Proceedings of the 2002 Winter Simulation Conference

E. Yiicesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

SIMULATION SOFTWARE AND MODEL REUSE: A POLEMIC

Michael Pidd

Department of Management Science
The Management School
Lancaster University
Lancaster, LA1 4YX, U.K.

ABSTRACT

Is it really true that simulation models and simulation
software should always be regarded as candidates for re-
use, or is it better to be selective? What are the obstacles to
simulation software and model reuse? Can these be sur-
mounted and, if so, at what cost? There is a range of levels
at which simulation software may be reused, a range of
costs to be borne and range of benefits that may be
achieved. It is crucial to consider the issue of validity when
considering model reuse and this needs to be a fundamen-
tal part of any reuse strategy. There may be circumstances
in which reuse is economic, especially when a small, low-
fidelity model will suffice.

1 SOFTWARE AND MODEL REUSE

Software reuse is the isolation, selection, maintenance and
utilisation of existing software artifacts in the development
of new systems (Reese and Wyatt, 1987). Any survey of
current literature will reveal that there are many different
approaches to achieving this end. Although much attention
has focused on the reuse of source code level artifacts, re-
use can be productively applied to all stages of develop-
ment. This may involve any element of a system, including
entities from requirements specification, design,
implementation and testing (Reese and Wyatt, op cit). This
paper concentrates on code and model reuse, rather than
the other elements.

1.1 A Reuse Spectrum

Figure 1 shows a spectrum of different types of software
reuse, cast in terms that are recognisable to the simulation
community. It shows 4 positions on a very non-linear scale
with two different horizontal axes. The first, frequency, in-
dicates that reuse is much more frequent at the right-hand
end of the spectrum, where all of us engage in code scav-
enging. The second axis, complexity, runs in the opposite
direction, making the point that code scavenging is rela-

772

Full modd Comporent Fundiion Code
reuse reuse reuse scavenging
| | | |
» Frequency
Complexity <

Figure 1: A Reuse Spectrum

tively easy, whereas successful reuse of entire simulation
models can be very difficult indeed.

¢ Code scavenging: this is the polite description of
what all of us do with our computer programs. If
we know there is some code that we can use
again, probably with some slight modification,
then we will do so as long as we trust the person
who wrote the code. Since most such scavenged
code is reused by the person who wrote it in the
first place, then the grounds for trust are either
very high, or extremely low, depending on
whether you are an optimist or pessimist. Such re-
use is fine grained, with relatively small segments
of code being employed and modified. Code
scavenging is surely uncontroversial and is proba-
bly the way that most of us learned how to pro-
gram and how we go on learning. We take some-
thing that appears to work and we use this to do
something new.

¢ Function reuse: this is the next step along our
spectrum of reuse and, again, this is relatively un-
controversial since we do not think hard about us-
ing built-in functions from particular languages or
systems (though Pierre L’Ecuyer (2001) has longed
warned us about the dangers of doing this with ran-
dom number generators!). The functions that we
reuse in this way are usually very specific in their
functionality and are fine grained, which enables us
to check that the function is performing as required.

Component reuse: there are many definitions of
component, but for present purposes, it is an en-
capsulated module with a defined interface, pro-
viding limited functionality and able to be used
within a defined architecture. In a way, a compo-
nent can be regarded as a function++, since its re-
use should offer all the apparent benefits of func-
tion reuse, but more so. The is the point on the
reuse spectrum where things get a little more
tricky, especially as components get bigger and
offer broader functionality.

Full model reuse: this has long been the holy
grail in some parts of the simulation world, espe-
cially when models have been expensively and
time-consumingly written and developed. It is, of
course, one of the justifications for the HLA, with
its desire to support universal and uniform inter-
operability. The problem to be faced, though, is
fundamental and is to do with the nature of simu-
lation modelling.

1.2 Reuse Strategies

No matter which approach is selected, or what size the re-
usable software artifacts it deals with, it is vital to have a
properly developed reuse strategy if any benefits are to be
gained from reuse. It has been suggested that a reuse strat-
egy must include features to support the following techni-
cal aspects.

Abstraction — The ability to provide succinct, high
level descriptions of reusable artifacts is essential
in assisting the developers in understanding their
purpose, nature and behaviour.

Selection - To aid a developer in performing re-
use, mechanisms that allow the location, compari-
son and selection of artifacts are also important. In
effect, these require directory and search services.
Specialisation - Any technique that maintains
collections of reusable abstract artifacts requires
features to support the specialisation of those arti-
facts into useable, concrete entities, since it is
unlikely that large grained components can be re-
used without modification.

Integration - An integration ‘framework’ is re-
quired to provide a mechanism for the combina-
tion, connection and communication between re-
use artifacts. This must include an agreed
architecture within which reuse is achieved.

2 WHAT ARE SIMULATION MODELS
AND WHY DO WE BUILD THEM?

A shown in figure 2, a simulation model is a device on
which dynamic experiments can be conducted — this defini-

Pidd

773

tion excludes the use of simulation models for entertain-
ment and for game playing. Thus, the user of the model
conducts experiments on the model with a view to under-
standing what will happen in the ‘real’ system; this being
the one that the model is intended to represent, whether or
not it actually exists.

inputs outputs

A 4

»
L

MODEL(s)

Interaction/intervention

Figure 2: The Essence of Simulation

For the purposes of this paper a computer simulation is
the use of a computer-based dynamic model of some refer-
ent system. The referent system may or may not exist in
full or in part. Such a model, as explained in Pidd (1996)
can be defined as follows, “an external and explicit repre-
sentation of part of a referent system as seen by the people
who wish to use that model to understand, to change, to
manage and to control that part of the referent system.” To
become part of a computer simulation, the model must be
expressed in a computable form and then run on a suitable
computer system. As discussed here, such simulations are
dynamic, which means that they are concerned with repre-
senting behaviour through simulated time. Simulations are
used because they should be cheaper, faster and safer than
real experimentation and may be more accurate than
mathematical models. The simulation model and its com-
puter-based representations are not ends in themselves but
are only means to whatever end is in mind.

2.1 The Problem of Validity and Credibility

With this in mind, the question of model validity looms
large and simply cannot be ignored. It seems widely ac-
cepted in the simulation community that though models
cannot possibly be fully validated, it makes sense to have
some form of quality assurance so as to ensure that the
model is fit for its intended purpose (Pidd, 1998). This is
the most important issue in model validation, not model
fidelity. A low fidelity model can be just as useful, often
more so, than a high fidelity, very detailed model built at
€normous expense.

As a simulation model passes an increasing number of
well-designed tests, then confidence in that model should
increase, though full validation will not be achieved. Law
and Kelton (2000) suggest six classes of techniques that
should be considered when attempting to verify a computer
simulation program. These tests, and others suggested by
Sargent (1988) and Balci (1994) do not demonstrate that a
model is valid, instead they are part of a process in which the

credibility of a model is demonstrated. The harder the tests
passed by the model, the more credible it becomes. How-
ever, just as a Popperian view of science (Popper 1959,
1964) holds scientific progress occurs as theories are refuted
and new conjectures emerge, so to there will always be tests
that a model might fail. It is important to recognise, though,
that a simulation model may still be regarded as useful even
though its complete validation is out of reach.

If complete validation of a model of any size is an ideal
at which to aim but is, strictly speaking impossible to attain,
this surely serves to emphasise that a simulation model
should only ever be (re)used for the same purpose for which
it was originally constructed. This is possible when a model
is used on a routine basis to support tactical decision making
within known and defined limits. It is not possible to be sure
that reuse is valid when a model is used for a purpose differ-
ent form that for which it is built or is used in combination
with other models that might be based on different sets of
assumptions. If a model is to be reused for a purpose other
than that for which is its constructed, then it is vital to devise
a new credibility assessment process against which the
model’s validity may be assessed in terms of its new use.
Assuming that its credibility will transfer from one applica-
tion to another is simply not justified.

Proper credibility assessment does not come free and
its cost must be built into any estimates of the value of
model reuse.

3 WHAT ABOUT THE PEOPLE INVOLVED?

If software is to be reused, there are likely to be at least
two groups of people involved, possibly many more. The
first group is the initial software developers, the people
who write and tested the model the first time that it was
used. They may have intended that the model be reused
and may have operated accordingly, or they may not have
given much thought to this possibility.

The second group is the application integrators, the
people who will take an existing piece of software, whether
a component or a full model, and will use it in a specific
application. This reuse will not be cost-free, for some
credibility assessment is essential and, in many cases, the
software must be modified in order to reuse it — the excep-
tions being the routine reuse of tactical models.

The two groups have quite different interests and may
be employed by different people and different organisations.
A cost for one may be a benefit to the other and this needs to
be reflected in the decision to reuse. For example, if a model
or component is being developed with potential reuse in
mind, then it will be developed with a specific architecture
in mind and this will require adherence to the following.

e A setofrules.

An interface specification.
Documentation standards.

Pidd

774

e A precise definition of the services any implemen-

tation must provide.

These costs will be borne by the group that develops the
software in the first place, but any benefits will accrue to
the group that sets out to reuse the software; whether it be a
component or a full model.

4 COSTS AND BENEFITS OF REUSE
4.1 A Simple Financial Model

A simple financial model of the costs and benefits of soft-
ware reuse can easily be constructed as follows. Suppose
that the following can be known.

C = Cost to develop the software for its first use.
A = Cost to adapt for reuse each time its is reused.
N = number of times that the software is reused.
Ky = Average cost/use

Thus, Ky = (C + A(N-1))/N

In these terms, reuse N is worthwhile if Ky < C.
4.2 Problems with the Simple Model

Obviously this model is too simple, in that the cost of ad-
aptation is unlikely to be constant for each instance of re-
use and the cost of reuse includes many elements, includ-
ing credibility re-assessment and software adaptation. It
would also be sensible to apply a discount rate to future
costs so as to allow for the time value of money. Neverthe-
less, the basic model illustrates the usual economic argu-
ment made in favour of software reuse.

However, as discussed earlier, the main problem with
cost models of this type is that they assume that all the
costs are borne by the same group, whereas this often not
the case. The costs of adhering to the architecture are part
of the cost of initial model and software development and
these are borne by the initial developer. The benefits of
this, and the correspondingly decreased costs of each in-
stance of reuse, accrue to the reusing group.

On the other hand, the re-users must bear another set
of costs, for few large grained components and full models
are reused without modification. Some of this modification
may be needed if the artifact is to be reused within an ar-
chitecture for which it was not originally defined. To do
this may require the development of wrappers as containers
for a piece of code, to make it compliant with a particular
architecture, of adapters to bridge between non-compliant
components and the rest of the application and of media-
tors to provide semantic agreement between components
that are otherwise compliant.

5 SO, WHAT DO WE CONCLUDE?

The first conclusion is obvious; software reuse has been
with us for a long time and shows no sign of going away.
The second is equally obvious; to achieve the benefits
claimed for reuse requires a properly developed strategy.
When we come to model reuse, the picture gets much
cloudier, for the question of validity and fitness for purpose
loom very large. There is no magic wand that can be
waived over a reused model to ensure that it is fit for pur-
pose and proper validation costs time and money.

It is also important to realize that the costs and benefits
of reuse are not necessarily fairly distributed. Preparing
software for reuse is not free and the costs are borne by the
developer. The benefits, though, accrue to the re-user, the
system integrator who takes exiting software and models
and reuses them.

As a postscript, it is crucial to bear in mind that a high
fidelity model is not always better than a simple one. If the
simple model is built to answer a specific and important
question, then it may be much more useful than one that
attempts to represent everything that is going on in a sys-
tem. Therefore, it may be better not to reuse models on at
least some occasions, since it may be cheaper and at least
as useful to write a quick and dirty model using a VIMS.

ACKNOWLEDGEMENTS

This paper has benefited greatly from discussions with col-
leagues in the Lancaster University Computing Depart-
ment, notably Ian Somerville and Gerald Kotonya and with
Noela Oses, a PhD student whom I supervise. Thanks are
also due to Dick Nance and Ray Paul for entertaining and
stimulating debate on this topic.

REFERENCES

Balci O. (1994) Validation, verification and testing tech-
niques throughout the life cycle of a simulation study.
In Balci O.(1994) (Ed) Annals of operations research,
Vol 23: Simulation and modeling. J.C. Balzer, Basel.

L’Ecuyer P. (2001) Software for uniform random number
generation: distinguishing the good and the bad. In
Proceedings of the 2001 Winter Simulation Confer-
ence, eds Brett A. Peters, Jeffrey S. Smith, D. J.
Medeiros and Matt W. Rohrer, Arlington VA, Dec 9-
12, 2001. pp 95-105

Law AM and Kelton WD (2000) Simulation modeling and
analysis (3rd edition). McGraw-Hill, Boston, Mass

Pidd M. (1996) Tools for thinking: modelling in manage-
ment science. John Wiley & Sons Ltd, Chichester.

Pidd M. (1998) Computer simulation in management sci-
ence (4th edition). John Wiley & Sons Ltd, Chichester.

Popper K.R. (1959) The logic of scientific discoveries.
Hutchinson, London.

Pidd

775

Popper K.R. (1964)
Routledge, London.

Reese, R. and Wyatt, D. L. (1987) Software reuse and
simulation, Proceedings of the 1987 Winter Simulation
Conference, eds A. Thesen, W. Grant and W.D. Kel-
ton,185-192.

Sargent R.-W. (1988) A tutorial on validation and verifica-
tion of simulation models. Proceedings of the 1988
Winter Simulation Conference, San Diego, Calif,
pp33-39.

Conjectures and refutations.

AUTHOR BIOGRAPHY

MICHAEL PIDD is Professor of Management Science in
the Department of Management Science at Lancaster Uni-
versity. He was President of the Operational Research So-
ciety for the years 2000 and 2001. He is best known for
two books: Computer simulation in management science
(now in its 4th edition) and Tools for thinking (2nd edition
in press) both published by John Wiley. He has been an ac-
tive teacher, researcher and consultant for over 25 years
and is particularly interesting in modelling. He holds sev-
eral EPSRC research grants related to modelling. He is a
member of INFORMS and his email and web addresses are
m.pidd@lancaster.ac.uk and <http://www.
lancs.ac.uk/staff/smamp>.

mailto:m.pidd@lancaster.ac.uk

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 772
	02: 773
	03: 774
	04: 775

