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ABSTRACT

This paper discusses the implementation of a two-ph
procedure to construct confidence intervals for a simulat
estimator of the steady-state quantiles of stochastic p
cesses. We compute sample quantiles at certain grid po
and use Lagrange interpolation to estimate thep quantile.
The algorithm dynamically increases the sample size so
quantile estimates satisfy the proportional precision at
first phase and the relative or absolute precision at the sec
phase. We show that the procedure gives asymptotic
unbiased quantile estimates. An experimental performa
evaluation demonstrates the validity of using grid poin
and the quasi-independent procedure to estimate quant

1 INTRODUCTION

Simulation studies have been used to investigate sys
characteristics, such as the mean and the variance of ce
system performance of the system under study. In this pa
we propose a method to construct an empirical distribut
and estimate quantiles of the parameter of interest.
0 < p < 1, thep quantile (percentile) of a distribution is
the value at or below which 100p percent of the distribution
lies. Related to quantiles, aHistogramis a graphical estimate
of the underlying probability density (mass) function an
reveals all the essential distributional features of rand
variables analyzed by simulation. A histogram can
constructed with a properly selected set of quantiles.

Wood and Schmeiser (1995) have experimented
overlapping batch quantiles, and concluded that large sam
sizes and batch sizes are needed to obtain reliable stan
error estimators with overlapping batch quantiles, even wh
data are independent and identically distributed (i.i.d.). W
propose a simpleQuasi-Independent(QI) algorithm (see
Chen and Kelton 2000) to determine the simulation r
length and use grid points to construct a histogram (multi
quantiles). Iglehart (1976), Seila (1982a,b) and Hurl
and Modarres (1995) have developed quantile estima
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algorithms based on grid points. However, their procedu
require that users enter the values of the grid points. For
overview of quantile estimation procedures, see Law a
Kelton (2000).

It is known that for both i.i.d. andφ-mixingsequences,
sample quantiles will be asymptotically unbiased if certa
conditions are satisfied. Intuitively, a stochastic process
φ-mixing if its distant future event is essentially independe
of its present and past events (Billingsley 1999). Howev
in practical situations, simulation experiments are restrict
in time, and the required simulation run length for th
estimator to be unbiased is not known in advance. Moreov
the variance of the quantile estimator needs to be estima
in order to evaluate the precision of the quantile estimat
Therefore, a workable finite-sample size must be determin
dynamically for the precision required of a simulation.

Chen and Kelton (2001) propose a histogram appro
mation based on a QI procedure to construct a proportio
half-width (see Section 2.2) confidence interval (CI) o
quantile estimates for stationary simulation outputs. In th
paper, we extend the procedure to construct absolute or r
tive precision half-width CI. The algorithm will sequentially
determine the simulation run length so that quantile es
mates satisfy the proportional precision at the first phase a
the relative or absolute precision at the second phase.
proposed procedure produces asymptotically valid quan
estimates. The asymptotic validity of our QI procedu
occurs as the sequence appears to be independent, a
termined by theruns-uptest (see Knuth 1998).

The main advantage of our approach is that by usi
grids to approximate the underlying distribution, we avo
storing and sorting all the observations. However, t
savings come at a cost. Using interpolation to obtain quan
estimates introduces bias. Fortunately, the bias can
reduced by specifying finer grid points, which would the
require longer execution time. The QI procedure compu
the number of required independent samples at the beginn
of the procedure making implementation a relatively simp
task.
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In Section 2, we discuss some theoretical basis of qu
tile estimation in the context of simulation output analys
In Section 3, we present our methodologies and propo
procedure for quantile and histogram estimation. In Sect
4, we show our empirical-experimental results of quant
and histogram estimation. In Section 5, we give conclud
remarks.

2 BACKGROUND

This section presents the theoretical basis of our quan
estimation: order statistics quantile estimators, quantile a
histogram estimation, and proportion estimation.

2.1 Order Statistics Quantile Estimators

LetX1, X2, · · · , Xn, be a sequence of i.i.d. random variabl
from a continuous distributionF(x)with probability density
function f (x). Let xp (0 < p < 1) denote the 100pth

percentile or thep quantile, which has the property tha
F(xp) = Pr(X ≤ xp) = p. Thus,xp = inf {x : F(x) ≥ p}.
If Y1, Y2, . . . , Yn, are the order statistics corresponding
theXi ’s from n independent observations, (i.e.Yi is theith

smallest ofX1, X2, …, Xn) then a point estimator forxp
based on the order statistics is the samplep quantilex̂p,

x̂p = ydnpe (1)

wheredze denotes the integer ceiling (round-up) of the re
numberz.

For data that are i.i.d., the following properties ofx̂p
are well known (David, 1981):

E(x̂p) = xp − p(1− p)f
′(xp)

2(n+ 2)f 3(xp)
+O(1/n2);

Var(x̂p) = p(1− p)
(n+ 2)f 2(xp)

+O(1/n2). (2)

We say thatLn is large order ofxn (asn→∞) and write
Ln = O(xn) if there exists a constantk > 0 andN such
that ‖ Ln ‖ ≤ k|xn| for eachn ≥ N . ‖ Ln ‖ denotes the
Euclidean norm ofLn.

Let

σ 2
p(n) =

p(1− p)
nf 2(xp)

.

Then

(x̂p − xp)
σp(n)

D−→ N (0,1)
-

d

asn→∞, whereN (µ, σ 2) denotes the normal distribution

with meanµ and varianceσ 2, and
D−→ denotes convergence

in distribution.
Quantile estimation based on order statistics not onl

can be used when the data are i.i.d., but also when th
data are drawn from a stationary,φ-mixing process of
continuous random variables. It is shown in Sen (1972
that quantile estimates, based on order statistics, have
normal limiting distribution and are asymptotically unbiased
if certain conditions are satisfied. However, for the case ofφ-
mixing sequences, quantile estimation is much more difficu
than in the independent case. The usual order-statistic po
estimate,x̂p, is still asymptotically unbiased; however, its
variance is inflated by a factor of SSVC(xp)/p(1−p) (Sen,
1972), where

SSVC(xp) = C0 + 2 lim
n→∞

n−1∑
k=1

(1− k/n)Ck (3)

is the steady-state variance constant andCk =
Cov[Xm,Xm+k] is the lagk covariance of the process.

2.2 Quantile and Histogram Estimation

Let

[P ]10 =
 P if 0 ≤ P ≤ 1,

0 if P < 0,
1 if P > 1.

andε be the proportional half-width of the 1−α1 confidence
interval. The proportional half-widthε is dimensionless; it
is a proportion value with no measurement unit and mus
be between 0 and max(p,1− p), 0< p < 1.

Chen and Kelton (1999) propose controlling the preci
sion of quantile estimates by ensuring that thep quantile
estimatorx̂p is between the[p− ε]10 and[p+ ε]10 quantiles
with a desired confidence, i.e.,

Pr[x̂p ∈ x[p±ε]10] ≥ 1− α1, (4)

or equivalently

Pr[|F(x̂p)− p| ≤ ε] ≥ 1− α1.

Using this precision requirement (i.e. equation (4)), the
required sample sizenp for a fixed-sample-size procedure
of estimating thep quantile of an i.i.d. sequence is the
minimum np that satisfies

np ≥
z2

1−α1/2
p(1− p)
ε2 (5)
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wherez1−α1/2 is the 1−α1/2 quantile of the standard normal
distribution, ε is the maximum proportional half-width of
the confidence interval, and 1− α1 is the confidence level.

When data are correlated, the QI procedure will pro
gressively increase simulation run length until a sequenc
of n samples (taken from the original output sequence
appears to be independent, as determined by the runs
tests. Briefly, a runs up is a monotonically increasing sub
sequence, and the length of a runs up is known as the r
length. We examine the proportion of different run length
to check if the sequence appears to be independent. W
obtain QI samples bysystematic sampling, i.e., select a
numberl, choose that observation and then everylth ob-
servation thereafter. Here, the chosenl will be sufficiently
large so that samples are statistically independent. This
possible because we assume the underlying process satis
the φ-mixing conditions.

Chen and Kelton (2001) detail the steps of the quantil
and histogram estimation. Briefly, they computen the
required number of independent samples with equation (
and l for the systematic sampling. The minimum required
sample size is thenN = nl, i.e., the total simulation run
length. The starting value ofl is 1, and it increases by 1 at
the first two iterations; thereafter, it is doubled at every tw
iterations. To avoid storing and sorting the whole outpu
sequence, they compute sample quantiles only at certa
grid points and use (four points) Lagrange interpolatio
(Knuth, 1998) to compute thep quantile. The grid points
are strategically allocated such that every grid should conta
no more thanε of the distribution. That is, the grid will
be small where the probability density is high and will be
large where the probability density is low.

There are a certain number of main and auxiliary grid
points. The number of main grid points is computed by
Gm = d1/εe, whereε is the desired proportional half-width.
Let b + 1 be the index of the first main grid points. Grid
point gb is set to the minimum of the initialn, 2n, or 3n
samples, depending on the degree of the correlation of t
sequence, as determined by the runs-up test. Grid poin
gb+i , i = 1,2, . . . , Gm, are set to thei/Gm quantile of the
initial n, 2n, or 3n samples, depending on the degree o
correlation of the sequence.

2.3 Proportion Estimation

Chen (2001) modified the quantile estimation procedure
the previous section to estimate proportions of correlate
sequences. When a proportion is estimated, we are interes
in the probabilityp that the random variableX belongs to
a pre-specified fieldω: p = Pr{X ∈ ω}. An estimate ofp
is based on a transformation of the output sequence {Xj },
e
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j = 1,2, . . . , n:

p̂ = 1

n

n∑
j=1

Ij ,

where

Ij =
{

1 if Xj ∈ ω,
0 otherwise.

For data that are i.i.d., the following properties ofIj
are well known (Hogg and Craig, 1995, pp. 116-117)
E(Ij ) = p andV ar(Ij ) = p(1−p). Moreover,E(p̂) = p
and V ar(p̂) = p(1 − p)/n. Thus, an exact confidence
interval for the estimated proportion̂p can be obtained
using the binomial distribution. However, we cannot assum
that theIj ’s are independent. Instead, we assume that t
sequence {Ij } is covariance stationary. In this case

SSVC(Ij ) = p(1− p)(1+ 2 lim
n→∞

n−1∑
k=1

(1− k/n)ρk),

and

SSVC(p) = SSVC(Ij )/n, (6)

where ρk = Cor(Ij , Ij+k) is the correlation coefficient
betweenIj andIj+k, see Law and Kelton (2000, pp. 246-
252).

Sincep̂ is based on the mean of the random variabl
Ij , we can use any method developed for estimating th
variance of the mean to estimateV ar(p̂). The variance
estimator of equation (6) reflects the transformation from
estimatingxp to p. Furthermore, letC0 = p(1−p)/n and
Ck = C0ρk, then equation (6) becomes equation (3).

3 METHODOLOGIES

This section presents the methodologies we will use
construct CI of the quantile estimates such that it satis
the absolute or relative half-width requirements, i.e.,

Pr[x̂p ∈ xp ± ε′] ≥ 1− α2,

or

Pr[x̂p ∈ xp ± r|xp|] ≥ 1− α2, (7)

whereε′ > 0 and 1> r > 0 are, respectively, the absolute
and the relative precision.

For i.i.d. sequences, ifn ≥ np (of equation (5)), then the
quantile estimator should satisfy the precision requireme
of equations (4) or

Pr[p̂ ∈ p ± ε] ≥ 1− α1,
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wherep̂ = F(x̂p). From equation (2), asymptotically

Var(x̂p) ≈ p(1− p)
nf 2(xp)

.

Therefore, when data are i.i.d.

Var(x̂p)

Var(p̂)
≈ 1/f 2(xp). (8)

Thus, if the sample size

n′ ≥ n

f 2(xp)
,

then

Pr[x̂p ∈ xp ± ε′] ≥ 1− α1,

where ε′ has the same numerical value asε and has the
same unit ofxp. Moreover, if ε′′ is the desired absolute
precision and

n′ ≥ n

f 2(xp)
(
ε′

ε′′
)2,

then

Pr[x̂p ∈ xp ± ε′′] ≥ 1− α1.

Note that 1> ε > 0, andε′′ > 0. Furthermore, ifr is the
desired relative precision and

n′ ≥ n

f 2(xp)
(
ε′

rx̂p
)2,

then approximately

Pr[x̂p ∈ xp ± r|xp|] ≥ 1− α1.

Here, |x| is the absolute value ofx.
Theoretically, whenn is large, the value off (xp) can

be approximated by finite forward differences:

f (xp) ≈ 1

n(x̂p+1/n − x̂p) (9)

because

F ′(xp) = lim
x→xp

F (x)− F(xp)
(x − xp) ≈ F(xp+1/n)− F(xp)

(xp+1/n − xp) .

Alternatively, the value off (xp) can be approximated by
finite central differences:

f (xp) ≈ 2

n(x̂p+1/n − x̂p−1/n)
because

F ′(xp) ≈ F(xp+1/n)− F(xp−1/n)

(xp+1/n − xp−1/n)
.

However, in practice for this approximation to be goo
the required size forn is not known. Chen (2002) evaluate
the performance of derivative estimation with finite dif
ferences using the empirical distribution constructed w
the method of Chen and Kelton (2001). Generally, th
results are excellent in terms of CI coverage and relat
precision. The observed relative precision of the derivati
estimators of i.i.d. sequences in our experiments are
within 4%. Since the method requires that the simulatio
run length increases as the correlation become stron
the observed relative precision of the derivative estimato
become smaller. Furthermore, there is no significant diffe
ence between the performance of forward differences a
central differences when using the histogram approximat
to estimate the derivative.

The valuef (xp) has great influence on the require
sample size. However, since the valuesf (xp) andxp are
unknown, we use the estimated valuef̂ (x̂p). To be con-
servative, we use the valuêf (x̂p) such that asymptotically
Pr[f (xp) ≥ f̂ (x̂p)] ≥ 0.60.

Note that when data are correlated, sample sizenwill be
replaced byN = nl. Herel is the lag in the original sequence
such that the QI sequence appears to be independen
discussed in Section 2.2.

The two-phase quantile estimation algorithm:

1. Remark:ε is the desired proportional half-width,
r is the relative precision specified by the user.

2. Use the Quantile and Histogram estimation alg
rithm of Chen and Kelton (2001), as discusse
in Section 2.2, to obtain proportional precisio
quantile estimates. Save the sample sizen.

3. Use the finite forward differences, i.e., equatio
(9), to obtain the derivative estimatezp = f̂ (x̂p).

4. Let n′ = d n
z2
p
( ε
′

rx̂p
)2e.

5. If n′ > n, increase the sample size ton′, go to step
2.

6. Otherwise, the quantile estimate should alrea
satisfy the relative precision requirement.

7. RunR replications and compute the confidence in
terval of the quantile estimator according to equ
tion (11).

Because we are estimating quantiles of stochastic s
tems, inference based on only one output sequence
unreliable. Therefore, we will runR (we use 3 in our algo-
rithm) independent replications to getR quantile estimators.
Let x̂p,r denote the estimator ofxp in the rth replication.
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We use

¯̂xp = 1

R

R∑
r=1

x̂p,r (10)

as a point estimator ofxp. Assuming the asymptotic approx-
imation is valid with the simulation run length determine
by our procedure, then eacĥxp,r has a limiting normal
distribution. By the central limit theorem, a confidenc
interval for xp using the i.i.d.x̂p,r ’s can be approximated
using standard statistical procedures. That is, the ratio

T =
¯̂xp − xp
S/
√
R

would have an approximatet distribution withR − 1 d.f.
(degrees of freedom), where

S2 = 1

R − 1

R∑
r=1

(x̂p,r − ¯̂xp)2

is the usual unbiased estimator ofσ 2
p(n), the variance of

xp. This would then lead to the 100(1− α2)% CI, for xp,

¯̂xp ± tR−1,1−α2/2
S√
R
, (11)

wheretR−1,1−α2/2 is the 1− α2/2 quantile for thet distri-
bution withR − 1 d.f. (R ≥ 2).

This confidence interval estimator is approximate
valid when the sample size becomes large since the qu
tile estimatorx̂p,1, x̂p,2, . . . , x̂p,R become almost normally
distributed (from the theorem of Sen (1972) forφ-mixing
sequences). Our QI procedure addresses the problem
determining the simulation run length that is required
satisfy the assumptions of normality and independence
the quantile estimate. Theoretically, if these assumptio
are satisfied, then the actual coverage of the CI’s should
close to the pre-specified level.

For large sample sizes, it becomes impractical to sto
and sort the entire sequence. These limitations can
overcome by using the proposed histogram approximatio
which computes quantiles only at grid points and us
the quasi-independent algorithm to determine the requir
simulation run length. Savings in storage and sorting a
substantial for our method.

To improve the precision of the second phase quant
estimation, we can put more grid points in the grid th
contains thexp quantile estimator found in the first phas
and the surrounding grids before we start the second pha
Of course, the newly set up grid points need to be bas
on interpolations. For example, ifgi−1 < x̂p ≤ gi and
the grid betweengi−1 andgi containsni observations and
n-

of
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approximately 100pi% of the distribution, thenk + 1 new
grid points can be set up betweenx̂p−pi/2 and x̂p+pi/2.
Let g′j for j = 0,1, . . . , k be the new grid points, then
g′j = x̂p−pi/2+jpi/k. The array contains the number of
observations between newly set up grid pointsn′j = bni/kc,
for j = 1,2, . . . , k − 1 andn′k = ni − (k − 1)n′1, where
bzc denotes the integer flooring (round-down) of the rea
numberz.

4 EMPIRICAL EXPERIMENTS

In this section, we present some empirical results obtain
from simulations using the quantile estimation procedur
proposed in this paper. The purpose of the experimen
was not only to test the methods thoroughly, but also t
demonstrate the interdependence between the correlat
of simulation output sequences and simulation run length
and the validity of our methods. We tested the propose
procedure with several i.i.d. and correlated sequences.
these experiments, we useR = 3 (see step 7 in the algorithm)
independent replications to construct CI’s. We estimate
four quantile points: 0.25, 0.50, 0.75, and 0.90 for eac
distribution and used a relative precision of 0.05 for ou
experiments. We conservatively set the required paramet
of determining the simulation run length (i.e. equation (5)
with p = 0.5, ε = 0.005, andα1 = 0.05. The confidence
level α2 of the quantile CI (i.e. equation (11)) is set to
0.1. Moreover, the confidence level of the runs-up test o
independent is set to 90%.

4.1 Independent Sequences

We tested two independent sequences:

• Observations are i.i.d. normal with mean 0 and
variance 1, denoted asN (0,1).

• Observations are i.i.d. negative exponential with
mean 1, denoted as expon(1).

The summary of our experimental results of the i.i.d
sequences are listed in Tables 1 and 2. Each design po
is based on 100 independent simulation runs. Thep row
lists the quantile we want to estimate. Thequantile row
lists the truep quantile value. Thecover p row lists the
percentage of the quantile estimates that satisfy equati
(4), i.e., the coverage deviation of the quantile estimator
within the specified valueε. The coveragerow lists the
percentage of the CI’s that cover the true quantile valu
The avg. rp row lists the average of the relative precision
of thexp estimators. Here, the relative precision is define
asrp = |x̂p− xp|/|x̂p|. Thestdev rprow lists the standard
deviation of the relative precision of the quantile estimator
Theavg. hwrow lists the average of the absolute half-width
Thestdev hwrow lists the standard deviation of the absolut
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Table 1: Coverage of 90% Confidence Quantile Estimat
for theN (0,1) Distribution

Item Quantile
p 0.25 0.45 0.75 0.90

quantile -0.674189 -0.125381 0.674189 1.28173
cover p 100% 100% 100% 100%
coverage 94% 94% 85% 90%
avg. rp 0.004832 0.010206 0.004693 0.002997
stdev rp 0.003624 0.007715 0.003680 0.002195
avg. hw 0.010011 0.004996 0.008920 0.012771
stdev hw 0.004653 0.002447 0.005363 0.006741
avg. sp 41875 175039 41875 41875
stdev sp 6267 42596 6267 6267

Table 2: Coverage of 90% Confidence Quantile Estimat
for the expon(1) Distribution

Item Quantile
p 0.25 0.50 0.75 0.90

quantile 0.287682 0.693147 1.38629 2.30258
cover p 100% 100% 100% 100%
coverage 91% 93% 91% 92%
avg. rp 0.004594 0.003241 0.002641 0.002982
stdev rp 0.003691 0.002630 0.002318 0.002186
avg. hw 0.004180 0.007144 0.013503 0.021339
stdev hw 0.001809 0.003672 0.007390 0.011029
avg. sp 41747 41747 41747 41747
stdev sp 6204 6204 6204 6204

half-width. Theavg. sprow lists the average of the sampl
size in each independent replication. Thestdev sprow lists
the standard deviation of the sample size in each indepen
replication.

Table 1 lists the experimental results of theN (0,1) dis-
tribution. For the 0.5 quantile estimates, the parameter und
investigationx0.5 is 0. Sincex̂0.5 ≈ 0, n′ = d n

z2
p
( ε
′

rx̂p
)2e

will be very large. For example, the sample size in the fi
phase is 38416 (1.962 × 0.5× 0.5/0.0052), the estimator
x̂0.5 = −0.000146, andzp = f̂ (x̂0.5) = 0.363357. The re-
quired sample size is thenn′ = d 38416

0.3633572
( 0.005

0.05×0.000146)
2e >

1.36×1011. It will require several days for common deskto
computers to obtain one estimator. If users know that
true quantile valuexp ≈ 0, then absolute precision can b
used instead of relative precision. To avoid the required lo
execution time, we estimated the 0.45 quantile instead. T
CI’s coverage of 0.75 quantile is 85%, which is less than
specified nominal value of 90%. We believe this is caus
by the randomness of the experiment and the half-wi
being too small. For example, the absolute value of
0.25 and 0.75 quantile are the same, however, the ave
half-width of the 0.75 quantile estimates is only 0.008920
compares to 0.010011 of the 0.25 quantile. Furthermor
the average relative precision of the 0.75 quantile estima
nt

e

s

is smaller than that of the 0.25 quantile estimators, thos
0.75 quantile CI’s that do not cover the true quantile valu
must miss only by a very small amount. All half-widths
of the CI’s, are less thanr|xp|, wherer = 0.05 and are in
general within 30% ofr|xp|.

Table 2 lists the experimental results of the expon(1
distribution. The sample sizes are the same for all fou
design points because all quantile estimations haven′ =
d n
z2
p
( ε
′

rx̂p
)2e < n. Since the valueZp = f (Xp) decreases as

Xp increases, sample sizen does not increase as quantile
value increases whenε′ is sufficiently small and relative
precision is used. On the other hand, if absolute precisio
is used, then sample sizes will increase as the quant
value increase. In this experiment, with relative precisio
r = 0.05, the quantile estimator obtained with the first
phase sample size should satisfy both equations (4) a
(7). Again, all quantile estimators satisfy the precisio
requirement of equation (4), and the CI coverage of the
design points are above the specified 90% confidence lev
Furthermore, all half-widths are less thanr|xp|. Since the
truep quantile value increases asp increases, the average
half-width increases asp increases. Because we set the
confidence level of the runs-up test of independence to
90%, independent sequences will not pass the runs-up ab
10% of the times. Consequently, the first-phase sample s
for independent sequences will be around 38416× 1.1 =
42258.

4.2 Correlated Sequences

We tested four correlated sequences:

• Steady-state of thefirst-order moving averagepro-
cess, generated by the recurrence relation

Xi = µ+ εi + θεi−1 for i = 1,2, . . . ,

where εi is i.i.d. N (0,1) and 0< θ < 1. This
process is denoted as MA1(θ ). µ is set to 0 in
our experiments. It can be shown thatX has an
asymptoticN (0,1+ θ2) distribution.

• Steady-state of thefirst-order auto-regressivepro-
cess, generated by the recurrence relation

Xi = µ+ ϕ(Xi−1− µ)+ εi for i = 1,2, . . . ,

whereεi is i.i.d. N (0,1), and

E(εi) = 0, E(εiεj ) =
{
σ 2 if i = j ,

0 otherwise

0< ϕ < 1.
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This process is denoted as AR1(ϕ). µ is set to 0
in our experiments. It can be shown thatX has an
asymptoticN (0, 1

1−ϕ2 ) distribution.
• Steady-state of the M/M/1 delay-in-queue proce

with the arrival rate (λ) and the leaving rate (µ = 1).
This process is denoted as MM1(λ). LetWi denote
the waiting time of theith customer andρ = λ/µbe
the traffic intensity. Then, ifρ < 1, the theoretical
steady-state distribution of this M/M/1 queuing
process isF(x) = P(Wi ≤ x)→ 1− ρe−(µ−λ)x
as i → ∞ for all x ≥ 0. Let {An} denote the
interarrival-time i.i.d. sequence and {Sn} denote the
service-time i.i.d. sequence. Then the waiting-tim
sequence {Wn} is defined by

Wn+1 = (Wn + Sn − An+1)
+ for n ≥ 1

wherew+ = max(w,0).
• Steady-state of the M/M/s delay-in-queue proce

with the arrival rate (λ) and the leaving rate (µ).
This process is denoted as MMS(λ). We sets = 2,
λ = 3, andµ = 2. The traffic intensity of this
process isρ = λ

sµ
= 0.75.

We tested the MA1 model withθ = 0.75, the AR1
model withϕ = 0.75, and the M/M/1 and M/M/2 models
with the traffic intensityρ = 0.75. In order to eliminate
the initial bias,ε0 andw0 are set to a random variate drawn
from the steady-state distribution. Because the true 0
quantile value for the tested MA1 and AR1 processes is
we estimated the 0.45 quantile to avoid an extremely lar
sample size.

The summary of our experimental results for MA1(0.75
and AR1(0.75) are listed in Tables 3 and 4. All quanti
estimators satisfy the precision requirement of equation (
Most of the CI coverage of these design points, except t
coverage of the 0.75 quantile of the AR1(0.75) process
are around the specified 90% confidence level. We belie
this is caused by the half-width being too small. For the
two processes,n′ = d n

z2
p
( ε
′

rx̂p
)2e > n only when estimating

the 0.45 quantile. The sample sizes are larger than
independent cases because the lagl for the QI sequence
that appears to be independent is larger.

If ρ < 1, the waiting-time distribution function of a
stationary M/M/1 delay in queue is discontinuous atF(x)→
1−ρ, (i.e. x = 0); thus, the quantiles for M/M/1 delay-in-
queue are applicable only when the estimated quantiles
larger than or equal to 1−ρ. Therefore, it is useful to know
whether a desired quantile is attainable before conduct
an informative experiment.

The summary of our experimental results of the M/M/
delay-in-queue process is summarized in Table 5. We ex
rienced some problems when estimating the 0.25 quantile
of the M/M/1 queuing process withρ = 0.75, because the
,

.

e

-

Table 3: Coverage of 90% Confidence Quantile Estimato
for theMA1(0.75) Process

Item Quantile
p 0.25 0.45 0.75 0.90

quantile -0.842737 -0.156726 0.842737 1.60216
cover p 100% 100% 100% 100%
coverage 91% 93% 90% 88%
avg. rp 0.004897 0.010006 0.004437 0.002558
stdev rp 0.003227 0.007751 0.003252 0.001905
avg. hw 0.011336 0.005633 0.010974 0.013519
stdev hw 0.005510 0.002892 0.005519 0.006688
avg. sp 80805 326563 80805 80805
stdev sp 6977 42356 6977 6977

Table 4: Coverage of 90% Confidence Quantile Estimato
for theAR1(0.75) Process

Item Quantile
p 0.25 0.45 0.75 0.90

quantile -1.01928 -0.189558 1.01928 1.93779
cover p 100% 100% 100% 100%
coverage 91% 92% 82% 91%
avg. rp 0.003340 0.009194 0.003583 0.001861
stdev rp 0.002279 0.007469 0.002411 0.001473
avg. hw 0.012107 0.005560 0.010085 0.012185
stdev hw 0.005923 0.002606 0.005668 0.006173
avg. sp 348067 1424348 348067 348067
stdev sp 54251 344237 54251 54251

distribution is not continuous at the true quantile value
Thus, the derivative does not exist at 0.25 quantile. Because
the distribution function has a jump at this quantile point, th
procedure often obtains∞ as an estimate of the derivative
sincex̂p = x̂p+1/N in this case. Therefore, we estimate th
0.30 quantile instead of the 0.25 quantile. However, the
procedure can return the quantile estimate obtained in
first phase. Users should then investigate if the distributi
is continuous at this particular quantile. Again, all qua
tile estimators satisfy the precision requirement of equati
(4), and CI coverages are above or close to the speci
90%. The average CI half-width of the 0.90 quantiles
the M/M/1 delay in queue is much larger than the oth
quantiles since the quantile under estimation has a lar
value.

The summary of our experimental results of the M/M/
delay-in-queue process is listed in Table 6. Ifρ < 1, the
theoretical steady-state distribution of this M/M/2 queuin
process isF(x) → 1− 9e−x/14 (Hillier and Lieberman,
2001), wherex ≥ 0. Therefore, for this M/M/2 process
quantiles less than 5/14 are not attainable, we estima
0.40 quantile instead. All estimators satisfy the probabili
coverage requirements. Moreover, the percentages of
CI’s that cover the true quantiles are close to the specifi
nominal value of 90%. The sample size determined by t
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Table 5: Coverage of 90% Confidence Quantile Estimato
for theM/M/1 Delay-in-queue Process withρ = 0.75

Item Quantile
p 0.30 0.50 0.75 0.90

quantile 0.275972 1.62186 4.39445 8.05961
cover p 100% 100% 100% 100%
coverage 90% 91% 92% 90%
avg. rp 0.005469 0.004432 0.003583 0.003919
stdev rp 0.004258 0.003228 0.002532 0.002947
avg. hw 0.005576 0.021964 0.051527 0.105334
stdev hw 0.003185 0.012968 0.029221 0.058994
avg. sp 5491879 1363070 1363070 1363070
stdev sp 1541480 297519 297519 297519

Table 6: Coverage of 90% Confidence Quantile Estimato
for theM/M/2 Delay-in-queue Process withρ = 0.75

Precision Traffic Intensityρ
0.75

p 0.40 0.50 0.75 0.90
quantile 0.068993 0.251314 0.944462 1.86075
cover p 100% 100% 100% 100%
coverage 89% 90% 88% 84%
avg. rp 0.006573 0.002424 0.004137 0.004463
stdev rp 0.005017 0.001859 0.002950 0.003152
avg. hw 0.001627 0.002265 0.012300 0.024968
stdev hw 0.000828 0.001122 0.006728 0.014283
avg. sp 7925708 1326701 1326701 1326701
stdev sp 2921767 285481 285481 285481

QI procedure is roughly the same for the waiting-time o
M/M/2 and the M/M/1 delay in queue with the same traffic
intensity ofρ = 0.75. However, the CI coverage of M/M/2
delay in queue is not as good as M/M/1. Again, we believ
this is caused by the half-width being too small.

5 CONCLUSIONS

We have presented an algorithm for estimating the histogra
and quantilexp of a stationary process. Some quantil
estimates require more observations than others before
asymptotics necessary for quantile estimates become va
Our proposed quasi-independent algorithm works well
determining the required simulation run length for a vali
asymptotic approximation. The results from our empirica
experiments show that the procedure is excellent in achievi
the pre-specified accuracy. However, the variance of t
simulation run length from our sequential procedure is larg
when estimating highly correlated sequences. This is n
only because of the randomness of the output sequence,
also because we double the lag lengthl every two iterations.
Because the sample size grows rapidly at later iteration
further research is needed to develop new algorithms th
e
.

t
ut

,
t

slows the rate of growth of simulation run lengths at late
iterations.

The histogram approximation algorithm computes quan
tiles only at grid points and uses Lagrange interpolation
estimate thep quantile. The algorithm also generates an em
pirical distribution (histogram) of the output sequence, whic
can provide valuable insights to the underlying stochast
process. The first-phase of the procedure computes quan
estimates that satisfy a proportional half-width requiremen
Based on the results determined in the first-phase, the pro
dure estimates the derivative at thep quantile and computes
the required sample size for the second phase. The quan
estimates from the second phase satisfy absolute or relat
precision requirements.

Our approach has the desirable properties of havin
a sequential procedure and not requiring users to havea
priori knowledge of values that the data might assume. Th
allows the user to apply the two-phase quantile estimatio
procedure without having to execute a separate pilot run
determine the range of values to be expected or to guess a
risk having to re-run the simulation. Both of these option
represent potentially large costs to the user because ma
realistic simulations are time-consuming to run. The mai
advantage of our approach is that by using a straightforwa
runs-up test to determine the simulation run length and obta
quantiles at grid points, we can apply classical statistic
techniques directly instead of advanced statistical theor
making it easy to understand, simple to implement, and fa
to run.

In an effort to reduce the variance in simulation run
length determined by the QI sequence, we have experimen
with combining runs-up and runs-down tests together t
check whether a sequence appears to be independent.
preliminary results show that combining runs-up and run
down tests has little effect on i.i.d. sequences. However,
generally results in a longer simulation run length for highl
correlated sequences with no improvement in the varian
of simulation run length.
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