
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

LOAD SHARING IN HETEROGENEOUS DISTRIBUTED SYSTEMS

Helen D. Karatza

Department of Informatics
Aristotle University of Thessaloniki

54124 Thessaloniki, GREECE

 Ralph C. Hilzer

Computer Science Department
California State University, Chico

Chico, CA 95929-0410, U.S.A.

ABSTRACT

Load sharing is key to the efficient operation of distributed
systems. This paper investigates load sharing policies in a
heterogeneous distributed system, where half of the total
processors have double the speed of the others. Processor
performance is examined and compared under a variety of
workloads. Two job classes are considered. Programs of
the first class are dedicated to fast processors, while second
class programs are generic in the sense that they can be al-
located to any processor. The objective is to find a policy
that results in good overall performance while maintaining
the fairness of individual job classes. Simulation results in-
dicate that the performance of the best method depends on
system load.

1 INTRODUCTION

Distributed systems provide attractive scalability in terms
of computation power and memory size. Generally, in dis-
tributed systems no processor should remain idle while
others are overloaded. It is preferable that the workload be
uniformly distributed over all of the processors. It is impor-
tant to efficiently utilize computational power, especially
when load distribution is necessary.

The purpose of load sharing algorithms is to ensure
that no processor remains idle when there are other heavily
loaded processors in the system. With sender-initiated al-
gorithms, load-distribution activity is initiated when an
over-loaded node (sender) tries to send a task to another
under-loaded node (receiver). In receiver-initiated algo-
rithms, load-distribution is initiated by an under-loaded
node (receiver), when it requests a task from an over-
loaded node (sender).

Load sharing policies that use information about the
average behavior of the system and ignore the current
state, are called static policies. Static policies may be either
deterministic or probabilistic. Policies that react to the sys-
tem state are called adaptive or dynamic policies. Dynamic
load sharing is an important system function designed to

distribute workload among available processors and im-
prove overall performance.

The principle advantage of using static policies is sim-
plicity, since they do not require the maintenance and
processing of system state information. Adaptive policies
tend to be more complex, mainly because they do require
information on the system’s current state when making
transfer decisions. However, the added complexity can
significantly improve performance over that achievable
with static policies.

Normally, distributed systems are heterogeneous; i.e.
processors in the system operate at differing speeds. There-
fore, research should address scheduling in heterogeneous
environments. Schedulers for heterogeneous systems have
special needs. For example, jobs encounter different exe-
cution times on different processors.

This paper studies the effects of load sharing on the
job performance of distributed systems where half of the
total number of the processors has double the speed of the
others. Part of the jobs are dedicated to fast processors,
while the remaining jobs are generic in the sense that they
can be individually allocated to any processor.

Probabilistic, deterministic and adaptive policies are
investigated. Performance estimates are obtained using
simulation techniques.

In the probabilistic case, the scheduling policy is de-
scribed by state independent branching probabilities. Dedi-
cated jobs are dispatched randomly to fast processors with
equal probability while the generic jobs are randomly dis-
patched to slow processors.

In the deterministic case, the routing decision is based
on system state. Two different policies are examined for
this case. In both policies, the dedicated jobs join the short-
est of the fast processor queues. However, the first policy
requires that generic jobs join the shortest queue of the
slow processors while the second policy assigns generic
jobs to the (slow or fast) processor expected to offer the
least job response time. However, when a generic job is
assigned to a fast processor, job start time depends on an
aging factor.

Karatza and Hilzer

In the adaptive case, variations of the three scheduling

policies described above are employed. When fast proces-
sors become idle and generic jobs are waiting in slow proc-
essor queues, jobs migrate from heavily loaded slow proces-
sor queues to idle processors. This is a receiver initiated
adaptive load sharing method. This balances the generic job
load and can improve overall system performance.

Jobs transferred to remote processors incur communi-
cation costs. In this model, only queued jobs are trans-
ferred. We believe that the average transfer costs for non-
executing jobs, although certainly non-negligible is quite
low in comparison to average job processing costs. It is as-
sumed that the job being executed is not eligible for trans-
fer because doing so is too complex.

An obvious disadvantage of pre-emptive migration is
the need to transfer memory associated with the migrated
process; thus, migration costs for an active process is much
greater than the cost of remote execution.

Several others have worked on load sharing and load
balancing in heterogeneous systems. Cow and Kohler
(1979) study load balancing in heterogeneous multiproces-
sor systems and introduce an approximate numerical
method for analyzing models using deterministic routing
policies. They show that a deterministic strategy that
maximizes the expected throughput during the next interar-
rival interval gives the best performance.

Shenker and Weinrib (1989) study the optimal control
of heterogeneous queuing systems. They propose heuristic
policies for load sharing and routing. Simulation data on
their policies suggest that their methods perform well over
a wide range of system parameters.

Bonomi and Kumar (1990) consider a model consist-
ing of several servers, each equipped with their own queue
and operating at possibly different service speeds. Each
server receives a dedicated arrival stream of jobs; there is
also a stream of generic jobs that arrive at a job scheduler
and which can be individually allocated to any of the serv-
ers. If the arrival streams are all Poisson and all jobs have
the same exponentially distributed service requirements,
the probabilistic splitting of the generic stream that mini-
mizes the average job response time is such that it balances
the server idle times in a weighted least-squares sense,
where the weighting coefficients are related to the service
speeds of the servers.

Mirchandaney et al. (1990) consider the impact of de-
lay on the performance of heterogeneous distributed sys-
tems. They consider two types of heterogeneous systems:
in type I systems external job arrival rates at nodes may
differ and in type 2 systems the processing rates of the
nodes may also differ. They use analytical models to esti-
mate the performance. In order to facilitate analytical mod-
eling, they assume that inter-arrival times and service times
are exponentially distributed. They employ the non-
preemptive first-come-first-served node scheduling policy.
Their paper is directly relevant to the Dandamudi (1997)
study. Dandamudi concentrates on non-exponential inter-
arrival and service times, and uses preemptive round-robin
node scheduling policy.

Maheswaran et al. (1999) study dynamic mapping heu-
ristics for a class of independent tasks using heterogeneous
computing systems. They consider on-line and batch mode
heuristics. They introduce three different heuristics, one for
batch and two for on-line. Their simulation results reveal
that the choice of mapping heuristic depends on the structure
of the heterogeneity among tasks and machines, the optimi-
zation requirements, and the arrival rate of the tasks.

Topcuoglu and al. (1999) propose two heuristics to
schedule directed acyclic weighted task graphs on a
bounded number of heterogeneous processors. They com-
pare the performances of their algorithms against three
previously proposed heuristics. The comparison study
shows that their algorithms outperform previous ap-
proaches in terms of performance (schedule length ratio
and speedup) and cost (time-complexity).

Heterogeneous distributed systems are also studied in
Karatza (1994), and Karatza (2001). In the former paper no
job migration is considered. The later paper does consider
job migration, but it does not consider communication
overhead. Also, in those two papers the system and work-
load models are different than the models that are exam-
ined here. They consider closed queuing network models
with a fixed number of jobs. An open queueing network
models the distributed processors in this paper, and migra-
tion overhead is taken into account.

The goal of this paper is to improve the performance
of the generic jobs without seriously degrading the per-
formance of the dedicated jobs. The performance of differ-
ent load sharing policies is compared for various system
loads. A comparative analysis of load sharing methods like
this has not appeared in the research literature.

The paper is organized as follows. Section 2.1 speci-
fies system and workload models, section 2.2 describes
load sharing policies and section 2.3 presents the metrics
employed in assessing the performance of the load sharing
policies. Model implementation and input parameters are
described in section 3.1 while the results of the simulation
experiments are presented and analyzed in section 3.2. The
final section offers conclusions and provides suggestions
for further research.

2 MODEL AND METHODOLOGY

2.1 System and Workload Models

An open queuing network model of a distributed system is
considered. P = 16 heterogeneous processors are available,
each serving its own queue.

A high-speed network connects the distributed nodes.
Configuration of the model is shown in Figure 1.

Karatza and Hilzer

.

.

.

.

.

.

2

1

PF

PS-1

PS

P = PF + PS

1

λG

λD

Figure 1: The Queuing Network Model

Half of the processors execute at double the speed of

the others. We refer to the processors as either fast or slow.
It holds that:

PF = PS = P/2,

where PF (PS) is the number of fast (slow) processors re-
spectively.

There are two job classes. The jobs of one class are
dedicated to fast processors, while jobs of the other class,
referred to as generic, can be allocated to any processor.
There is one arrival stream for the dedicated jobs and an-
other arrival stream for the generic jobs.

Identical service requirements for the generic and
dedicated jobs are assumed. Job classes contribute equally
to the average service rate once a job has been assigned to
a processor.

The jobs examined are highly independent. For exam-
ple, once a job commences execution, no job ever idly waits
for communication with (synchronizes with) other jobs.

Intuition and experience suggest that the best system
and program performance can be achieved through a bal-
anced use of the available resources, where both the over-
loading and under utilization of some resources is avoided.
It is reasonable to assume that an optimal load balancing
policy will try to equalize processor utilization. On one
hand it seems as though dedicated jobs should not mo-
nopolize the fast processors. On the other hand, dedicated
jobs should not be overtaken arbitrarily by the generic jobs.

The scheduling policies examined are probabilistic,
deterministic and adaptive.

In the adaptive case, job migration from slow to fast
processors is employed. This is a receiver-initiated adap-
tive load sharing method employed to improve the per-
formance of generic jobs. The policy is initiated when a
generic job is queued on a slow processor and a fast proc-
essor becomes idle. Only the migration of non-executing
jobs is considered. Executing jobs are not eligible for trans-
fer because of complexity issues.

An obvious disadvantage of preemptive migration is a
requirement to transfer memory associated with the mi-
grated process. Therefore, the migration cost for active
processes can be greater than the cost of remote execution.

When a job is transferred from a slow to a fast proces-
sor for remote processing, the job incurs a communication
cost. Only jobs that are waiting in the queues are transferred.
The benefits of migration depend on migration costs.

The workload considered here is characterized by
three parameters:

• The distribution of job arrival.
• The distribution of processor service time.
• The distribution of the migration overhead.

Dedicated job inter-arrival times and also generic job

inter-arrival times are exponential random variables with a
mean of 1/ λD and 1/ λG respectively (λD and λG are the arri-
val rates of dedicated and generic jobs respectively).

Processor service times are exponential random vari-
ables with mean 1/ µF = 1 (1/ µS = 2) at the fast (slow)
processors respectively.

The offered system load is the same for both classes.
That is:

λD = 2 * λG,

because the fast processors are twice as fast as the slow
processors.

We consider that the migration overhead is a uni-
formly distributed random variable in the interval [a, b].
The mean migration overhead is therefore (a+b)/2.

2.2 Job Scheduling Policies

We examine only non-preemptive job scheduling policies.
We assume that the scheduler has perfect information
when making decisions, i.e. it knows:

• The length of all processor queues.
• The queueing time of dedicated jobs in fast proc-

essor queues.

Next, the scheduling strategies we employ are de-
scribed.

2.2.1 Probabilistic (Pr)

With this policy, a dedicated (generic) job is dispatched
randomly to one of the fast (slow) processors with equal
probability. The job dispatcher chooses one of the P/2 fast
(slow) processors based on the outcome of an independent

and Hilzer
Karatza

trial in which the ith outcome has probability pi = 1 / (P/2).
Then the FCFS policy is applied.

2.2.2 Probabilistic with Migration
of Generic Jobs (PrM)

In this case, jobs are assigned to processor queues in the
same way as in the Pr case. However, when a fast proces-
sor becomes idle and generic jobs are waiting in the slow
processor queues, a job migrates from the most heavily
loaded slow processor to the idle fast processor. This is a
receiver-initiated algorithm, as load-distributing activity is
initiated from an under-loaded node (receiver), which tries
to get a job from an over-loaded node (sender).

2.2.3 Shortest Queue (SQ)

With this strategy, a dedicated job is assigned to the short-
est queue of fast processors, while a generic job is assigned
to the shortest queue of the slow processors. Each job is
inserted into its assigned queue in the order of its arrival.

2.2.4 Shortest Queue with Migration
of Generic Jobs (SQM)

This is a variation of SQ, where migration takes place in
the same manner as in PrM.

2.2.5 Least Expected Response Time
for Generic Jobs-Maximum Wait
for Dedicated Jobs (LERT-MW)

With this method, dedicated jobs join the shortest queue of
the fast processors. The generic jobs join the queue of the
processor (slow or fast) that offers the least expected re-
sponse time.
 This policy is described formally as follows.

Assume the system is in the state s = (l1, l2, ..., lP),
where li, (i =1, 2, ..., P) are the number of jobs in the ith
queue including the job in service.

An arriving generic job is sent to queue i, (i ∈ {1, 2,
..., P}) if the following relation holds:

(li + 1) * (1/µi) = min ((lk + 1) * (1/µk)) for k = 1, 2, ..., P,

where µi, (i =1, 2, ..., P) is the mean service time of proces-
sor i.

If the minimum value is not unique, the job dispatcher
selects the processor with the smallest mean service time.
The minimum job response time policy is based on a user’s
view of how to improve performance, since (lk+1) * 1/µk is
the expected response time of the next job on processor k.
In heterogeneous systems, the queuing of jobs is often pref-
erable when the only available processor is relatively slow.
There is a trade off between extra time spent in a
queue waiting for a fast processor, and extra time spent be-
ing serviced on a slow processor.

With this scheme dedicated jobs share the fast proces-
sors with generic jobs. However, dedicated job sequencing
should be preserved as much as possible to achieve execu-
tion fairness. For this reason, if a dedicated job has been
waiting for more than a configurable period of time MW, it
is scheduled before any generic job ahead of it in the
queue. Otherwise, FCFS is applied to all jobs in the queue.

2.2.6 Least Expected Response Time for Generic
Jobs-Maximum Wait for Dedicated Jobs
with Migration (LERT-MWM)

This is the migratory version of LERT-MW.

2.2.7 General Remarks

All six of the above scheduling schemes have merit.
 Pr is the simplest method since the scheduler creates
only a small amount of overhead when generating random
numbers.
 The SQ method requires knowledge regarding half of
the queues on job arrival (sub-global information).
 The LRT-MW policy needs global (sub-global) infor-
mation on queue lengths for the generic (dedicated jobs) re-
spectively, and it also requires additional information about
the time dedicated jobs have been waiting in a queue.

When using migratory versions of these policies, the
scheduler requires additional load information to decide
when a fast processor becomes idle after a job departure.
The collection of global (and sub-global) information re-
quires a non-trivial amount of overhead, but it is necessary
to implement even a moderately effective scheduler. It is
obvious that the Pr policy is easier to implement because it
requires less overhead.

When a transferred job arrives at the destination node,
the node must accept and process the transferred job even
if the state of the node at that instance has changed since
probing.

2.3 Performance Metrics

We consider the response time of a random job as the time
interval from the arrival of a job in a processor queue to
service completion (at the same processor or at a different
processor in case of migration).
 Notations used in this paper appear in Table 1.

Karatza and Hilzer

Table 1: Notations

 P Number of processors

PF (PS) Number of fast (slow) processors

λD (λG) Mean arrival rate of dedicated (generic) jobs

1/µF

(1/µS)

Mean fast (slow) processor service time

RTD

(RTG)

Mean Response Time of dedicated (generic)

jobs

RT Mean Response Time of all jobs

[a, b] Interval within which migration overhead is

uniformly distributed

 MW Threshold for maximum wait in the LERT-

MW case

DRTD

(DRTG)

Relative increase in RTD (relative decrease in

RTG) when a migratory version of a policy is

employed

3 SIMULATION RESULTS AND DISCUSSION

3.1 Model Implementation and Input Parameters

The queuing network model described above is imple-
mented with discrete event simulation (Law and Kelton
1991) using the independent replication method. For every
mean value, a 95% confidence interval is evaluated. All
confidence intervals are less than 5% of the mean values.

Because 1/µF = 1 and 1/µS = 2, we examine the follow-
ing cases for mean inter-arrival time of dedicated and ge-
neric jobs:

1/ λD = 0.13, and 1/ λG = 0.26,
1/ λD = 0.14, and 1/ λG = 0.28,
1/ λD = 0.15, and 1/ λG = 0.30,

which correspond to the following arrival rate cases:

λD = 7.69, and λG = 3.85,
λD = 7.14, and λG = 3.57,
λD = 6.67, and λG = 3.33.

When the dedicated jobs are evenly distributed among

the fast processors, the expected mean fast processor utili-
zation is (λD / PF) / µF. This results in mean fast processor
utilization of:

0.96, 0. 89, and 0.83,

respectively for the above three cases of λD.
 It is also obvious that the mean slow processor utiliza-
tion is the same as that of the fast processors, when generic
jobs are evenly distributed among slow processors. However,
migration of generic jobs results in a decrease of slow proc-
essor utilization and an increase in fast processor utilization.

For the interval [a, b], we consider a = 0.09 and b =
0.11 (i.e., average migration overhead is 10% of the mean
processor service time).

MW = 2 is considered for achieving fairness in the
execution of dedicated jobs. This is a reasonable assump-
tion since mean service time at the fast processors is 1.

3.2 Performance Analysis

The following results summarize overall model perform-
ance (Figures 2-13).

0,13 0,14 0,15

1/λ1

0

5

10

15

20

25

D (Pr) G (Pr) D (PrM) G (PrM)

RTD, RTG

1/λD

Figure 2: RTD , RTG versus 1/ λD (PR and PRM cases)

0,13 0,14 0,15

1/λ

0

20

40

60

80

D (Pr) G (Pr)

DRTD, DRTG

1/λD

Figure 3: DRTD , DRTG versus 1/ λD (PR and PRM cases)

0,13 0,14 0,15

1/λ

0

5

10

15

20

25

D (SQ) G (SQ) D (SQM) G (SQM)

RTD, RTG

1/λD

Figure 4: RTD, RTG versus 1/ λD (SQ and SQM cases)

nd Hilzer
Karatza a

0,13 0,14 0,15

1/λ

0

20

40

60

80

D (SQ) G (SQ)

DRTD, DRTG

1/λD

Figure 5: DRTD, DRTG versus 1/ λD (SQ and SQM cases)

0,13 0,14 0,15

1/λ

0

5

10

15

20

25

D (LERT-MW) G (LERT-MW))
D (LERT-MWM) G (LERT-MWM)

RTD, RTG

1/λD

Figure 6: RTD, RTG versus 1/ λD (LERT-MW and
LERT-MWM cases)

0,13 0,14 0,15

1/λ

0

1

2

3

4

5

D (LERT-MW) G (LERT-MW))

DRTD, DRTG

1/λD

Figure 7: DRTD, DRTG versus 1/λD (LERT-MW and
LERT-MWM cases)

0,13

1/λ

0

5

10

15

20

25

D (Pr) G (Pr) D (PrM)
G (PrM) D (SQ) G (SQ)
D (SQM) G (SQM) D (LERT-MW)
G (LERT-MW)) D (LERT-MWM) G (LERT-MWM)

RTD, RTG

1/λD

Figure 8: RTD, RTG, 1/ λD = 0.13
0,14

1/λ

0

5

10

15

20

25

D (Pr) G (Pr) D (PrM)
G (PrM) D (SQ) G (SQ)
D (SQM) G (SQM) D (LERT-MW)
G (LERT-MW)) D (LERT-MWM) G (LERT-MWM)

RTD, RTG

1/λD

Figure 9: RTD, RTG, 1/ λD = 0.14

0,15

1/λ

0

5

10

15

20

25

D (Pr) G (Pr) D (PrM)
G (PrM) D (SQ) G (SQ)
D (SQM) G (SQM) D (LERT-MW)
G (LERT-MW)) D (LERT-MWM) G (LERT-MWM)

RTD, RTG

1/λD

Figure 10: RTD, RTG, 1/ λD = 0.15

0,13

1/λ

0

5

10

15

20

25

Pr PrM SQ SQM LERT-MW LERT-MWM

RT

1/λD

Figure 11: RT, 1/ λD = 0.13

0,14

1/λ

0

5

10

15

20

25

Pr PrM SQ SQM LERT-MW LERT-MWM

RT

1/λD

Figure 12: RT, 1/ λD = 0.14

Karatza and

0,15

1/λ

0

5

10

15

20

25

Pr PrM SQ SQM LERT-MW LERT-MWM

RT

1/λD

Figure 13: RT, 1/ λD = 0.15

Figures 2, 4 and 6 show that for all loads examined,

the migratory version of each strategy improves the per-
formance of the generic jobs. This is due to the fact that
when generic jobs migrate, they are served by fast proces-
sors. Therefore, they have shorter response times than they
would if they were served by slow processors. On the other
hand, when a dedicated job arrives at a fast processor,
which is already serving a generic job, the dedicated job
incurs queuing delays. The values of RTD and RTG for all
routing strategies that we examine are presented in Figures
8, 9, and 10 respectively for each of the 1/ λD cases.

The relative increase in RTD and the relative decrease
in RTG due to using a migratory version of a method is
shown in Figures 3, 5, and 7. These Figures show that the
performance improvement for generic jobs due to job mi-
gration is much higher than the performance degradation
for dedicated jobs in the probabilistic case. In all cases that
we examine, the probabilistic case presents the largest
DRTG. This is because the Pr strategy results in unbalanced
processor queues and therefore introduces migration
opportunities for the generic jobs. DRTG increases as
system load decreases. This is because it is more probable
for the processors to be idle at low loads than at high loads
and so there are more possibilities for generic job
migration at low load. For a mean inter-arrival time of
0.15, the relative decrease in response time for generic jobs
is 74% while for mean inter-arrival time 0.13, DRG is 63%.
DRTD is 5%, 12%, and 14% in the 1/ λD = 0.13, 0.14, and
0.15 cases respectively. The reason dedicated jobs are
influenced to a lesser degree than the generic jobs in the
PRM case is because the generic jobs are only transferred
to idle fast processors. DRTD is higher at low loads because
there are more opportunities for generic job migrations.

In Figures 3 and 5 it appears that the dedicated job
performance degradation due to generic job migration for
all system loads is more serious in the SQ case than in the
Pr. These Figures also indicate that generic jobs benefit
from migration in the SQ case to a smaller degree than in
the Pr case. This is because fast processor queues are bal-
anced in the SQ case. Therefore, there are less opportuni-
ties for the generic jobs to find idle fast processors in the
 Hilzer

SQM case than in PrM. On the other hand, dedicated job
response time in the SQ case is much smaller than in Pr. A
generic job that migrates to an idle fast processor prevents
a subsequent dedicated job from using this idle processor.
This is the reason that a larger DRTD appears in the SQM
case than in PrM. However, Figures 8, 9, and 10 show that
for all loads of the six methods that we examine, the Pr and
PrM methods yield the largest mean response time for both
dedicated and generic jobs.

Figures 6 and 7 show for all loads dedicated jobs per-
form worse than generic jobs in the LERT-MW and
LERT-MWM cases. This is because generic jobs choose
the processor which offers them the shortest expected re-
sponse time from among all system processors, while dedi-
cated jobs only choose one of the fast processors. The mi-
gration of generic jobs only marginally effects the
performance of dedicated and generic jobs because the
shortest expected response time criterion results in a
smaller number of opportunities for job migration than the
other routing methods do.

Figures 11-13 reveal that the overall performance in
terms of mean response time of all jobs (dedicated and ge-
neric) is better with the SQ and SQM methods. Regarding
these two policies SQM yields the smallest mean response
time. The relative difference in performance between these
two methods is 14%, 8%, and 9% in the 1/ λD = 0.13, 0.14,
and 0.15 cases respectively.

In terms of overall performance, the worst methods are
the two probabilistic policies, Pr and PrM. The migration of
jobs in the PrM case improves significantly the overall per-
formance as compared to Pr. This is because there are op-
portunities for job migration due to unbalanced processor
queues with the Pr policy. Therefore, the generic job migra-
tion case results in effective usage of idle system resources.
For 1/ λD = 0.13, 0.14, and 0.15 the relative difference in
performance between PrM and Pr methods is 24.5%, 29%
and 29% respectively. However, the overall performance of
the PrM strategy differs significantly from the performance
of SQ, and SQM. The relative difference in performance be-
tween PrM and SQ (SQM) is 66%, 65%, 60% (71%, 68%,
64%) in the 1/ λD = 0.13, 0.14, 0.15 cases respectively.

The LERT-MW and LERT-MWM strategies perform
almost the same. The relative difference in performance
between LERT-MWM and SQM is 21%, 17%, 15% re-
spectively for the 1/ λD = 0.13, 0.14, 0.15 cases.

4 CONCLUSIONS AND FURTHER RESEARCH

This paper studies load sharing in heterogeneous distributed
systems. The objective is to obtain good overall system per-
formance while maintaining the fairness of individual job
classes. Simulation is used to generate comparative results.

The performance of six load sharing policies is studied
(Pr, PrM, SQ, SQM, LERT-MW, and LERT-MWM) for

Karatza and Hilzer

various mean job inter-arrival times. Migration overhead is
taken into account. Simulation indicates the following:

• As far as overall performance is concerned, the
SQ and SQM methods perform better than all
other methods. SQM performs better than SQ.
However, the superiority of SQM over SQ de-
pends on system load.

• The superiority of SQ and SQM over the other
methods also depends on system load and is more
significant at high loads.

• SQM is the best method when individual job class
performance and fairness is important.

A priori knowledge of job execution time is not con-
sidered. Future research should include the use of a priori
information when making load sharing decisions so that
jobs with very small service times are not migrated.

REFERENCES

Bonomi, F., and A. Kumar. 1990. Adaptive optimal load
balancing in a nonhomogeneous multiserver system
with a central job scheduler. IEEE Transactions on
Computers 39 (10): 1232-1250.

Cow, Y.-C., and H. W. Kohler. 1979. Models for dy-
namic load balancing in a heterogeneous multiple
processor system. IEEE Transactions on Computers
28 (5): 354-361.

Dandamudi, S. 1997. The effect of scheduling discipline
on dynamic load sharing in heterogeneous distributed
systems. In Proceedings of the 5th International
Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, 17-24.
Los Alamitos, California: Institute of Electrical and
Electronics Engineers Computer Society.

Karatza, H. D. 1994. Simulation study of load balancing in a
heterogeneous distributed system model. International
Journal of Modelling and Simulation 14 (1): 28-33.

Karatza, H. D. 2001. Job scheduling in heterogeneous dis-
tributed systems. Journal of Systems and Software 56
(3): 203-212.

Law, A., and D. Kelton. 1991. Simulation modelling and
analysis. New York: McGraw-Hill.

Maheswaran, M., S. Ali, H. J. Siegel, D. Hensgen, and R.
F. Freund. 1999. Dynamic matching and scheduling of
a class of independent tasks onto heterogeneous com-
puting systems. In Proceedings of the Eighth Hetero-
geneous Computing Workshop, 30-44. Los Alamitos,
California: Institute of Electrical and Electronics En-
gineers Computer Society.

Mirchandaney, R., D. Towsley, and J. Stankovic. 1990.
Adaptive load sharing in heterogeneous systems.
Journal of Parallel and Distributed Computing 9 (4):
331-346.
Shenker, S., and A. Weinrib. 1989. The optimal control of
heterogeneous queueing systems: a paradigm for load-
sharing and routing. IEEE Transactions on Computers
38 (12): 1724-1735.

Topcuoglu, H., S. Hariri, and M-Y. Wu. 1999. Task sched-
uling algorithms for heterogeneous processors”. In Pro-
ceedings of the Eighth Heterogeneous Computing
Workshop, 3-14. Los Alamitos, California: Institute of
Electrical and Electronics Engineers Computer Society.

AUTHOR BIOGRAPHIES

HELEN D. KARATZA is an Associate Professor in the
Department of Informatics at the Aristotle University of
Thessaloniki, Greece. Her research interests include Com-
puter Systems Performance Evaluation, Multiprocessor
Scheduling, Mobile Agents and Simulation. Her email and
web addresses are <karatza@csd.auth.gr> and
<http://agent.csd.auth.gr/~karatza>.

RALPH C. HILZER is a Professor of Computer Science
at the California State University, Chico, USA. His re-
search interests are in the areas of Operating Systems, Par-
allel Processing, Languages and Compilers. His email and
web addresses are <rhilzer@csuchico.edu> and
<http://www.ecst.csuchico.edu/~hilzer>.

mailto:karatza@csd.auth.gr
mailto:hilzer@ecst.csuchico.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 489
	02: 490
	03: 491
	04: 492
	05: 493
	06: 494
	07: 495
	08: 496

