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ABSTRACT

This paper presents performance results for cell level ATM
network simulations using both sequential and parallel dis-
crete event simulation kernels. Five benchmarks are used
to demonstrate the performance of the simulation kernels
for different types of model. The results demonstrate that
for the type of network models used in the benchmarks,
the TasKit simulation kernel is able to outperform all of the
other kernels tested both sequentially and in parallel. For
one benchmark TasKit is shown to outperform a conven-
tional sequential simulation kernel by a factor of 3. For the
same benchmark TasKit is shown to outperform the best of
the other parallel kernels tested by a factor of 6. The paper
explains how this performance advantage is achieved and
cautions that additional research into automatic model parti-
tioning will be essential to make this technology accessible
to the general simulation community.

1 INTRODUCTION

This paper presents performance results for cell level simu-
lations of ATM networks. Results are presented for 5 bench-
mark models using 2 simulated networks. The benchmarks
employ different types and amounts of synthetic traffic.
Each benchmark is run on 1, 2, 4, 8 and 16 processors o
a shared memory multiprocessor using 3 parallel discrete
event simulation (PDES) kernels. The results are compared
to the performance achieved running the same benchmark
using an efficient sequential simulation kernel.

The benchmarks are the same as those previously
presented in Ungeret. al. (2000). The results presented
here include those for the sequential kernel CelKit (Gomes
et. al. 1995), the conservative PDES kernel WaiKit (Cleary
and Tsai 1997) and the optimistic kernel WarpKit (Xiao
and Unger 1995) all of which were compared in (Unger
et. al. 2000). This paper adds results for the TasKit kernel
(Xiao et. al.1999) that like WaiKit implements a conserva-
f

s

tive PDES algorithm, but employs a multi-level scheduling
scheme that has been demonstrated to perform effective
in network simulators.

The results presented show that TasKit outperforms
the other kernels in all of the experiments. For one large
benchmark model TasKit executes 3 times faster than CelK
on a single processor and up to 26 times faster on 1
processors. TasKit is shown to run 6 times faster than th
best of the other parallel algorithms on this benchmark.

It should be noted that cell level ATM network simula-
tions have low event granularities and a topological structure
that particularly suits constervative PDES kernels. Othe
simulation models with larger event granularites and less
well defined communication paths can perform poorly us-
ing these algorithms. The purpose of this paper is only to
show the reliative performance of simulation kernels using
different algorithms for one class of models.

The rest of the paper is laid out as follows. Section 2
gives an overview of the 4 kernels that will be compared.
Section 3 describes the benchmark models used for th
comparison. Section 4 presents the performance resul
collected. Finally, Section 5 provided concluding remarks
and summary.

2 SIMULATION KERNELS

This section gives an overview of the 4 kernels for which
benchmark results are presented in this paper. The de
scriptions are brief due to space restrictions. The reader
directed to other papers that more fully describe each o
the kernels.

The simulation kernels described in this section all use
a modeling API implementing thelogical process model-
ing methodology(Chandy and Misra 1979). With this the
physical system being modeled is viewed as a set of inter
acting physical processes that only interact by exchangin
messages. The physical processes are mapped to logic
processes (LPs) and the messages are mapped to events
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the simulator. The two conservative PDES kernels, WaiKit
and TasKit, also require a channel-based communicatio
view to be employed. With this channels are statically de-
fined between pairs of LPs that may communicate during
the simulation. These channels are required to calculat
which events are currently safe to execute at each LP.

2.1 CelKit

The CelKit kernel, formally known as SimKit (Gomes
et. al. 1995)), is a sequential simulation kernel using the
“central event list” (CEL) approach. During each execution
session the smallest timestamped event is removed from
the CEL and executed by its destination LP. During the
execution session new events with timestamps at least a
great as the current event could be generated, each of whic
is placed into the CEL. Causal ordering is maintained by the
CEL which is implemented as a priority queue. The perfor-
mance of a CEL simulator owes much to the efficiency of
its priority queue implementation. CelKit employs a splay
tree (Sleator and Tarjan 1985) based CEL.

2.2 WarpKit

The WarpKit kernel (Xiao and Unger 1995) is an optimistic
parallel simulation kernel implementing the Time Warp
algorithm (Jefferson 1985). WarpKit is based on an early
version of the GTW kernel (Fujimoto 1990), but has been
extensively modified.

LPs are statically partitioned and assigned to processors
After each execution session, the next LP to be execute
is the one with the smallest timestamped event at the loca
processor. Events are executed without checking if othe
events that have not yet been received by an LP will late
invalidate the work done in executing this event. In Time
Warp, causality errors are detected when straggler even
(i.e., events with timestamps smaller than the timestamp
of the last event executed by this LP) arrive. At this
point, events executed prematurely are rolled back. This
is achieved by reinserting future events into the LP’s even
queue and restoring the state of the LP with values store
during its forward execution. Since executing events early
can lead to new events being generated and dispatched
error, special cancellation events calledanti-messagesare
dispatched to eliminate errant events. These anti-messag
can also trigger rollback if their destination LP has executed
the target event before the anti-message is received.

WarpKit employs fast shared-memory global virtual
time calculation (Xiaoet. al. 1995) and incremental state
saving (Clearyet. al.1994). Like other Time Warp kernels,
WarpKit’s performance benefits from loosely coupled op-
eration, but suffers from the overhead of state saving and
rollback.
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2.3 WaiKit

WaiKit (Cleary and Tsai 1997) is a conservative PDES
simulation kernel using a modified version of the Chandy
Misra Bryant (CMB) algorithm (Chandy and Misra 1979,
Bryant 1977). Conservative algorithms operate by calcula
ing a safe-time value for an LP representing the minimum
timestamp of any event that could arrive at the LP in the
future. Using the safe-time, LPs can execute local even
with timestamps less than the safe-time with certainty tha
no causality error could occur. In WaiKit, statically defined
channels are used to exchange both events and safe-ti
information between communicating LPs. Each channe
has a clock representing the minimum timestamp of an
event that could arrive on the channel in the future. Eac
LP calculates a safe-time at the beginning of its executio
session as the minimum input channel clock. At the en
of an execution the LP updates the clocks of all its outpu
channels to be the minimum of timestamp of any even
passed along the channel and the minimum timestamp th
could be given to any event that could be inserted into th
channel by this LP in the future.

The major innovation in WaiKit was to use a fixed LP
scheduling order at each processor and to order the LPs su
that work would be followed though the system without the
need for priority based scheduling. The aim is to have eac
LP execution session either produce events that will be use
by the next LP to execute, or to increase the safe-time o
the following LP enabling it to advance futher in its ensuing
execution session. This technique was shown to be ve
effective for some simulations, but could suffer badly in
other cases where LPs would often be scheduled that we
not currently able to make progress.

2.4 TasKit

TasKit (Xiao et. al. 1999) builds on ideas introduced in
WaiKit and introduced the concept of scheduling based o
critical channels. In TasKit, LPs are partitioned into groups
known as tasks. These tasks could be allocated statica
to processors, but in TasKit the tasks are placed in a centr
queue accessed by all processors. This provides a simp
form of dynamic load balancing, though it could introduce
problems with contention and cache pollution.

The LP to task partitioning decisions are based on
topology. LPs that communicate often tend to be groupe
together. TasKit has two types of task employing differen
internal scheduling mechanisms. The cluster task type h
a single event queue and acts locally like a CEL sequenti
simulator bounded by the current minimum input channe
clock. The fixed schedule task, described as pipe task
Xiao et. al. (1999), always executes the LPs it holds in the
same order each time the task is scheduled for executio
This results in very efficient scheduling for these LPs, thoug
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LPs are only assigned to fixed schedule tasks if the grap
defined with the LPs as vertices and channels as edges,
directed acyclic (i.e., is a DAG).

The scheduling of tasks is performed using the Critical
Channel Traversing (CCT) (Xiaoet. al.1999). At the end of
an execution session, a task assigns one of its input channe
as its critical channel. This channel must be one of the
input channels sharing the minimum input channel clock.
When the task at the sending end to this channel finishes it
execution session, it observes that the channel is critical an
schedules the destination task for execution. This greatly
reduces the chance that tasks will begin an execution sessio
before their minimum input channel clock has advanced
which often proved to be a problem with WaiKit.

One of the implementation goals for TasKit was to
reduce the number of mutual exclusion operations require
for parallel operation on a shared memory computer. The
channels used to pass events between LPs use single writ
/ single reader semantics the do not require locks. They d
require the use of memory barriers on computers that don’
support a sequentially consistent view of memory, but these
barriers do not require communication between processor
and are relatively inexpensive to perform. A lock is used
on the central task scheduling queue.

3 ATM SIMULATION BENCHMARKS

Two ATM network topologies are used as the basis for five
benchmarks in the performance study. The first of these
called Wnet, models the physical topology of a regional
ATM test-bed network in western Canada. The second
model, called the NTN, models the physical topology of a
Canada-wide experimentalATM network called the National
Test Network. Each benchmark model uses a mix of traffic
types to produce light, medium and heavy loads.

Table 1 summarizes the six benchmark scenarios. Th
first three columns give the number of traffic source/sink
pairs for the three major traffic types, i.e., Ethernet (models
aggregate LAN traffic), MPEG (models MPEG video traffic),
and TCP (models TCP/IP based Internet traffic). Messag
flow on TCP connections is intermittent and bursty. The two
columns in “number of nodes” show the number of ATM
switches (SW) in a scenario and the number of gateway
to the ATM network (i.e., multiplexer/demultiplexer units).
The next column shows the number of LPs in the network’s
logical representation. The final column shows the numbe
of tasks used to group LPs for the simulations using TasKit

3.0.1 Wnet

The Wnet benchmark topology represents a regional ATM
test-bed in Western Canada. This network connects five
universities in three provinces. The network consists of 11
ATM switches, spanning a geographic distance of approxi-
s, Unger, and Cleary
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mately 800 kilometers. Two benchmark scenarios, Wnet-1
and Wnet-2, represent different traffic mixes. Wnet-1 con-
tains very light overall traffic load (10 Ethernet, 2 MPEG),
but on one site the traffic load is very high and the line
connected to the site becomes saturated. Wnet-2 represen
the typical traffic in the real Wnet test-bed - JPEG video
for distance education offerings between universities, TCP
for file transfers between researchers and supercompute
centers, and Ethernet traffic as a generator of backgroun
traffic load between sites. Among the 25 traffic sources in
Wnet-2 (2 Deterministic, 2 Bernoulli, 10 Ethernet, 8 MPEG,
3 TCP), the 3 TCP traffic streams account for 70% of the
total traffic load.

3.0.2 NTN

The NTN network topology represents the Canada-wide
ATM National Test Network (as of March 1996). The
network has 54 ATM switches, and spans a geographic
distance of approximately 3000 kilometers. The backbone
of the network runs at 45 Mbps, and provides connectivity
between five regional ATM test-beds (one of which is Wnet).

The NTN is a good example of a network with a
high delay-bandwidth product. That is, the combination of
high transmission speeds and large end-to-end propagatio
delays means that hundreds or thousands of ATM cells
can be in transit at any time in the network links. These
types of network scenarios are of particular interest to
ATM networking researchers evaluating, for example, the
effectiveness of feedback-based congestion control policies
the effectiveness of network traffic management on a nationa
scale and end-to-end quality of service guarantees in larg
inter-networks.

The traffic in the NTN benchmarks consists of a mix of
MPEG/JPEG video streams, TCP file transfers, and highly
bursty LAN data traffic. Approximately 75% of the traffic
sources have their traffic sinks on the same regional network
The remaining traffic flows traverse the national backbone.

The 3 benchmarks for the the NTN network model
are NTN-1, NTN-2, and NTN-3. All 3 scenarios have the
same 355 traffic sources deployed at the same locations
However, different traffic loads are produced by changing
the parameters of the sources. The average link utilization
in each model is 30% for NTN-1, 50% for NTN-2 and 80%
for NTN-3.

4 PERFORMANCE

This section presents performance results comparing th
performance of simulation executions using 5 benchmark
models with 4 simulation kernels. First the relative perfor-
mance of simulation runs using the CelKit sequential kernel
and the TasKit kernel on a single processor workstation are
presented. Then the performance of the 3 parallel capabl
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Table 1: Summary of Wnet and NTN Benchmark Scenarios
benchmark number of traffic number num. num.

models source/sink pairs of nodes of of
ether mpeg tcp SW gate LPs tasks

Wnet-1 10 2 0 11 9 181 26
Wnet-2 10 8 3 11 6 173 12
NTN-1 62 269 24 54 39 1381 112
NTN-2 62 269 24 54 39 1381 112
NTN-3 62 269 24 54 39 1381 112
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kernels is compared to the performance of CelKit on a 16
processor SGI Power Challenge parallel computer.

4.1 Single Processor Execution

This section provides results demonstrating the performance
of a version of the TasKit kernel compiled specifically for
operation on a single processor computer. This version of
TasKit is identical to the parallel version, except that all of
the mutual exclusion operations (e.g., locks and memory
barriers) are removed using preprocessor directives.

Table 2 shows the relative performance of sequential
TasKit and CelKit for the 5 ATM-TN benchmarks running
on an SGI O2 R5000 workstation. As can be seen, TasKit
sequential has a performance advantage over CelKit in ever
case.

The performance advantage achieved depends greatl
on the number of events that can be executed in each tas
execution session. The more events executed, the lowe
the overall scheduling overhead. Also, cache locality is
improved with the same set of event buffers being reused
within each execution session and the same set of LPs
executing many events.

Wnet-2 introduces TCP traffic that introduces feedback
and thus reduces the concurrency in the model. Therefore
the time windows available for an execution session is
smaller for Wnet-1 than for Wnet-2 resulting in slightly
less advantage being gained using TasKit for Wnet-2. This
difference is small since the greater overall traffic load in
Wnet-2 increases the number of events that can be execute
in any fixed period.

The results for the NTN benchmarks show that the
advantage gained by using TasKit increases as the traffic
load increases. This is due to the greater efficiency achieved
when large numbers of events can be executed in each tas
execution session.

4.2 Parallel Execution

This section compares the performance of the 3 parallel
enabled simulation kernels to the performance achieved
using CelKit for the same set of benchmarks. All the
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benchmarks were run on a 16 processor SGI Power Challen
shared memory parallel computer.

In each case a performance measure was obtained ru
ning CelKit on a single processor. Then performance result
were obtained for TasKit, WaiKit and WarpKit, running on
1, 2, 4, 8 and 16 processors. The graphs presented plot t
performance of the 3 parallel kernels to the performanc
result achieved with CelKit.

4.2.1 WNet Results

Figure 1 compares the performance of the 4 kernels fo
the Wnet-1 benchmark. The performance of TasKit is
superior to that of all the other kernels and increases a
more processors are utilized. The performance of TasKit o
1 processor is just under twice that achieved using CelKit
This performance is similar to the performance achieved
using the sequential version of TasKit on a single processo
machine. This demonstrates the low overhead of mutua
exclusion locks in the SGI IRIX operating system.

The performance of WaiKit is also better than that of
CelKit in all cases. Here WaiKit benefits from its very low
scheduling overhead. It is clear however that the schedu
ing scheme employed in TasKit massively outperforms the
simpler WaiKit approach.

The performance of WarpKit demonstrates the problem
of using Time Warp for simulations with very low event
execution granularity. The overhead of state saving mean
that even running on a single processor, where no rollback
can occur, the performance of WarpKit is less than half tha
of CelKit.

The results for the Wnet-2 benchmark (Figure 2) again
show TasKit’s superior performance. In this case none o
the algorithms scale as well as they did for the Wnet-1
benchmark. This is explained by the feedback in the mode
introduced by the TCP flows in the Wnet-2 configuration.
In this case TasKit only manages to execute 5 times as fa
as CelKit even when 16 processors are employed. Not
however that TasKit runs 2 times as fast as CelKit on a singl
processor and 3.5 times faster than CelKit on 2 processor

The WaiKit performance suffers in this case due to TCP
flows. These increase the dependences between adjac
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Table 2: TasKit Sequential Performance Relative to CelKit
Wnet-1 Wnet-2 NTN-1 NTN-2 NTN-3

Speedup 1.96 1.93 2.32 2.59 3.18
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Figure 1: Performance Results for Wnet-1 Benchmark Scenario
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LPs and increase the chance that any particular LP schedule
will have no work to do. Therefore, even though the same
network is modeled as for Wnet-1, WarpKit outperforms
WaiKit given enough processors.

4.2.2 NTN Results

The best results obtained using TasKit are achieved with th
NTN benchmark. The performance advantage in this cas
is due in part to the structure of the network model being
ideally suited to being mapped to TasKit’s fixed schedule
tasks. The graphs in this section show two sets of results fo
TasKit. One labeled “TasKit”, use the same traffic models
as the other systems. The second set of results labele
“TasKit-SD”, use a modified version of the TCP traffic
model that implements a lookahead optimization described
here assilence detection. This advances the clock on an
output port carrying a TCP stream when it is determined
that the current TCP connection is complete. The clock is
advanced to the time at which the next connection will be
started. Results for this case are shown separately sinc
with additional work it could have been possible to perform
similar modifications to the traffic models used in the other
experiments. These SD results are only provided to show
that additional work by the modeler can lead to greater
performance.

Results of the NTN-1 benchmarks (Figure 3) show
that TasKit achieves a maximum performance of 14 times
faster than CelKit on 16 processors using the standar
traffic model. The modified version provides just over 16
times the performance of CelKit on the same number of
d
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processors. Both WaiKit and WarpKit perform poorly, with
both achieving less than half the performance of CelKit
on a single processor. The poor performance of WarpKit
can again be explained by the overhead inherent in stat
saving during forward execution. On 16 processors the
performance of WarpKit is over 3 times that of CelKit.
Note that speedup achieved by WarpKit relative to itself
is 6, which is slightly better than the speedup that TasKit
achieves relative to itself. The performance of WaiKit with
this model again suffers from feedback in TCP flows. While
it does achieve some increase in performance with increase
numbers of processors, it still performs the worst for this
benchmark.

Performance results for the NTN-2 and NTN-3 bench-
marks (Figures 4 and 5) show similar properties. In each
case, for benchmarks not using silence detection the perfor
mance of TasKit is better than all the other algorithms in all
cases. In both these sets of results there is little difference
between the performance of WaiKit and WarpKit on 1, 2
and 4 processors. On 8 and 16 processors the better scalin
properties of WarpKit cause it to perform better than WaiKit.
Again, despite the large performance advantage gained b
using TasKit over using WarpKit, the relative performance
using the same kernel on 1 and 16 processors is very close
This shows that the major a achievement of TasKit is its
ability to provide excellent performance on small numbers
of processors. The performance is best when silence detec
tion is employed with a maximum of a 17% performance
advantage over not using silence detection on 16 processo
of NTN-2.
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Figure 2: Performance Results for Wnet-2 Benchmark Scenario
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Figure 3: Performance Results for NTN-1 Benchmark Scenario
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5 SUMMARY AND CONCLUSIONS

This paper has presented performance results of runnin
cell level ATM network simulations on a shared memory
parallel computer. Each benchmark was run using 1 purely
sequential simulation kernel and 3 parallel capable kernels
Experiments were performed executing the benchmarks o
1, 2, 4, 8 and 16 processors.

The results show that the TasKit kernel was able to
execute up to 26 times faster than a conventional centra
event list kernel for one of the benchmarks on 16 processors
As pointed out, a possibly more interesting result is that
using TasKit on a single processor resulted in over 3 times
faster execution then achieved using the more conventiona
sequential kernel for this benchmark. Therefore, even at 26
times faster than CelKit, the speedup achieved by TasKit on
16 processors relative to its performance on 1 processor wa
only 8.6. This indicates that even greater performance may
g
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be achievable if the core scheduling mechanism employ
in TasKit was made more scalable.

Each of the benchmarks presented in this paper w
carefully partitioned to achieve the highest performance f
each of the kernels. Since the parallel kernels are far mo
sensitive to correct partitioning than the sequential kerne
their performance has been improved in comparison by th
“expert” tuning. An automatic partitioning scheme tune
to the requirements of the task based scheduling will b
essential to really take advantage of TasKit’s technologi
in a general simulation framework. Development of suc
a scheme is currently underway.
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Figure 4: Performance Results for NTN-2 Benchmark Scenario
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