focusing on the internal structures of these se
vices, a notion must be made on the increased complex
of autonomous components in runtime. The basic questi
regarding this complexity is"How are distributed clients,
components, data sources, simulation services, etc. able
find each other in order to interact?".

The implementation presented in this paper made
first step in solving this issue by defining a asynchronou
topic-subscription and lookup mechanism. The first ste
occurs when objects involved in the architecture prese
their characteristics and capabilities to lookup services.

The second step occurs when objects interested in oth
define their interest by creating a topic object and presenti
this inquiry to a lookup service. Based on this topic objec
lookup services are able to return all objects matching th
characteristics described in the topic. More information o
how objects initially find these lookup services can be foun
in (Sing 2000).

3.1 Discrete Event Simulation Implemented as a Remote
Network Service

The simulation environment provided in this paper ha
fully adopted DES as its underlying worldview. Distri-
bution formed once again the basis for not using curre
implementations but to design a new architecture.
s

As stated the disadvantage of DES-based simulatio
languages is the increased complexity in model construction
Most other implementations ease this complexity by one
or more pragmatic design patterns. Most of these pattern
conflict though with a truly distributed architecture.

Examples of these patterns are a static eventlist, relativ
time scheduling, non-serializable reflection classes, the lac
of overloading primitive attributes, and the requirement
to extend from an abstract simCoreObject which prevent
interchange of simObjects and non-simulated component

Concluding one can state that the simulation service
is merely a remote service on which all objects are able
to schedule their interaction. There are no requirement
to objects either scheduling or being scheduled. Helpe
classes are available to facilitate overloaded methods wit
primitive and wrapped arguments.

3.2 System Representation Implemented as a Remote
Network Service

The introductory notes on simulation use for complex sys
tems engineering has already revealed minimal requiremen
for system representation. These can be summarized as fo
lows:

The representation of a (modelled) system should b
made available formultiple stakeholders, that interact con-
currentlywith that system from a variety of possiblyremote
locations.

However, some additional observations specific for sys
tem representation can be made.

A first observation is that a stakeholder interacting with
a system (model) is usually not interested in all the aspec
of the system. This is especially true when large-scale
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complex systems are considered. This implies a need
’browse’ the system (Spence 2001).

Secondly, a user may interact with a model in seve
modes. We characterize the interaction aspassive, if the
user does not interact with the model during a run.
this mode the user is still able to dynamically define h
area of interest (e.g. to ’browse’ the system representatio
However, these actions will not change the outcomes
the simulation run. The interaction is characterized
active, if the user is able to interact with the model durin
a run. The user’s actions will then influence the actu
outcomes of the simulation run. The distinction betwee
passive and active model interaction has consequences
the relation between representation and simulation. W
passive interaction, the representation data only needs to
generated once by a simulation run. After that, many us
could concurrently iterate over the generated representa
data. Given the composition of the user group and t
ICT resources available, the representation data could
distributed among the users in several ways, given crite
like response time and effective and efficient resource usa
With active interaction, in which user interaction cause
different simulation outputs, there is a tight link betwee
the simulation execution and the representation presente
the user. This link becomes even more tight, when multip
users are interacting with the model concurrently. Ideal
the representation subsystem should be able to support b
modes of interaction.

Thirdly, system representation as such does notrequire
to be based on a simulation only. Instead, by separat
the system representation from the simulation componen
various combinations between real systems (e.g. inform
tion system) and simulated systems become possible.
representation presented to the user may be generate
each of them.

Finally, the remote aspect of system representation po
some challenges of its own. The devices and networks u
by the various users may be as diverse as the users th
selves. They may range from smart mobile phones up
powerful graphical workstations and use high speed LAN
or low speed modems. As a consequence, a user m
need to adapt the nature of the system representation
the actual communication and information processing c
pabilities available. Such adaptions are possible, since s
change data can be represented in various ways. In
mation on the movement of a transport vehicle might f
example be represented by a text message, but could
be represented in a 3D virtual world. Obviously, thes
representation modes pose different requirements on
communication and information processing resources av
able. It follows that the (modeled) system should someho
make these different kinds of representation available.

The system representation service has been develo
with these notions in mind. A first proof-of-concept imple
.
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mentation has already been implemented. This impleme
tation enabled various stakeholder to represent and simula
an actual, real-time supply chain. A screenshot is shown
Figure 4. In the remainder of the section, the representatio
service and the accompanying representation process w
be described.

Figure 1 already introduced the relationship betwee
model, simulation and representation components. Seve
of these components have a role in the system representat
process:

• Model componentsrepresent the state of the system
They are sources of state change updates (event
which encompasses the basic data needed to u
date their system representation. The informatio
system shown in Figure 1 is one potential sourc
for state update events.

• Representation componentsenable clients to re-
trieve variousevent handlers, thus implementing
the representation service. Event handlers ca
transform incoming state change updates into (vi
sual) representations and may provide interactio
with an underlying model component.

• Clients contain representation contextsused by
event handlers to provide representations to th
user. For visual representation such a context is
graphical region where the event handler can pain
The clients are able to find the other component
using the lookup mechanism described previously

The arrows in Figure 1 also show some interaction
that take place between the various groups of componen
This interactions are described in more detail in Figure 3

The left side of Figure 3 illustrates the representatio
update process. Model components broadcast events
interested clients, that place received events in a local vis
alization event-list. Conceptually, the state update event-li
does not need to reside client-side. Several clients cou
share one server-side event list. It may be noted that th
event list contains state update events, in contrast with th
simulation event list, that contains events triggering an ac
tion. Since they both contain time-ordered events they a
similar components. The client-side dynamic representatio
process is then controlled by an EventController componen
that iterates through the event-list usually in a time-ordere
manner. Such a controller object may itself be controlle
by some kind of timer, that updates the representation tim
of the system. By changing the properties of this timer, th
user is able to control the speed and period of the syste
representation.

The process described thus far provides a mechanis
to process a state-update event on the correct representa
time. However, since these events basically only contain th
state-change information itself, additional components a
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needed to transform this information in an actual, dynam
representation. This is illustrated on the right side of Figu
3, by the interaction between the client-side visualizatio
manager and the representation components in the netw
Initially, the client has no event handlers available. Whe
an event needs to be processed for which no event hand
is yet available, the client tries to retrieve this event handl
from the representation components, based on:

• The event’s source model component
• Local representation contexts available
• Local information & communication processing

resources available.

As a result, an event handler component is returned, tha
able to process the incoming state-update event.

The event handler may consist of a controlling pa
and a representation part. The representation part shown
Figure 3 is a graphical representation of an airplane, that w
be added to the client’s visual representation context. T
controlling part of the event handler can be an intellige
component: the movement of the airplane representatio
shown in Figure 3 could be extrapolated by the event hand
until the time the next ’move’ event arrives for that airplane
This mechanism reduces the amount of events that ne
to be communicated to represent dynamic processes. T
controlling part may also be enabled to interact with th
Client machine

Object 1
Object 2

Object 3

EventList

EventController

VisualizationManager

eh 3eh 2eh 1

VisualizationContext

ActiveTimer

Control commands:
-start / stop / reset

Model Components

SimFactory

SimEngine

eh 4

Event
HandlerFactory

Figure 3: A-synchronous Distributed System Representation
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original model component that created it. In this way active
user-system interaction can be implemented.

4 OBTAINING THE SOFTWARE

The latest version of the software including
its code, can be downloaded from the web at
http://www.simulation.tudelft.nl/research/d-sol/index.html.
License information, tutorials and examples can be
downloaded and reactions are welcome.

5 DISCUSSION AND CONCLUSIONS

First of all this paper has resulted in a"ready to use"
implementation of both a remote network simulation service
as a remote network visualization service. The architecture
presented here has shown the endless possibilities in bo
the distribution of simulation models as the integration
and interaction of these models with realtime information
systems.

Several topics remain though for further research and
implementation. First of all the implementation of architec-
ture presented in this paper has not yet completed a bas
library of ready to use simulation components. Neither has
the current implementation resulted in a graphical mode
environment. Both issues a very welcome for rapid model
development and will become available soon.
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Figure 4: A Proof-of-concept Implementation for a Simple Supply Chain
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As described the architecture has only partly resolv
the"searching and browsing"issues by implementing a flex-
ible topic-subscription model. These issues remain comp
though. Bounded searching, federative grouping, flexib
boundaries, and selective pattern recognition are still u
reached.

A second research topic encompassestime synchro-
nizationbetween remote services. With respect to differe
simulation services, synchronization has not been touch
by this paper.

Though only partly mentioned in this paper, synchro
nization also remains unsolved between visualization a
simulation services. The lack of this synchronization h
lead to visualization as"replaying" the simulation while a
controlled synchronization might lead to distributed inte
action or gaming.

Especially due to conflicts resulting from distribute
concurrent model interaction, for now gaming remains b
yond the scope of our horizon.
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