
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

BUILDING COMPLEX MODELS WITH LEGOS
(Listener Event Graph Objects)

Arnold H. Buss

MOVES Institute
Naval Postgraduate School

Monterey, CA 93943-5000, U.S.A.

Paul J. Sánchez

Operations Research Department
Naval Postgraduate School

Monterey, CA 93943-5000, U.S.A.

.

n

d
x

ABSTRACT

Event Graphs are a simple and elegant language-independe
way of representing a Discrete Event Simulation (DES)
model. In this paper we propose an extension to basic
Event Graphs that enables small models to be encapsulate
in reusable modules called Listener Event Graph Objects
(LEGOs). These modules are linked together using a de-
sign pattern from Object Oriented Programming called the
“listener pattern” to produce new modules of even greater
complexity. The modules generated in this way can them-
selves be linked and encapsulated, forming a hierarchica
design which is highly scalable. These concepts have bee
implemented in Simkit, a freely available simulation pack-
age implemented in Java.

1 INTRODUCTION

In 1983 Lee Schruben first described Event Graphs, a simple
yet extremely powerful, construct to graphically portray DES
models in a language-independent manner. An Event Graph
is a graph (in the formal mathematical sense of being a
set of vertices and edges) that captures the event logic o
a given model. In an Event Graph the vertices represen
the state transition function, while the edges capture the
scheduling relationships between events (Schruben 1983)

Events Graphs are the most natural way to represen
a DES model and, indeed, are the only such construct tha
directly captures the event-driven nature of such models.
Although other constructs, such as Petri nets, can likewise
model DES, Event Graphs provide the simplest and most
elegant representation.

In this paper we describe how to extend Event Graphs to
better accommodate large-scale DES models. The idea is t
build small, manageable components that encapsulate Even
Graph logic. These components correspond to the concep
of an “object” in object-oriented programming: objects
encapsulate state and behavior in a self-contained unit (Joine
and Roberts 1999; Buss 2000). These component pieces ca
nt

d

l
n

,

f
t

.
t
t

o
t
t

s
n

then be linked together to rapidly build larger, more complex
models. The way in which this is accomplished is very
important. In most programs two component pieces need
to be tightly integrated to be able to interact successfully.
If we used that approach, our components would not be
self-contained. They would need to be modified for each
type of use. To be able to use “off-the-shelf” components,
one needs a way of establishing linkages and interactions to
existing components without breaking their encapsulation.
This is accomplished using an object-oriented design pattern
(Gamma et. al. 1995) called the “listener pattern,” or
“listener” for short. Listener objects register their interest
in other objects, and respond when they “hear” state changes
The choice of appropriate action, if any, lies solely with
the listener. The object being listened to has no say in the
actions which may be taken, and is not affected in any way,
i.e., this is a non-invasive construction.

The end result of combining object encapsulation with
the listener pattern is a language-independent modeling
paradigm with all of the power of Event Graphs (which have
been shown to be Turing complete, i.e., capable of modeling
anything that can be programmed), but which also controls
the complexity of large systems by allowing component
design and reuse combined with hierarchical modeling. The
obvious and natural name for this modeling paradigm is
“Listener Event Graph Objects,” with the acronym LEGOs.
The name is also a metaphor for how complex models can
be built by rapidly linking simpler component sub-models.

2 EVENT GRAPHS

In Event Graphs each event is represented as a vertex i
the graph. By convention, each event vertex is given a
descriptive label. All state transitions associated with the
event are written either below the event and surrounded by
curly braces (“{}”), or separately, indexed by the label.

Scheduling relationships between events are represente
as directed edges. The edge originates at the event verte
performing the schedule operation and terminates at the



Buss and Sánchez

.

.

n

.
e

nt

e
of
event vertex to be scheduled. Note that neither the vertices
nor the edges need be distinct, i.e., a vertex is permitted to
schedule itself, and there may be more than one scheduling
relationship between a pair of events. Each scheduling
relationship has an associated delay, which by convention
is written above the line and at the originating end. If no
delay is written, the value is assumed to be zero. Each
scheduling relationship also has an associated condition,
which by convention is drawn as a tilde shape near the
midpoint of the edge. The condition is a boolean function
of the system state. Scheduling occurs if and only if the
condition isTRUE. If no condition is provided, the value is
assumed to beTRUE. Finally, since the edge conditions are
functions of the state, the order in which state transitions
and event scheduling occurs is important. By convention,
any and all state transitions associated with the event are
completed prior to event scheduling activities.

Figure 1 illustrates these concepts. It can be translated
to English as: When event A occurs, all state transitions
associated with A are performed. Then, if conditionc is
TRUE, event B will be scheduled to occurt time units later.

A B
(c)

t

Figure 1: The Quintessential Event Graph

If the edge is a dotted line instead of a solid line, it
represents cancellation. By convention, the next occurrence
of the event being pointed to will be removed from the list
of pending events. In theory, cancelling edges are not
necessary. In practice, they can simplify the modeling
process significantly.

Basic Event Graphs have been enhanced by the addi-
tion of formal parameters. Each event can have a formal
parameter list associated with it. If this is the case, then
all edges that schedule the event must have an associate
list of arguments which match the parameter list in number,
type, and order. By convention, the parameter list is writ-
ten in parentheses after the event label, and the argumen
list is specified as a list of expressions contained in square
brackets alongside the scheduling edge. The expression
are evaluated when the event is to be scheduled, and the
resulting values are stored in the event list along with the
event notice. Note that the parameters arenot elements of
the system state – the state can change between the time a
event notice is scheduled and the time that event actually
occurs. Parameters behave more like the arguments of a
function or method – their scope is local to the event, and
they store temporary copies of functions of the state, as
computed at the time the event notice was placed on the
event list.
d

t

s

n

Figure 2 demonstrates the addition of formal parameters
This graph can be translated to English as: When event A
occurs, all state transitions associated with A are performed
Then, if conditionc is TRUE, expressionewill be evaluated
to determine its valuev and event B will be scheduled to
occur t time units later with parameterp set tov.

A B(p)

(c)
t

[e]

Figure 2: A Parameterized Event Graph

For more information about Event Graphs, including nu-
merous examples of usage, we refer the reader to (Schrube
1983, 1992; Schruben and Yücesan 1993; Buss 2001a).

3 LEGOS

Listener Event Graph Objects (LEGOs) are fundamentally
Event Graphs, but have two simple, yet important, additions
The first of these is encapsulation, and the second is th
listener pattern.

3.1 Encapsulation

An Event Graph which represents self-contained function-
ality can be “wrapped” to create an Event Graph object,
which can subsequently be treated as an atomic compone
in other models. We illustrate this visually by drawing a
box or rectangle around the Event Graph. We offer two
examples below.

3.1.1 The Arrival Process

The first example is a pure arrival process, illustrated in
Figure 3. Arrive events schedule further arrivals after a
delay of tA time units. The state consists of a counter
which tallies the number of arrivals which have occurred
to date. This first example may not be terribly interesting,
but note that once it has been formulated as an object th
modeler can instantiate as many copies as desired, each
which maintains its own state and is parameterized by its
own set of interarrival times{tA}. When the Event Graph
object is more complex than this simple first example, the
benefits of code reuse can be significant.

3.1.2 The Multiple Server Queue

The second example is only slightly more complex. Fig-
ure 4 shows the Event Graph object for a multiple server
queue. Readers familiar with Event Graphs will immedi-
ately recognize the model: An Arrive event increments the



Buss and Sánchez

t

t

y
g

i-

t

-
t
e
t

t

o

Arrival

Process

Arrive

t
a

{N++}

Figure 3: A Pure Arrival Process

Multi-Server Queue

Arrive Begin
Service

End
Service

ts

S>0

Q>0{Q++} {Q--,S--} {S++}

Figure 4: A Multiple Server Queue

number of customers who are waiting in line. If a server
is available, a Begin Service event will be scheduled with
no delay. When a Begin Service event occurs, the numbe
of customers waiting in line and the number of available
servers are both decremented, then an End Service eve
is scheduled to occurtS time units later. When an End
Service event occurs, the number of available servers i
incremented. If there are customers awaiting service,
Begin Service event is scheduled with zero delay. As with
the arrival process model, once a multiple server queuein
Event Graph has been formulated as an object, the model
can instantiate as many copies as desired, parameteriz
appropriately.

3.2 The Listener Pattern

In traditional Event Graphs, later events are actively sched
uled by their predecessors. The relationship between
scheduling and a scheduled event is hard-wired into th
model. The graph syntax is not designed to allow for the
possibility that additional events might later be added to
the model and triggered by the current event. To add ad
ditional scheduling relationships, the Event Graph must be
modified by adding additional edges. Model elements are
tightly integrated, which virtually destroys the potential for
encapsulation and code reuse. We avoid this problem b
using the listener pattern.
r

nt

s
a

g
er
ed

-
a
e

-

y

3.2.1 Linking Models with Listeners

The observant reader will have noted that the Arrive even
in Figure 4 is not self-scheduling. The reason is that an
arrival process that feeds a queue is not an integral par
of the queue. For example, in a tandem queueing system
the input process of a downstream queue is determined b
the End Service events of the queue immediately precedin
it. In order to accomplish this, we need a mechanism
by which events occurring in one object trigger events in
another object, without breaking the encapsulation. This is
accomplished using the listener pattern. We illustrate this
with a multiple server queueing model in Figure 5.

Queueing Model

Arrival
Process

Multi-
Server
Queue

Figure 5: Linking Model Components with Listeners

The two Event Graph objects created in Figures 3 and
4 are linked by a new type of edge with an reversed triangle
at one end, indicating a “listener” relationship. Think of it
as a stethoscope: the listener edge indicates that the Mult
Server Queue object is registered to listen to the Arrival
Process object.

The loosely-coupled nature of the listener connection is
an important distinguishing feature of the LEGO framework.
In the queueing model, the listener connection means tha
each occurrence of the Arrive event in the Arrival Process
LEGO stimulates the occurrence of the Arrive event in the
Multi-Server Queue. One simple way for this connection to
be implemented involves “resonance,” in which every event
occurring in the listened-to LEGO triggers an event of the
same name in the listening LEGO. If there is no correspond
ing event in the listener, then nothing happens. An importan
convention is that resonance does not propagate, i.e., if th
Arrive event in the queue was triggered by resonance, i
cannot in turn trigger other listeners by resonance. Only
events which were actually scheduled within the componen
induce resonance in subsequent listener objects.

The listener pattern allows both the source and the
listener to be unaware of each other in the sense that n
specific knowledge is required. The Multi-Server Queue
LEGO does not “know” that its Arrive event is being stim-
ulated by an Arrival Process LEGO; all that is required to
trigger the Arrive event is its occurrence in some LEGO it
is listening to. Similarly, the Arrival Process LEGO has no
awareness of the fact that its Arrive event is triggering an
Arrive event in a Multi-Server Queue LEGO.

A crucial aspect of the listener pattern is that register-
ing one LEGO component as a listener isnon-invasivefor



Buss and Sánchez

l.

l

t

f

the LEGO component it is listening to. A LEGO compo-
nent need not know anything about the context in which
it is being used. This is analogous to the way in which
chip designers use component designs to control the com
plexity of their task. Atomic components are assembled
to sub-components, which are then combined into larger
components. At the top level this yields circuit boards with
a broad range of functionalities, which are nonetheless buil
from the same set of reusable off-the-shelf components
The circuit designer focuses on building linkages between
components with known high-level functionality, rather than
trying to rebuild each circuit from atomic components. A
given component remains a sealed design, and has no info
mation about the context in which it is being used. However,
the outputs produced by that component become inputs t
other components. The overall design resides in the linkage
between the components.

3.2.2 A More Complex Example

In the prior example, linking the components together was
simple and intuitive because an Arrive event in the Arrival
Process corresponded to and triggered the execution of a
Arrive event in the Multi-Server Queue. The situation is
slightly different with a Tandem Queueing system – arrivals
at downstream queues should be triggered by end of servic
events in the immediately prior queue, except for the first
queue in the system. That one would receive its arrivals
from an arrival process, as in the prior section.

The use of method name resonance introduces the nee
for a “bridge” (or “name mapping”) object, i.e., an object
which maps End Service events to Arrive events. This is
illustrated in Figure 6. The bridge LEGO in Figure 6 is
an extremely lightweight component. It maintains no state
of its own and therefore has no state transitions. In other
words, the bridge simply maps the event named End Servic
into the event named Arrive.

Bridge

ArriveEnd
Service

Figure 6: A Bridge Object

The tandem queue is then assembled from these compo
nent pieces. In Figure 7, three instances of the Multi-Serve
Queue and two instances of the bridge are instantiated. Eac
bridge acts as a listener to an upstream Multi-Server Queu
instance and is listened to by a downstream instance o
Multi-Server Queue. Note that the non-invasiveness of
LEGO components is maintained in this example. Neither
-

t
.

r-

o

n

e

d

e

-
r
h
e
f

the Arrival Process nor the Multi-Server Queue has to be
changed in the slightest to create the tandem queue mode

Tandem Queueing System

Arrival

Process

Multi-

Server

Queue

Bridge
Multi-

Server

Queue

Multi-

Server

Queue

Bridge

Figure 7: A Tandem Queue System

More complicated models can easily be envisioned us-
ing the listener pattern. For example, a single instance of
an Arrival Process can be used to trigger many Multi-Server
Queue instances. Similarly, arrivals that concatenate severa
kinds of processes can be easily modeled by instantiating
multiple copies of the Arrival Process LEGO, each config-
ured to capure the desired process, and the Multi-Server
Queue can listen to all of them. An Arrive event in any of
the Arrival Process instances will trigger an arrival to the
queue.

4 HIERARCHICAL COMPONENT MODELING

The LEGO construct described above is sufficient to support
hierarchical component modeling. The objective is to be
able to construct LEGO components that themselves consis
of other LEGO components so that the component can
be used seamlessly without any knowledge of its internal
construction.

To illustrate how this works, let us return to the tan-
dem queueing model in Section 3.2.2. In that example,
the components were the Arrival Process, the Multi-Server
Queue instances, and the Bridge instances. Now we will
encapsulate the entire model so that the internal LEGOs are
shielded from the user and a simple Event Graph “interface”
is presented to the outside world. The convention we use
is that if a component name is the same as the name o
the LEGO with “Interface” appended, that component is
the one which listens to and/or is listened to by external
LEGOs.

Following the convention just described, the hierarchi-
cal Tandem Queue Interface LEGO component contains
two Event Graph pieces, as shown in Figure 8. The new
model is not much more complicated than the Bridge LEGO
illustrated in Figure 6. Like the bridge, the Tandem Queue
Interface LEGO maintains no state of its own and performs
no state transitions. It provides the externally visible inter-
face to the componentized Tandem Queue model in Figure
7, excluding the Arrival Process. The first Multi-Server
Queue LEGO is a listener to the Tandem Queue Interface,
which in turn is a listener to the last Multi-Server Queue.
An arrival to the Tandem Queue LEGO is triggered when the
interface component hears a System Arrival event, which



Buss and Sánchez

r
d

d

.
i-
d

e

e
s

an
n

n
t

r
e
o
r
s

er
l
s
er
l
e

e

d
t
t
e
,

e
e

Tandem Queue
Interface LEGO

ArriveSystem
Arrival

Exit
System

End
Service

Figure 8: Tandem Queue Interface LEGO

schedules an Arrive event which in turn triggers the Arrive
event of the first Multi-Server Queue instance. The End
Service event of each Multi-Server Queue subsequently trig
gers the Arrive event of the subsequent queue via a bridge
When the End Service event occurs in the last Multi-Serve
Queue, it triggers the End Service event in the Tandem
Queue Interface. This fires the Exit System event, which
can be heard by external LEGOs. The design is illustrate
in Figure 9.

Tandem Queue LEGO

Multi-

Server

Queue

Bridge
Multi-

Server

Queue

Multi-

Server

Queue

Bridge

Tandem Queue Interface LEGO

Figure 9: Improved Tandem Queue LEGO

Because of the interface component, the Tandem Queu
LEGO looks to other components like the simple Event
Graph shown in Figure 10. Instances of this LEGO can be
combined with other components without having to know
the details of the delayt on the edge in Figure 10, which
is in fact generated by the behavior of the tandem queue

Tandem Queue LEGO

Exit

System

System

Arrival

t

Figure 10: External View of Tandem Queue LEGO

The component design of tandem queue example pre
sented above demonstrates the power of hierarchical comp
nent design that is possible using the LEGO framework. A
LEGO component can be either atomic (like the Multi-Server
Queue) or compound (like the Tandem Queue LEGO). Sim
-
.

r

d

e

s.

-
o-

-

ulation modelers need not concern themselves with whethe
a given LEGO component is atomic or compound, but nee
only be concerned with the way the LEGO interacts with
other components. All components have equal status an
can be treated equally.

The LEGO framework, therefore, adds scalability to
DES modeling in general, and to Event Graph modeling
in particular. Atomic LEGO components tend to be rela-
tively small, and thus easy to debug, verify, and maintain
The LEGO framework enables them to be assembled h
erarchically into components with increasing features an
complexity without sacrificing their maintainability. At-
tempts to build large monolithic models result in complex
models that are difficult to modify or maintain. The LEGO
framework enables much more large-scale models to b
developed.

5 APPLICATION TO DATA

The listener pattern described in Section 3.2 proves to b
extremely effective when applied to data and output analysi
of simulation models. The loose coupling of the LEGO
components means that information about state changes c
be transmitted and received so that the model dynamics ca
be separated from the data collection. This provides a
important feature to LEGO models, namely the fact tha
models can be created without having to worry about the
particular statistics that will be desired, or even what othe
ways run data might be displayed. As long as every stat
transition fires an event that can be listened to, then n
LEGO component need contain any logic whatsoever fo
collecting or logging data. New data-gathering scheme
may be easily implemented. Most important, new data
gathering can be implemented non-invasively.

For example, suppose that the time-averaged numb
in queue for a run is to be estimated for the queueing mode
above. To accomplish this, a listener object that update
statistical counters is instantiated and registered as a listen
to the Multi-Server Queue instance. When this statistica
listener receives the event signaling the change of valu
for the number in queue state (Q), it simply updates its
counters. Whenever desired, it can be queried about th
current value of the desired average.

Now suppose that we also desire to plot the state
trajectory for the number in queue. This can be accomplishe
by instantiating a graphical listener and also registering i
to listen to the Multi-Server Queue instance. Whenever i
hears an event signaling the change of state of Q, it adds th
new data point and redraws the plot. In a similar manner
a logging listener can write the state information and time
of change to a log file.

Since there is no restriction on how many listeners a
LEGO component can have, there is no restriction on th
types of data that may be collected simultaneously. Th



Buss and Sánchez

,

-

analyst has complete flexibility and control over how the
model run is observed. The non-invasive nature of this
manner of listener data gathering ensures the integrity o
the data. If the model code must be edited or changed to
gather new data, then there is always a risk that error may
be inadvertently introduced into a previously correct model.

6 IMPLEMENTATION

The LEGO framework has been implemented in Simkit
(Buss 2001b, 2002), a package written in Java for building
DES models. An Object-Oriented language such as Jav
is particularly well-suited to implement a loosely-coupled
component framework such as LEGO.

However, the LEGO framework is not tied to either
Simkit or Java. Although the designs here were inspired
by Object-Oriented modelling, and are very straightforward
to implement in languages such as Java, LEGOs are
general purpose modeling tool and may be implemented
in most any modern computer language. For example, the
listener pattern can be implemented in procedural language
using a registration/call-back scheme. However, unless th
programmer is using a language designed to incorporate
separate name spaces, such as Modula-3 or Ada, care mu
be taken with the implementation to avoid name collisions
for the events.

7 CONCLUSIONS

Using the techniques described in this paper, simulation
practitioners can rapidly and accurately build models of
complex systems. LEGO models control complexity by
incorporating hierarchical design and encouraging reuse
of previously designed and well-tested components. The
components are linked non-invasively so that they benefit
from encapsulation. The listener pattern used to create
the linkages can be used for both model construction and
data collection. These techniques are not just theoretica
abstractions, they have been successfully implemented i
the Simkit package developed at the Naval Postgraduat
School.

ACKNOWLEDGMENTS

We would like to acknowledge Lee Schruben for his original
contribution in creating Event Graphs, and for sharing his
insights and ideas about modeling over a course of many
years. We would also like to thank Susan M. Sanchez and
Richard Mastowski for their invaluable feedback on early
drafts of the paper. The authors were supported in this work
by a grant from the Air Force Office of Scientific Research.
This support is gratefully acknowledged.
f

a

a

s
e

st

l
n
e

REFERENCES

Buss, A. 2000. Component Based Simulation Modeling.
Proceedings of the 2000 Winter Simulation Conference,
ed., J. A. Joinses, R. R. Barton, K. Kang, and P.
A. Fishwick. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Buss, A. 2001a. Basic Event Graph Modeling.Simulation
News Europe. 31:1-6.

Buss, A. 2001b. Event Graph Modeling with Simkit.Sim-
ulation News Europe. 32/33:15-25.

Buss, A. 2002. Component-Based Simulation Modeling
Using Simkit. Proceedings of the 2002 Winter Simu-
lation Conference, ed., E. Yücesan, C.-H. Chen, J. L.
Snowdon, and J. M. Charnes. Institute of Electrical
and Electronics Engineers, Piscataway, New Jersey.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA.

Joines, J. and Roberts, S. 1999. Simulation In An Object-
Oriented World. InProceedings of the 1999 Winter
Simulation Conference, ed., P. A. Farrington, H. B.
Nembhard, D. T. Sturrock, and G. W. Evans. Institute
of Electrical and Electronics Engineers, Piscataway,
New Jersey.

Schruben, L. 1983. Simulation Modeling with Event
Graphs.Communications of the ACM. 26: 957-963.

Schruben, L. 1992.Sigma: A Graphical Simulation Mod-
eling Program. The Scientific Press. San Francisco,
CA.

Schruben, L. and E. Yücesan. 1993. Modeling Paradigms
for Discrete Event Simulation.Operations Research
Letters. 13: 265-275.

AUTHOR BIOGRAPHIES

ARNOLD H. BUSS is a Research Assistant Professor in
the MOVES Institute at the Naval Postgraduate School.
His interests include component-based simulation modeling
with emphasis on military applications. His e-mail and web
addresses are<abuss@nps.navy.mil> and <http:
//diana.or.nps.navy.mil/˜abuss> .

PAUL J. SÁNCHEZ is in the Operations Research De-
partment at the Naval Postgraduate School. His re-
search interests include component-based simulation mod
eling, object-oriented modeling, and simulation output
analysis. He is an avid reader and collector of sci-
ence fiction, and enjoys riding recumbent bikes around
the Monterey Bay area. You can reach him by e-mail at
<PaulSanchez@nps.navy.mil> , and his web address
is <http://diana.or.nps.navy.mil/˜pjs> .


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 732
	02: 733
	03: 734
	04: 735
	05: 736
	06: 737


