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ABSTRACT 
 
One means for dealing with initialization bias in simulation 
experiments is to implement a warm-up period.  This re-
quires the correct estimation of the initial transient.  A new 
method for determining the warm-up period, based upon 
the principles of statistical process control (SPC), is de-
scribed.  The method is tested on empirical data from a 
simulation model that has been used in a real-life study.  In 
comparing the results to those from two commonly used 
warm-up methods, it appears that the SPC method per-
forms well.  The strengths and weaknesses of the approach 
are discussed. 
 
1 INTRODUCTION 
 
In estimating the steady-state parameters of a simulation 
model, the correct removal of any initialization bias is of 
vital importance.  There are two methods open to the simu-
lation modeller.  First, the starting condition of the model 
can be set such that there is no bias in the output data.  This 
requires the correct setting of the starting condition.  Sec-
ond, the model can be run for a warm-up period and the 
data are then deleted from that period (the initial transient).  
This, of course, requires the correct estimation of the 
warm-up period.  It is this latter approach upon which this 
paper focuses. 

The purpose of this paper is to describe a new method 
for estimating the warm-up period of a steady-state simula-
tion.  The method is based upon the principles of statistical 
process control (SPC) and is known as the SPC method.  
Before describing this method there is a brief review of the 
literature on estimating the warm-up period.  The SPC 
method is applied to the output data from a simulation 
model used in a real-life study.  The results are compared 
with those from two other commonly used methods.  There 
is a discussion on the strengths and weaknesses of the pro-
posed approach. 
 

2 METHODS FOR ESTIMATING  
THE WARM-UP PERIOD 

 
Various methods have been proposed for identifying the 
initial transient in simulation models.  The warm-up meth-
ods that have been devised can be categorised under five 
headings: 
 

• Graphical methods: these involve the visual in-
spection of time-series of the output data. 

• Heuristics approaches: these apply simple rules, 
with few underlying assumptions. 

• Statistical methods: these rely upon the principles 
of statistics for determining the warm-up period. 

• Initialization bias tests: these identify whether 
there is any initialization bias in the data and, 
therefore, they are not strictly methods for identi-
fying the warm-up period, but they can be used in 
combination with warm-up methods to determine 
whether they are working effectively. 

• Hybrid methods: these involve a combination of 
graphical or heuristic methods with an initializa-
tion bias test. 

 
There is no attempt to describe these methods here, but 
simply to categorise and list them (Table1).  It is obvious 
that many methods have been suggested over a period of 
more than 30 years, albeit that there does not seem to have 
been a concentrated period of research into this critical is-
sue in simulation modelling. 

In looking at the literature and particularly case stud-
ies, it is apparent that few of these methods are used in 
practice.  Indeed, the most popular methods appear to be 
simple time-series inspection and Welch’s method.  Anec-
dotal evidence suggests that time-series inspection is the 
main method used by simulation practitioners, other than 
guessing!  Further to this, many of the methods listed in 
Table 1 have not been thoroughly tested.   
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Table 1: Warm-up Methods 
Category Method Reference 

Graphical methods Time-series inspection 
Ensemble average plots 
Cumulative mean rule 
Deleting the cumulative mean rule 
Cusum plots 
Welch’s method 
Variance plots 

Robinson [1994] 
Banks et al. [1996] 
Gordon [1969] 
Banks et al. [1996] 
Nelson [1992] 
Welch [1983] 
Gordon [1969] 

Heuristics approaches Schriber’s rule 
Conway rule 
Modified Conway rule 
Crossing of the mean rule 
Autocorrelation estimator rule 
Marginal confidence rule 
Goodness of fit 
Relaxation heuristics 

Pawlikowski [1990] 
Gafarian et al. [1978] 
Gafarian et al. [1978] 
Fishman [1973] 
Fishman [1971] 
White [1997] 
Pawlikowski [1990] 
Pawlikowski [1990] 

Statistical methods Kelton and Law regression method 
Randomisation tests 

Kelton and Law [1983] 
Yucesan [1993] 

Initialization bias tests Schruben’s maximum test 
Schruben’s modified test 
Optimal test 
Rank test 
The new maximum test 
Batch means test 
Area test 

Schruben [1982] 
Nelson [1992] 
Schruben et al. [1983] 
Vassilacopoulos [1989] 
Goldsman et al. [1994] 
Goldsman et al. [1994] 
Goldsman et al. [1994] 

Advanced methods Pawlikowski’s sequential method 
Scale invariant truncation point method 

Pawlikowski [1990] 
Jackway and deSilva [1992] 

 

There is certainly room for further research into esti-

mating the warm-up period, both in terms of testing the ex-
isting methods and in developing new approaches that can 
be implemented by simulation practitioners.  One such 
method is now described. 
 
3 THE SPC METHOD 
 
In SPC two forms of variation are identified.  “Common” 
or “inherent” causes are sources of variation that are un-
avoidable.  In manufacturing systems these are caused by 
small variations in, for instance, the materials being proc-
essed, the environment (e.g. heat and light) and the per-
formance of the staff.  In these circumstances the process is 
assumed to be varying according to some fixed distribution 
about a constant mean.  Meanwhile “special” or “assign-
able” causes of variation can be corrected or eliminated, 
for instance, a tool may be worn or staff may be poorly 
trained.  In these circumstances the process ceases to vary 
according to some fixed distribution about a constant 
mean.  A process that is subject only to common causes of 
variation is said to be “in-control”.  When special causes of 
variation occur, the process is said to be “out of control”.  
The purpose of SPC is to determine when a process is go-
ing out of control, so the process may be corrected.   
There is a close relationship between the concepts of 
SPC and those of transience and steady-state in simulation 
output analysis.  A model that is in steady-state varies 
about a constant mean according to some fixed distribu-
tion, while in transience it does not.  As such, a simulation 
that is in steady-state could be considered to be “in-
control”, while during a transient phase it could be consid-
ered to be “out of control”.  It seems possible, therefore, 
that the methods employed in SPC could be used to detect 
when a model is in steady-state, and when it is not.  The 
method presented here employs SPC in this way, with a 
particular view to identifying the initial transient for a 
simulation with steady-state parameters.  Unlike the im-
plementation of SPC in real-life processes, there is no 
sense of intervening in a model run in order to return the 
model to a steady-state, it is assumed to be a self-
controlling process.  The method is now described by a se-
ries of stages that are based on SPC theory. 
 
3.1 Stage 1: Perform Replications  

and Collect Output Data 
 
First, time-series data on a key output statistic need to be 
collected.  Typically this would be throughput for manu-
facturing systems and customer waiting time in service 
systems.  The output data should be collected over a series 
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of replications in order to provide a number of samples for 
each data point.  The observation interval should be rela-
tively short; for typical manufacturing and service system 
models a one hour interval is probably appropriate. 

Standard SPC approaches assume that the data are 
normally distributed.  This, of course, may not be the case 
for simulation output data.  By performing a series of rep-
lications, however, it can be assumed (via the central limit 
theorem) that the sample mean at each time interval tends 
towards normality, unless the data are highly skewed.  The 
larger the sample size the stronger this assumption.  There-
fore, the more replications that can be performed the better.  
It is recommended that between five and ten are performed 
as a minimum. 

The length of each replication also needs to be deter-
mined.  It is recommended that the run length is at least 
four times longer than the estimated length of the initial 
transient and that at least 60 data points are collected in 
each replication.  The rationale for this is given in stage 3 
of the method.  An initial estimate of the length of the ini-
tial transient could be obtained by simply inspecting a 
time-series of the output data to look for where the model 
appears to be in steady-state. 

On completion of this stage a time-series of the key 
output data for each replication should have been collected, 
represented by Yji, where i is the observation interval and j 
is the replication number.  From this the sample means at 
each observation interval can be calculated as follows: 
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where n is the number of replications performed.  As a re-
sult the vector y(m), representing a time-series of sample 
means, is formed: 
 

( )YYYmy m,...,,)( 21=                   (2) 

 
where m is the total number of observations made in each 
replication. 
 
3.2 Stage 2: Test that the Output Data  

Meet the Assumptions of SPC 
 
SPC relies on two key assumptions: that the data are nor-
mally distributed and that the data are not correlated.  In 
stage 2 these two assumptions need to be tested for the data 
that have been collected. 

Simulation output data are typically autocorrelated.  
The batch means method is one approach for dealing with 
this autocorrelation (Law and Kelton, 2000).  By combin-
ing observations into batches, the batch means become ap-
proximately uncorrelated as the batch size (k) increases.  
The time-series from Equation (2) is combined into a series 
of batches to generate the vector y(k) as follows: 
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which is represented as: 
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where b is the number of batches of length k that can be cal-
culated from the time-series, such that m=bk.  A popular ap-
proach for determining k is Fishman’s procedure (Fishman, 
1978).  Starting with a batch size of 1 the value of k is in-
creased until the lag 1 autocorrelation is close to zero, that is, 
less than 0.1.  Note that by working with mean values from a 
series of replications the autocorrelation will be lower than 
for the time-series from the individual replications. 

The data should also be tested for normality at each 
value of k.  A typical approach is the Kolmogorov-Smirnov 
test (Law and Kelton, 2000).  It should be noted that as k 
increases so the batch means tend towards normality (Law 
and Kelton, 2000).  SPC approaches are available for data 
that are not normally distributed, these are, however, be-
yond the scope of this paper. 
 
3.3 Stage 3: Construct a Control Chart 

 for the Batch Means Data 
 
Once a value of k has been found for which the assumption 
of low autocorrelation and normality are met, a control chart 
can be constructed for the data in Equation (4).  Note this 
should use the minimum value of k that passes the tests for 
autocorrelation and normality.  The use of batch means con-
trol charts is described by Runger and Willemain (1996).   

The population mean (µ) and standard deviation (σ) of 
the data in y(k) is estimated from the data in the second 
half of the time-series.  In other words, if the total number 
of batches (b) in the series is 100, then the mean and stan-
dard deviation are calculated for the data in the range b=51 
to b=100.  Note that if b were 99 then the range b=51 to 
b=99 would be used.  This is a procedure used in other 
warm-up methods, for instance, Schruben et al. (1983).  It 
is for this reason that it is recommended that at least 60 
data points are collected for each replication, so the mean 
and standard deviation are estimated from a sample size of 
at least 30.  Obviously the number of observations needs to 
be multiplied by k, in order to ensure that there are 60 data 
points in the batch means time-series.  It is recommended 
that the run length is at least four times the estimated 
length of the initial transient, so the mean and standard de-
viation are calculated on steady-state data. 
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The standard deviation  is estimated as follows: 
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where sl
2  is the standard deviation about the individual 

means in y(k), and is calculated from the individual obser-
vations obtained from each replication.  That is, if 10 repli-
cations have been performed, s2

1  would be the standard 

deviation of the 10 data points in the mean y(1). 
From these data two sets of control limits are calcu-

lated.  The first is the warning limits: 
 

nWL /96.1 σµ )) ±=                       (6) 

 
and the second is the action limits: 
 

nAL /09.3 σµ )) ±= .                  (7) 

 
The value of z is selected so it is expected that 1 in a 1000 
samples will fall outside of the action limits (3.09), while 1 
in 40 will fall outside the warning limits (1.96).  A control 
chart is then constructed showing the mean ( µ) ), the upper 

and lower action and warning limits, and the time-series 
data y(k). 
 
3.4 Stage 4: Identify the Initial Transient 
 
The final stage is to view the plot of the control chart.  
During the initial transient the time-series data y(k) will be 
“out of control”.  Once the model reaches steady-state, the 
data will be “in-control”.  Bissell (1994) identifies a num-
ber of rules for determining whether a control chart is 
showing data that are out of control: 
 

• The time-series data violates an action limit (note 
that occasional violations, 1 in 1000, are to be ex-
pected for in-control data, and can be explained 
by Type I errors). 

• Two consecutive values violate either the upper or 
the lower warning limit. 

• Frequent values in relatively close succession that 
violate a warning limit. 

• Persistent trend in the time-series data. 
• A run of seven or more values on either side of 

the mean ( µ) ). 

• Excessive zig-zagging, with few points near to the 
mean ( µ) ), and many near to the control limits. 

• The warm-up period for the model can be selected 
by identifying the point at which the time-series 
data is in-control and remains in-control. 
If a steady-state cannot be found this could mean one 
of two things.  Firstly, the model has not been run for long 
enough to reach a steady-state.  This can simply be ad-
dressed by returning to stage 1 and running the model for 
longer.  Secondly, the model does not ever reach a steady-
state and that the output should be classified as transient. 

A summary of the SPC method is provided in Figure 1. 
 

Perform multiple replications 
(at least 5-10) and 
collect output data

k=1

Calculate y(k)
(equation 3)

Is lag 1 
autocorrelation < 0.1?

Is data normally
distributed (K-S test)?

Is the number of
batches (b) >= 60?

Determine parameters for SPC
and determine WL and AL

(equations 6 and 7)

Construct control chart

Is the data in 
control in the latter part 

of the time-series?

Select the warm-up period from
the point at which the series is

first in control

Increase run-length

Increase k

No

Yes

No

No

No

Yes

Yes

Yes

 

Figure 1: Summary of the SPC Method 
 
4 EXAMPLE APPLICATION  

OF THE SPC METHOD 
 
In order to demonstrate the use of the SPC method it is now 
applied to a model that has been used in a real-life simula-
tion study.  The model represents an engine block machining 
line.  The production facility consists of 19 operations that 
are performed in series with some having multiple machines.  
Each operation is separated by a buffer area.  Machine fail-
ures and tool-changes are the primary source of stochastic-
ity.  Throughput is the main measure of system performance.  
Five replications were performed with a run length of 1,000 
hours.  Statistics were collected on hourly throughput.  Fig- 
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Figure 2: Engine Block Machining Line: Hourly Throughput (Mean of 5 Replications) 
 
ure 2 shows the time-series of hourly throughput, calculated 
as the mean of the five replications. 

The initial transient for the model’s output is not 
known.  Therefore, the performance of the SPC method is 
tested in two ways.  First, by comparing the result with other 
methods.  Here time-series inspection and Welch’s method 
are used for comparison, on the grounds that they appear to 
be in most frequent use.  Second, an initialization bias test is 
applied to the results from the three warm-up methods.  This 
determines whether the selected warm-up period is suffi-
ciently long to remove any initialization bias.  Schruben at 
al’s (1983) optimal test is used for this purpose. 

 
4.1 Result from the SPC Method 
 
The Kolmogorov-Smirnov test shows that the data are 
normally distributed even at a batch size (k) of 1 (Table2). 
The data are, however, quite highly autocorrelated.  It is 
not until the batch size is increased to 8 that the autocorre-
lation criterion is met.  Based on this batch size the control 
chart parameters are determined (Table3) and the chart is 
constructed (Figure 3). 

Observation 1 and 3 are both below the lower warning 
limit, suggesting a warm-up period of at least 3 observa-
tions.  Further inspection reveals, however, that observa-
tions 16 to 23 are all above the mean, breaking the rules for 
the chart to be in-control.  Indeed, the majority of the ob-
servations between 7 and 25 are above the mean.  This 
suggests that there may be some positive bias in this part of 
the time-series.  It is concluded that a warm-up period of 
25 observations, or 200 (25k) hours, is required. 
 
4.2 Result from the Time-series Inspection Method 
 
A detailed inspection of the time-series in Figure 2 shows 
that the first 9 observations are all below the apparent mean 
level.  A warm-up period of 9 hours is therefore estimated. 
 

Table 2: Autocorrelation and Normality Tests for Engine 
Block Machining Line Model 

  Test for normality 
Batch size 

(k) 
Lag 1 auto-
correlation 

 
K-S value  

Results for K-S 
(α=0.05) 

1 0.49 0.045 Reject 
2 0.46 0.055 Accept 
4 0.35 0.078 Accept 

    * 8 0.02 0.097 Accept 
 
Table 3: SPC Parameters for Engine Block Machining 
Line Model (k  = 8) 

Mean Standard 
deviation 

Warning 
limits 

Actions 
limits 

60.61 18.76 60.61 ± 
16.45 

60.61 ± 
25.93 

 
4.3 Result from Welch’s Method 
 
A window size of 50 is required to obtain a reasonably 
smooth line (Figure 4).  Obviously a larger window size 
would provide a smoother line, but the window has not 
been increased since this would lead to a more conserva-
tive estimate of the warm-up period.  Based on the time-
series presented in Figure 4  a  warm-up period of 300 
hours is estimated.  A shorter period of nearer 100 hours 
might be selected, but there is some evidence of positive 
bias between observations 100 and 300 (the moving aver-
age appears to be higher). 
 
4.4 Comparison of Results 
 
The results for the estimated warm-up period for the en-
gine block machining line are summarised in Table4, along 
with the results of the initialization bias test.  It is immedi-
ately obvious that the time-series inspection method does 
not detect the positive bias in the early part of the time- 
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Figure 3: Control Chart for Engine Block Machining Line Model 
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Figure 4: Welch’s Method for Engine Block Machining Line Model 
 
Table 4: Comparison of Results for Engine Block Machin-
ing Line Model 

  Initialization bias 
Optimal test 
(α=0.05) 

 
Method 

Estimated 
warm-up period 

Negative 
bias 

Positive 
bias 

SPC 
method 

200 No No 

Time-series 
inspection 

9 No Yes 

Welch’s 
method 

300 No No 

 
series.  Both the SPC method and Welch’s method identify 
and delete this bias, although it should be noted that the 
SPC method does so with more clarity.  Whereas the con-
trol chart clearly shows the breaking of rules for being in-
control, in Welch’s method the bias is only detected by a 
subtle rise in the moving average.  Had a warm-up period 
of 100 hours been selected from Welch’s method the posi-
tive bias would still have been present.  Further to this, 
Welch’s method is much more conservative than the SPC 
method with a further 100 observations being deleted.  
This is not surprising since it is generally acknowledged 
that methods based on cumulative statistics are more con-
servative (Gafarian et al., 1978; Wilson and Pritsker, 1978; 
Pawlikowski, 1990; Roth, 1994). 

The exact reason for the positive bias at the start of the 
run is unclear, but it is believed to be a consequence of the 
assumptions made in initializing the machine breakdowns.  
At the start of the run it is assumed that all the machines 
are halfway through the first time-between failure that is 
sampled.  This may bias the results.  As such a number of 
breakdowns may need to occur before the failures are shuf-
fled sufficiently to lose this bias. 
 
5 DISCUSSION 
 
The example described above demonstrates that the SPC 
method can be an effective approach for identifying the 
warm-up period.  It is apparent that in this case it provides 
a less conservative estimate of the warm-up period than 
does Welch’s method.  It is also apparent that it provides 
more guidance than simply inspecting a time-series, which 
underestimates the amount of warm-up required.  

The SPC approach has various strengths.  First, it is 
based upon visual inspection of a time-series of the data.  
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This has the advantage that the modeller is able to identify 
any unusual patterns in the simulation output, particularly 
if there are outliers or the model does not reach a true 
steady-state. Cumulative statistics approaches, such as 
Welch’s method, can obscure this information.  Second, it 
provides clear rules for determining when a model is in 
steady-state, albeit that these require some interpretation 
due to the probabilistic nature of statistical analysis.  Nei-
ther time-series inspection nor Welch’s method have such 
clear rules for determining when a model is in steady-sate.  
Indeed, one of the problems with Welch’s method is decid-
ing upon an appropriate window size.  Finally, SPC is a 
familiar technique to many operations staff; these being 
among the main users of simulation modelling.  

There are some weaknesses in the approach.  The as-
sumptions are quite rigorous, particularly regarding normal-
ity and independence in the data.  In the example above, 
these issues have been adequately addressed using the batch 
means method.  It is possible, however, that for some simu-
lation output this may not be sufficient.  Indeed, tests on data 
from M/M/1 queuing models with a high traffic intensity 
have shown the need for large batch sizes to reduce the 
autocorrelation.  SPC approaches for dealing with correlated 
and non-normally distributed data could be employed in 
such circumstances (e.g. MacCarthy and Wasusri (2001)), 
but this adds to the complexity of the technique.  Another 
problem is that much output data beyond the initial transient 
may be required to determine the warm-up period, both in 
terms of multiple replications and run-length.  That said, 
these data are likely to be needed anyway in assessing the 
performance of the system under investigation. 
 
6 CONCLUSION 
 
This paper describes a new approach for determining the 
warm-up period for a discrete event simulation model.  The 
SPC method is applied to a model used in a real-life simu-
lation study and the result is compared to the results from 
the simple time-series inspection method and Welch’s 
method.  The strengths and weaknesses of the SPC ap-
proach are discussed. 

Further work is required, particularly in testing the 
method on additional data sets and in comparing it with a 
wider range of approaches.  Consideration may need to be 
given to adapting the method when the output data are very 
highly correlated and/or non-normally distributed.   
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