
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

USING XML FOR SIMULATION MODELING

Paul A. Fishwick

Computer & Information Science and Engineering Dept.
University of Florida

Gainesville, FL 32611, U.S.A.

s
t

f
-

g

t

ABSTRACT

XML represents a new way of organizing information and
knowledge of the World Wide Web, using markup languages.
Whereas HTML is used for presentation-specific content,
XML builds upon its SGML lineage to separate content from
presentation, and provide a semantic labeling for element
that comprise a document. With XML, the concept of
“document” is broadened to include an encapsulation of
information and knowledge, and not only a flat medium.
This suggests that XML can be used for model specification
and computer simulation. With this in mind, we have used
XML to create two modeling specification languages: MXL
and DXL. We begin by overviewing XML, discussing MXL
and DXL, and then showing an example of how the languages
are employed in the modeling process, and can be used wit
a variety of presentations.

1 INTRODUCTION

Our present work in XML started with earlier projects for
supplying uers with code libraries for simulation. Around
1990, we created SimPack (Fishwick 1992), which was
originally a set of C source, libraries, and executables.
The most significant part of SimPack was its support for
discrete event simulation, with substantial segments of code
for future event list handling and queuing. This latter
part was recoded and re-engineered as OOSIM using C+
and object-oriented design principles. The Object-Oriented
Physical Multimodeling (Fishwick 1995) (OOPM) toolkit
was built using OOSIM to provide the user with a Tcl/Tk
graphical front end for multimodeling. We created support
for simulating several key types of models including Finite
State Machines (FSM), Functional Block Models (FBM),
Petri nets, and differential equations.

While this work was substantial and novel for its time,
we found ourselves swept along with the World Wide Web
phenomenon in an effort to broaden the simulation and
modeling experience in a browser environment. This re-
s

h

+

sulted in the area of web-based simulation (Fishwick 1996,
Page et al. 2000), which had good coverage at conference
and in special journal issues. The Web promised a differen
way of encoding model components, finding information,
and a way of doing simulation using client-server mecha-
nisms. For example, it was now possible to run a queuing
simulation inside of a web browser. CGI scripts are one
method allowing for server side execution, and Java applets
and programs enable client side execution.

Most of the work in web-based simulation was just that–
a focus onsimulation, narrowly defined as the execution of
models, rather than on the specification or presentation o
them. To the extent that simulation also embodies the mod
eling process and the structure and form of models, we have
embarked upon a research agenda predicated on specifyin
and presenting models. The natural intersection of the web
and modeling can be found in the XML standard. Learning
XML is significantly different than learning HTML, which
is fairly small and easy to grasp. The elements of XML
are straightforward; however, there are a very large num-
ber of associated XML technologies (Consortium 2002),
each of which is in a different state of recommendation.
While XML simplifies on the SGML standard, there re-
mains a steep learning curve for mastering the importan
XML technologies and software.

2 MULTIMODELING & RELATED WORK

The focus of therube Project defined further in Sec. 5, is
on two characteristics of models: (1) multimodeling and
(2) customization, with the second characteristic being one
aspect of the first. To have “multiple” models can mean
one of several things:

• Multiplicity: The modeling scheme supports more
than one model instance;

• Heterogeneity: The modeling scheme supports
more than one model type;



Fishwick

d

,

e

s

,

d

-

y

• Hierarchy: The modeling scheme supports a hier-
archy of model instances;

• Customization: The modeling scheme supports al-
ternate presentations for the same model type.

Multimodeling can be viewed using different dimen-
sions (Fishwick 1991, Fishwick 1995). The most basic
requirement is that to have a multimodel means that you
have more than one model (multiplicity). If one has more
than one model, the simplest way of connecting, or coupling,
them together is through construction of an intra-component
interface. An example is that one data flow model connects,
via an interface, to an adjacent one. Heterogeneity create
yet another dimension by suggesting that categorically dif-
ferent types can be connected together, for example a dat
flow model connects to an FSM. These interfaces must be
well-defined with matching data types, otherwise, it will
not be possible to successfully simulate the multimodel.
Zeigler (Zeigler, Praehofer, and Kim 2000) et al. use the
term closure under couplingto ensure a workable model
that is capable of being simulated under such conditions.

The ability to encapsulate one model inside of another
is an issue of hierarchy, and this is yet another dimension
to multimodeling. For example, one can take a circuit
model, and in one of the components, declare a complete
circuit, which in turn may have subdivisions into still further
modeling levels. The last assumption of customization
suggests that a modeling scheme supports different views
and sensory interfaces for the same model specification.

Our goals are to support all four multimodeling as-
sumptions. The use of XML is still fairly new in modeling
and simulation, but we envision an increased awareness an
use of it as a fundamental tool for both model specification
and execution. Our emphasis on customization is centra
to rube. Other researchers are tackling similar problems on
the other aspects of multimodeling. Both Modelica (Tiller
2001) and DEVS (Zeigler, Praehofer, and Kim 2000) have
similar goals regarding the notion of the first three listed
assumptions, with some notable exceptions. For example
Modelica’s emphasis seems targetted at electro-mechanica
systems, even though its large scope permits it to have
effects outside of this domain. DEVS is largely a low-level
formal specification language. To date, neither of these
languages have an XML presence, but this may change in
the future.

3 XML

XML, eXtensible Markup Language, emerged in the mid
90s as a new language for the Web. To see why it emerged
we need to begin with a look at the ubiquitous HTML
(HyperText Markup Language). HTML is a tag-basedASCII
language for defining content on the web. In HTML, one can
define both text and graphics-based markup in the form of
s

a

d

l

,
l

,

web pages. The typical browser, such as Internet Explorer
or Netscape, has an option “view source,” which allows the
user a way to see the underlying HTML that comprises web
pages. A sample piece of HTML looks like:

<H1>History of Light Bulbs</H1>
<H2>by
<A href=‘‘http://www.lightbulb.com’’>
Edison</A></H2>
<P>
Our story begins ...

<H1>and</H1> are opening and closing tags, respectively,
so that anything placed in between these tags is considere
to represent an “H1”. H1 is a header with a size index of
1 to reflect that it is a primary header, unlikeH2, which
is secondary. While theoretically,H1 and H2 could mean
anything, they are given precise meanings in HTML, and
furthermore, they are given precise presentations. That is
when you specifyH1, you expect to obtain elatively large,
bold-face, header text. Continuing with our example,<P>
denotes a paragraph, and the (<A>,</A> ) pair specify a
hyperlink to a web page. When a web designer codes thes
HTML primitives, they know exactly what to expect from
a human-computer interaction perspective.

The problems with HTML are numerous, but one of
the chief complaints is that it is inflexible with regard to
the multiplicity of display devices that are on the market.
A technique called Cascading Style Sheets (CSS) provide
some relief by allowing one to have alternate display styles
for hand held PDAs and desktops, but we’d like more
flexibility in separatingcontent from presentation. We
would like to be able to useTITLE or AUTHORinstead of
H1 and H2, for example, without explicitly defining how
these will appear to the user. We want to define asemantic
web (Berners-Lee, Hendler, and Lassila 2001).

XML allows us to create tags such as<TITLE> , and is
based on SGML (Standard Generalized Markup Language)
which preceded it. Goldfarb (Goldfarb 1990) describes a
language that originated prior to the web, and whose goals
were generalized markup to satisfy a large number of type-
setting requirements and devices. A language was neede
to build upon the flexibility of SGML, without the presenta-
tional limitations of HTML and complexity of SGML, and
this language evolved into XML. At first, one might question
the purpose of XML, since it really is nothing more than
tree-structured text. XML supports reading by both humans
as well as computers, since its syntax is simple. Further-
more, XML suggests that application-specific areas of the
web are not about documentation, per se, but about encod
ing information and knowledge. For example, CML (CML
2002) encodes the atomic structure of molecules. How they
molecules appear to the user may depend on a wide variet
of factors, but by standardizing on CML, users can take



Fishwick
LIGHTBULB (MXL)

PHOTO (JPEG) SG (SVG)

FSM-1D (MathML)

FSM-2D (SVG)

FSM-3Dprim (X3D)

FSM-3Dpipe (X3D)

FSM-3Dagent (X3D)

render geometry

dyn-fsm1

dyn-fsm2
dyn-fsm3

dyn-fsm4

dyn-fsm5

Figure 1: Semantic Network of Lightbulb System Models
s

l

g

l,
e

r

advantage of tools that import and export CML as a fun-
damental data type. Likewise, MathML (MathML 2001)
defines the content of mathematical expressions indepen
dent of presentation. Both SGML and XML bear striking
resemblance to many other markup languages, such as LATEX
with the primary difference being that the former are meant
for generalized markup of information, and so create the
possibility of communicating and dispersing and managing
general semantic content throughout the web.

4 MODEL CUSTOMIZATION

I will overview the architecture of therube Project, but
first, let’s discuss the nature of modeling so that we can
gain a foothold in our search for new modeling techniques
Modeling is the act of choosing materials in such a way
as to capture some aspect of a target scene or object. F
simulation, thisaspect is one of dynamics. We seek to
capture concepts of state, event, and time in the mode
that we craft. Let’s suppose that the object of interest is
a lightbulb, and that we wish to capture a simple behavior
dictated by state transitions: OFF-UNPLUGGED, OFF,
-

.

or

l

and ON. OFF-UNPLUGGED is the state where there is no
applied power, whereas OFF is the state once the power i
applied, and yet the switch activated by a pull-cord remains
in the off-position. ON is the state when the switch is turned
on. Consider Figure 1, which defines a semantic network
expressing several model types. This figure is a graphica
realization of an equivalent RDF (Framework 2002), which
specifies an XML framework for specifying ontologies.

A computer graphic 2D rendering, or photograph, yields
the model in the upper left of Fig. 1. Labeled, PHOTO, this
is a kind of model of the lightbulb system, since it presents
some visual aspects of the system. Likewise, the more
geometrically-oriented SG in the upper-right of Fig. 1, is
short for Scene Graph, and shows a scene graph specifyin
the lightbulb’s geometric structure. The acronym to the left
of the parentheses in Fig. 1 specifies the name of a mode
and the one inside the parentheses, defines the file typ
(JPEG for the PHOTO, and SVG for SG).

The models below LIGHTBULB are all ones associated
with the dynamics of the lightbulb. These dynamics are
captured as a 3 state FSM whose states are those previously
mentioned. The model may be presented as 1D, 2D, o



Fishwick

-

3D objects, and moreover, the presentations may be cus
tomizable so that one may both encode and view the FSM
as flowing water between tanks (FSM-3Dpipe) or an avatar
moving between gazebos (FSM-3Dagent). An important
aspect of Fig. 1 is that all of these models can be viewed
as styles generated from the core MXL file, to be discussed
in Sec. 5.3. This results in a unique philosophical view of
model specification and presentation: namely, that the core
specification in MXL is largely independent of how the
models are presented. This view, or perspective, promote
personalization and customization of the modeling interface
allowing for both native and artificial cultural adaptations
to the way in which models are experienced.

5 RUBE PROJECT

5.1 Architecture

rube is a project that has engaged us for the past two
years, as a follow on to our work in multimodeling and
web-based modeling and simulation. The purpose ofrube
is to facilitate dynamic multimodel construction and reuse
within a 3D, immersive environment. Within the context
of Modeling and Simulation (M&S), this project reflects
a “next generation” philosophy about modeling (Fishwick
2002). The project is vast in scope, but focused on this
purpose. We began work inrube using the Virtual Reality
Modeling Language (VRML) as our primary vehicle for
specification of both geometry and dynamics. VRML is
the current ISO standard for 3D graphics on the web. This
was done by using the “Prototype” extensiblity mechanism
of VRML. In the past year, however, we have progressed
toward XML as a way to declare model and presentation
semantics. Figure 2 displays the structure ofrube. We begin
with two files: scene and model. The scene file contains
visual objects and components that are presentations o
corresponding formal dynamic model equivalents in the
model file. Thus, the model file captures the topology of
the dynamic model, whereas the scene file captures wha
the components and connections “look like.” This can be
taken further by considering senses other than vision, bu
since vision is our primary apparatus for interacting with
the world, we builtrube with the idea of viewing models
in 1D, 2D, or 3D. By “1D,” I am referring to a textual, or
typographical, presentation.

5.2 X3D

We have been using two scene languages, one of whic
is denoted in Fig. 2: X3D. X3D, or eXtensible 3D, is
the follow-on standard to VRML. The 2D scene language,
other than X3D, is SVG (Scalable Vector Graphics). Both
SVG and X3D support internal scripting in Javascript and
Java so that the scenes can be made dynamic with mov
-

s
,

f

t

t

h

-

Figure 2:rubeArchitecture

ing objects over time. X3D contains primitives such as
cone, cylinder, and sphere, as well as more flexibile geo
metric structures such as NURBS (Non-Uniform Rational
B-Splines), and polygonal meshes. SVG contains simi-
lar 2D geometries. Presentation in 1D involves languages
such as HTML, XHTML (an XML version of HTML), and
MathML. The following is an excerpt from an X3D file:

<X3D>
<Scene>

<NavigationInfo type=’"EXAMINE"
"ANY"’/>

<Transform DEF="S1"
translation="2.9E-8 5.0 -6.0">
<children>

<Shape >
<appearance>

<Appearance >
<material>

<Material
diffuseColor="1.0

0.0 0.0"/>
</material>

</Appearance>



Fishwick

-

f

f
,
f

.

</appearance>
<geometry>

<Sphere />
</geometry>

</Shape>
</children>

</Transform>

The file, like all XML files, is ASCII and describes a scene
graph (Foley, van Dam, Feiner, and Hughes 1999). A scene
graph is a tree of transform nodes ending in leaf nodes
which define the individual pieces of geometry needed to
create the whole after working recursively upward through
the hierarchy. This graph defines the visualization of one
red sphere of FSM-3Dprim from Fig. 1.

5.3 MXL

Given a desired appearance in Sec. 5.2, we can defin
the formal structure using MXL (Multimodeling eXchange
Language) of the lightbulb 3 state FSM. The following is
an excerpt from the complete MXL file:

<MXL>
<model id="FSM2S2T" type="FSM">

<topology type="GRAPH">
<node id="S1" type="STATE"

start="TRUE">
<script id="S1.js"

func="S1_func"/>
</node>
<node id="S2" type="STATE">

<script id="S2.js"
func="S2_func"/>

</node>
<node id="S3" type="STATE">

<script id="S3.js"
func="S3_func"/>

</node>
<edge id="T12" type="TRANSITION"

begin="S1" end="S2"
data_type="INTEGER">

<script id="T12.js"
func="T12_func"/>

</edge>
<edge id="T23" type="TRANSITION"

begin="S2" end="S3"
data_type="INTEGER">

<script id="T23.js"
func="T23_func"/>

</edge>
<edge id="T32" type="TRANSITION"

begin="S3" end="S2"
data_type="INTEGER">
,

e

<script id="T32.js"
func="T32_func"/>

</edge>
</topology>

All semantics for the FSM are encoded in Javascript (.js
suffix) files. The MXL file is translated into DXL (next
section) using XSLT (XML Style Sheet Transformation).
XSLT provides a sophisticated pattern language for trans
forming one XML document into another document, often
in either XML or XHTML. The translation is most generally
accomplished using a network or pipe containing a series o
transformations, capable of efficiently and easily modifying
documents.

5.4 DXL

After specifying the scene and model files in Fig. 2, thenrube
begins its processing. The first step is to generate a DXL
(Dynamics eXchange Language) file. While the structure o
MXL contains model-specific element and attribute names
DXL serves as an assembly layer, with a small number o
components. The DXL file contains blocks, each having
input and output ports and optional local variables. Blocks
are tied together using connectors. An excerpt from the
DXL file generated from the MXL file in Sec. 5.3 follows:

<DXL>
<block id="IN">

<port id="IN.OP1" type="OUTPUT"
target="S1.IP1"
data_type="INTEGER"></port>

<definition id="IN.js"
func="IN_func">

</definition>
</block>

<block id="S1">
<port id="S1.IP1" type="INPUT"

source="IN.OP1"
data_type="INTEGER"></port>

<port id="S1.OP1" type="OUTPUT"
target="T12.IP1"
data_type="INTEGER"></port>

<port id="S1.OP2" type="OUTPUT"
target="OUT.IP1"
data_type="INTEGER"></port>

<definition id="S1.js"
func="S1_func">

</definition>
</block>

DXL translates directly into Java or Javascript using DOM
(Domain Object Model). DOM is the way in which programs
can externally access the internal XML tree from outside



Fishwick

r

o
st

n

s

d

d
.

DOM allows code to traverse the tree using pattern-matching
based on the XPATH specification. The code is augmented
by SimPackJ/S, which is a Java/Javascript version of Sim-
Pack.

5.5 Model Fusion

Given the original scene graph and the Java or Javascrip
created from DXL, we are in a position to merge these two
to create a scene graph with embedded code. This is the
placed into a browser and the user engages and navigates th
scene using the interactivity afforded by the code. The last
three snapshots in the bottom-right part of Fig. 1 illustrate
3D scenes containing interactive FSM models.

6 CONCLUSIONS

A preliminary observation is one concerning XML. Its defini-
tion and use are bound to have dramatic effects on modeling
and simulation, withrube serving as one type of system
which uses XML as a core language. Using XML in the
core has advantages and disadvantages. The advantages t
I’ve overviewed include the separation of content from pre-
sentation, and XML’s prominence in the web community; it
is here to stay around for a long time, or evolve into some-
thing even more powerful and flexible. The disadvantages
of using XML are in sacrificing some speed gained through
more proprietary interfaces, and in not knowing which XML
document types will be around long enough to use. Like
the field of computer science, in general, XML is a very
fast moving target if one strays into various types, powerful
as they may be. Document types progress in stages from
notes to working drafts, candidate and proposed recommen
dations, and finally W3C recommendations. So, there is
the uncertainty associated with the acceptance stage, bu
reaching the final stage is no guarantee of permanence.

Summarizing the paper, our team has constructed a basi
XML-based modeling and simulation system that serves all
four multimodeling assumptions presented in Sec. 2. The
software is not yet complete since we still need to test the
basic model types, and provide new ones such as Petri Net
and System Dynamics graphs. In the simulation classes a
the University of Florida, we have conducted surveys to
determine the relative effectiveness of allowing students the
ability to choose their own presentations, not only for the
system being modeled, but the model as well. Students hav
overwhelmingly voted highest for the ability to customize
model structures, while noting the inherent inefficiencies in
constructing 3D models. We see the majority of efficiency
problems as being addressable by technology advancemen
as hardware gets cheaper and faster, and yet much remain
in creating more accessible 3D modeling programs. 3D
is still fraught with the usual problems of navigation and
selection.
t

n
e

hat

-

t

c

s
t

e

t
s

The robustness of the system will be tested this Fall
2002, with the first use ofrube by students in the under-
graduate and graduate simulation classes. As part of ou
work in the three-year old Digital Arts and Sciences cur-
ricula, we also plan to employrube as a way to not only
rephrase and represent dynamic model structures, but als
static structures, such as simple mathematical formulae ca
in MathML. The idea of customization and personalization
of model structure naturally lends itself to the Arts, and so
this activity helps to form a bridge between the Colleges
of Fine Art and Engineering.

We need to continue our work at the architectural level
or rube, to support XML as a fundamental data type, and to
ensure that DXL is robust enough to serve as the foundatio
for future model types. We also need to make it possible for
individual styles to be semi-automatically generated directly
from MXL. To date, one must create both thesceneand
modelfiles, without any help fromrube. Next year, we hope
to have a system in place, which in combination with XSLT,
will permit styles to be more easily specified. Finally, we
need to create more substantial, applied model structure
with rube, since most of our present work is in making the
system operational.

ACKNOWLEDGMENTS

I would like to thank the current students on therubeProject:
Taewoo Kim, Minho Park, Jinho Lee, and Hyunju Shim,
and graduated students Robert Cubert, John Hopkins, an
Linda Dance. Work onrube is supported by the Air Force
Research Laboratory under Grant F30602-01-1-0592, an
the National Science Foundation under grant EIA-0119532

REFERENCES

Berners-Lee, T., J. Hendler, and O. Lassila. 2001. The
Semantic Web.Scientific American284 (5): 34–43.

CML 2002. Chemical Markup Language.
<http://www.xml-cml.org> [accessed July 3,
2002].

Consortium, W. W. W. 2002.<http://www.w3c.org>
[accessed July 3, 2002].

Fishwick, P. A. 1991. Heterogeneous Decomposition and
Coupling for Combined Modeling. InProceedings of
the 1991 Winter Simulation Conference, ed. W. D.
Kelton, G. M. Clark, and B. L. Nelson, 1199 – 1208.
Piscataway, New Jersey: Institute for Electrical and
Electronic Engineers.

Fishwick, P. A. 1992. Simpack: Getting Started with Sim-
ulation Programming in C and C++. InProceedings
of the 1992 Winter Simulation Conference, ed. R. C.
Crain, J. R. Wilson, J. J. Swain, and D. Goldsman.
Piscataway, New Jersey: Institute for Electrical and
Electronic Engineers.



Fishwick

al

w
.

-

9.

.

d
r

.
e

-
-

-
rs.
Fishwick, P. A. 1995.Simulation Model Design and Exe-
cution: Building Digital Worlds. Prentice Hall.

Fishwick, P. 1996. Web-Based Simulation: Some Person
Observations. InProceedings of the 1996 Winter Simu-
lation Conference, ed. D. T. Brunner, J. J. Swain, J. M.
Charnes, and D. J. Morrice, 772–779. Piscataway, Ne
Jersey: Institute for Electrical and Electronic Engineers

Fishwick, P. 2002. Next Generation Modeling: A Grand
Challenge. InProceedings of the 2002 Western Simu
lation Multiconference, 25–30. San Antonio, TX.

Foley, J. D., A. van Dam, S. Feiner, and J. F. Hughes. 199
Computer Graphics: Principles and Practice in C. 2
ed. Addison-Wesley.

RDF 2002. Resource Description Framework
<http://www.w3c.org/RDF> [accessed July 3,
2002].

Goldfarb, C. F. 1990.SGML Handbook. Oxford University
Press.

MathML 2001. Mathematical Markup Language.
<http://www.w3.org/Math/> [accessed
July 3, 2002].

Page, E., A. Buss, P. Fishwick, K. Healy, R. Nance, an
R. Paul. 2000. Web-Based Simulation: Revolution o
Evolution? ACM Transactions on Modeling and Com-
puter Simulation10 (1): 3–17.

Tiller, M. 2001. Introduction to Physical Modeling with
Modelica. Kluwer International Series in Engineering
and Computer Science.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000.Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Dynamic Systems. Academic Press.

AUTHOR BIOGRAPHY

PAUL FISHWICK is Professor of Computer and Informa-
tion Science and Engineering at the University of Florida
He received the Ph.D. in Computer and Information Scienc
from the University of Pennsylvania in 1986. His research
interests are in computer simulation, modeling, and anima
tion, and he is a Fellow of the Society for Computer Simula
tion (SCS). Dr. Fishwick served as General Chair for WSC
2000 in Orlando, Florida. He has authored one textbook, co
edited three books and published over 100 technical pape
His email address is<fishwick@cise.ufl.edu> , and
his home page is<www.cise.ufl.edu/˜fishwick> .


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 616
	02: 617
	03: 618
	04: 619
	05: 620
	06: 621
	07: 622


