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ABSTRACT

Two-stage selection procedures have been widely stud
and applied in determining the required sample size (i.
the number of replications or batches) for selecting the b
of k designs. TheEnhanced Two-Stage Selection(ETSS)
procedure is a heuristic two-stage selection procedure t
takes into account not only the variance of samples, b
also the difference of sample means when determining
sample sizes. This paper discusses the use of a conserv
adjustment with the ETSS procedure to increase the pro
ability of correct selection. We show how the adjustme
allocates more simulation replications or batches to mo
promising designs at the second stage. An experimen
performance evaluation demonstrates the efficiency of
adjustment.

1 INTRODUCTION

Discrete-event simulation has been widely used to comp
alternative system designs or operating policies. Wh
evaluatingk alternative system designs, we select one des
as the best and control the probability that the selected des
really is the best. Letµi denote the expected response o
designi. Our goal is to find the design with the smalles
expected responseµ∗ = min1≤i≤k µi . If the design with
the biggest expected response is desired, just replace
with max in the formula. We achieve this goal by using
class of ranking and selection (R&S) procedures. Howev
efficiency is still a key concern for using simulation to solv
R&S problems.

Many R&S procedures are directly or indirectly de
veloped based on Dudewicz and Dalal (1975) or Rinot
(1978) indifference-zone selection procedures. Howev
these indifference-zone selection procedures determine
number of additional replications based on a conservat
least favorable configuration(LFC) assumption and do not
take into account the value of sample means; see Sec
2.2. Some new approaches including Chen et al. (200
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and Chen and Kelton (2000a) incorporate first-stage samp
mean information in determining the number of additiona
replications. In an average case analysis, both procedur
are more efficient in allocating sample sizes than Rinott’
procedure. There are several new approaches aiming to im
prove the efficency of R&S procedures; Berger and Deel
(1994), and Chick (1997) use a Bayesian framework for con
structing ranking and selection procedures. For an overvie
of existing methods of R&S see Law and Kelton (2000) or
Goldsman and Nelson (2001).

Let CS denote the event of “correct selection.” In a
stochastic simulation, a CS can never be guaranteed wi
certainty. The possibility of CS, denoted by P(CS), is
a random variable depending on sample sizes and oth
uncontrollable factors. We propose adding a conservativ
adjustment to the ETSS procedure to increase the possibili
of correct selection.

In Section 2, we provide the background necessar
to understand our proposed procedure. In Section 3, w
present our methodologies and proposed procedure for t
ranking and selection. In Section 4, we show our empirical
experiment results. In Section 5, we give concluding re
marks.

2 BACKGROUND

First, some notations:

Xij : the observations from thej th replication or batch
of the ith design,

Ni : the number of replications or batches for designi,
µi : the expected performance measure for designi,

i.e., µi = E(Xij ),
X̄i : the sample mean performance measure for desig

i, i.e.,
∑Ni
j=1Xij /Ni ,

σ 2
i : the variance of the observed performance measu

of design i from one replication or batch, i.e.,
σ 2
i = Var(Xij ),
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S2
i (Ni): the sample variance of designi with Ni repli-

cations or batches, i.e.,S2
i (Ni) =

∑Ni
j=1(Xij −

X̄i)
2/(Ni − 1).

2.1 Indifference-Zone Selection Procedures

Let µil be thelth smallest of theµi ’s, so thatµi1 ≤ µi2 ≤
. . . ≤ µik . Our goal is to select a design with the smalles
expected responseµi1. However, in practice, if the differ-
ence betweenµi1 andµi2 is very small, we might not care if
we mistakenly choose designi2, whose expected response
isµi2. The “practically significant” differenced∗ (a positive
real number) between the best and a satisfactory design
called the indifference zone in the statistical literature, an
it represents the smallest difference about which we ca
Therefore, we want a procedure that avoids making a lar
number of replications or batches to resolve differences le
than d∗. That means we want P(CS)≥ P ∗ provided that
µi2 −µi1 ≥ d∗, where the minimal CS probabilityP ∗ and
the “indifference” amountd∗ are both specified by the user.

2.2 The Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been wide
studied and applied. Letn0 be the number of initial
replications or batches. The first-stage sample mea
X̄
(1)
i =

∑n0
j=1Xij /n0, and marginal sample variances

S2
i (n0) =

∑n0
j=1(Xij − X̄(1)i )2

n0 − 1
,

for i = 1,2, . . . , k are computed. Based on the number o
initial replications or batchesn0 and the sample variance
estimateS2

i (n0) obtained from the first stage, the number o
additional simulation replications or batches for each desig
in the second stage isNi − n0, where

Ni = max(n0, d(hSi(n0)/d
∗)2e), for i = 1,2, . . . , k, (1)

wheredze is the smallest integer that is greater than or equ
to the real numberz, and whereh (which depends onk, P ∗,
andn0) is a constant which solves Rinott’s (1978) integra
(h can be calculated by the FORTRAN programrinott in
Bechhofer et al. (1995), or can be found from the tables
Wilcox (1984) or Bechhofer et al. (1995)). We then comput
the overall sample means̄Xi = ∑Ni

j=1Xij /Ni , and select

the design with the smallest̄Xi . Basically, the computing
budget is allocated proportionally to the estimated samp
variances. Moreover, the derivation of this procedure
based on the LFC (i.e., assumingµil = µi1 + d∗, for all
l = 2,3, . . . , k). However, in reality, we rarely encounter the
LFC; therefore, this procedure is consequently conservativ
is
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2.3 An EnhancedTwo-Stage Selection (ETSS) Procedure

Chen and Kelton (2000a) propose an ETSS procedure t
takes into account not only the sample variances, but a
the difference of sample means across designs. The ET
is derived with the assumption that we know the true mean
however, the true means are estimated by sample mean
practice. Thus, the ETSS procedure is a heuristic approa
and does not guarantee P(CS)≥ P ∗. The ETSS procedure
uses fewer simulation replications or batches than Rinot
procedure. Moreover, while the observed P(CS)’s of th
ETSS procedure are slightly lower than Rinott’s procedur
they are still generally higher than the specifiedP ∗.

We can improve the efficiency of R&S procedures wit
a pre-selection. The pre-selection approach is a screenin
device that attempts to select a (random-size) subset
the k alternative designs that contains the best one. T
inferior designs will be excluded from further consideration
reducing the overall simulation time. Chen (2001) point
out that the ETSS procedure self-includes an intrinsic sub
selection process, which means that a subset pre-selec
does not actually need to be performed. That is, designi

having the total required sample sizeNi = n0 is excluded
from further simulation. In other words, based onn0 samples
from the first stage, the ETSS procedure has reached cer
confidence on the probability Pr[X̄i > X̄b], for i 6= b, where
X̄b is the smallest of theX̄i ’s in the current stage, i.e.,
X̄b = min1≤i≤k X̄i . Thus, we remove the subset selectio
step from the ETSS procedure listed in Chen and Kelto
(2000a). Let

d̂i = max(d∗, X̄i − X̄b). (2)

The ETSS procedure computes the number of requir
simulation replications or batches for each design based
the following formula

Ni = max(n0, d(hSi(n0)/d̂i)
2e), for i = 1,2, . . . , k. (3)

In Chen and Kelton (2000a), they setri = d̂i/d∗, hi = h/ri ,
and

Ni = max(n0, d(hiSi(n0)/d
∗)2e), for i = 1,2, . . . , k.

Although the sample sizes stay the same, we use equati
(2) and (3) because they are simpler and easier to interp

The ETSS Algorithm:

1. Simulaten0 replications.
2. For each designi, compute the needed additiona

replicationsNi − n0. HereNi will be computed
according to equation (3).
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3. SimulateNi − n0 additional replications for each
designi.

4. Return the valuesb and X̄b.

The difference between equation (3) and (1) is thatd̂i is
being used instead ofd∗. This makes sense when our obje
tive is to achieve Pr[X̄i1 < X̄il , for l = 2,3, . . . , k] ≥ P ∗,
i.e., to find the good designs. If the objective of the simu
tion experiments is to estimate the differences of the expec
responses, we can use different experimental designs
different procedures to obtain more precise estimates.
differences in the sample means are embedded ind̂i ; con-
sequently, this procedure will allocate fewer replications
batches to the less promising designi, whose sample mean
X̄i >> X̄b.

If X̄il−X̄b ≥ d∗ andNil > n0, then forl = 2,3, . . . , k,
the ratio

Nil

Ni2
=
(
di2

dil

)2(
Sil (n0)

Si2(n0)

)2

(4)

is the same as that in the Optimal Computing Budget Al
cation (OCBA) (Chen et al. 2000). On the other hand, t
ratio

Ni1

Ni2
=
(
di2

d∗

)2(
Si1(n0)

Si2(n0)

)2

(5)

is different from that of the OCBA. This is because th
OCBA does not use the indifference parameterd∗.

3 METHODOLOGIES

In this section we present the basis of adding a conserva
adjustment to the ETSS procedure to improve the probab
of correct selection. As with most two-stage selecti
procedures, independent and identically distributed (i.i.
normal input data are required. If the input data are n
i.i.d. normal, users can use batch means (see Chen
Kelton 2000b) to obtain sample means that are essenti
i.i.d. normal.

3.1 Adjustment of the Difference of Sample Means

From our previous experiments, we notice that the first-sta
sample mean of the best design is often not the smal
(i.e. X̄i1 6= X̄b or similarly i1 6= b) when the procedure
makes an incorrect selection. This is because ETSS u
the smallest sample mean from the first stage as a contro
compute simulation replications or batches for the seco
stage. The ETSS procedure usesX̄b, an estimator ofµi1,
as a reference point to estimate the control distance. W
the best design has an unusually large sample mean
non-best design has an unusually small sample mean
the first stage, it often results in a smaller than necess
second stage sample size for the unknown best desig
-
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order to balance the unusual sample mean in the first sta
Consequently, the overall sample mean of the best des
is not the smallest.

Since ETSS uses not only the variances but also the
ferences of sample means in the first stage, the ETSS pro
dure generally requires higher precision in the first stage th
Rinott’s procedure. Chen and Kelton (2000a) suggest us
a constant 0< c < 1 so thatd̂i = max(d∗, c(X̄il − µ̂b)), or
L(X̄i), the two-tailed lower(1−α) confidence limit ofµi , to
computedi = max(d∗, L(X̄i)− µ̂b). The drawback of the
first adjustment is thatNi ’s (i 6= b) are increased by the sam
ratio, and the second adjustment is somewhat cumberso
We propose a new adjustment to the ETSS procedure
takes into consideration the randomness ofX̄b and allocates
more replications or batches to more promising alternativ

Let

d ′i = max(d∗, X̄i − X̄b − ad∗), (6)

wherea > 0. The difference between equations (2) and (
is that the difference in sample means from the first sta
is adjusted with the amountad∗ in equation (6). Moreover,

N ′i = max(n0, d(hSi(n0)/d
′
i )

2e), for i = 1,2, . . . , k. (7)

The difference among equations (1), (3), and (7) lies in t
different values ofd∗, di , andd ′i that are used respectively
With this adjustment, we take into account the randomne
of X̄b and allocate more simulation replications or batch
to more promising designs.

If X̄i = X̄b + nd∗, then

d ′i
di
=
 1 0< n ≤ 1

1/n 1< n ≤ 1+ a
1− a/n 1+ a < n.

Thus, ifN ′i andNi > n0, then

N ′i
Ni
=


1 0< n ≤ 1
n2 1< n ≤ 1+ a
(n/(n− a))2 1+ a < n.

Therefore, designi with the first stage sample mean̄Xi ,
such thatd∗ < X̄i−X̄b ≤ (1+a)d∗, will have significantly
increased simulation replications or batches with this adju
ment. The number of replications for that particular desig
is increased byn2−1 times, wheren = (X̄i − X̄b)/d∗. On
the other hand, if(1+a)d∗ < X̄i−X̄b, the extra simulation
replications or batches allocated with this adjustment is ve
minimal. If X̄i − X̄b ≤ d∗, then there are no changes i
simulation replications or batches.

If a is a very large number (i.e., approaching∞), then
the values ofd ′i will always be equal tod∗. The allocation
of simulation replications or batches will be the same
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the Rinott’s procedure. Since the varianceσb has great
influence on the sample mean̄Xb, we seta = Sb(X̄b)/d∗,
where Sb(X̄b) = Sb(n0)/

√
n0 is the standard deviation

of the sample mean of designb. That is, we will use
X̄b + Sb(X̄b) as the reference point. If the procedure
to find the maximum, then̄Xm − Sm(X̄m) should be used,
whereX̄m = max1≤i≤k X̄i . Even though this is somewha
arbitrary, we know that Pr[µb ≤ X̄b + Sb(X̄b)] ≈ .84.
We use this equation as an approximation and make
inference that Pr[µi1 ≤ X̄b+Sb(X̄b)] ≈ .84. In this setting,
d̂i = max(d∗, X̄i−U(X̄b)), whereU(X̄b) is the upper one-
tailed 0.84 confidence limit ofµb.

We would like to point out that the purpose of R&S
procedures is not to estimateµi1, it is to select designi1
such thatµi1 = min1≤i≤k µi . However, since ETSS uses
X̄b as a reference point, we would prefer to have som
confidence inX̄b. If the variance of the sample of the bes
alternative in the first stage is small, we will have mor
confidence in the mean estimator. Therefore, the adjustm
made will be small. On the other hand, if the variance
large, we are less confident with this mean estimator; a
consequently, the adjustment made will be large.

3.2 Some Intuition of Common Random Numbers

Let PI (CS) denote the probability of correct selection wit
independent sampling, PC(CS) denote P(CS) with Common
Random Numbers (CRNs), eventEl , for l = 2,3, . . . , k,
denoteX̄il − X̄i1 > 0, PrI (El) and PrC(El) denote the
probability of eventEl with independent sampling and with
CRNS, respectively. With independent sampling acro
alternatives,El ’s are positively correlated and by Slepian’
inequality (Tong 1980)

PI (CS) = PrI [E2 andE3 and . . . andEk]
= PrI [E2] . . .PrI [Ek|E2, E3, . . . , Ek−1]

≥
k∏
l=2

PrI [El].

The equality holds fork = 2, for k > 2 the equation holds
with strict inequality.

Furthermore, it is known that in some cases

PrC[E2] . . .PrC[Ek|E2, E3, . . . , Ek−1] ≤
k∏
l=2

PrC[El].

However,

k∏
l=2

PrI [El] ≤
k∏
l=2

PrC[El],
e

e

nt

d

s

and it is possible that the following inequality still holds

PrC[E2] · · ·PrC[Ek|E2, E3, . . . , Ek−1]
≥ PrI [E2] · · ·PrI [Ek|E2, E3, . . . , Ek−1].

That is, PrC(CS) is still larger than or equal to PrI (CS).
The ETSS procedure uses the difference in samp

means and the variance of samples to compute the requir
sample size for each design. When we use CRNs with th
ETSS procedure, we reduce the variance of the differenc
of sample means and improve the precision of pairwis
comparisons. Consequently, the P(CS) of the procedu
may also be improved. Since the proposed procedure
based on the ETSS procedure, we recommend using CR
with the adjusted ETSS procedure.

4 EMPIRICAL EXPERIMENTS

In this section we present some empirical results obtaine
from simulations using the Rinott, ETSS, and ATa (ETSS
with adjustmenta) with a = 0.5, Sb(X̄b)/d∗, and 2. We
also run experiments using CRNs witha = Sb(X̄b)/d∗.

4.1 Experiment 1 Equal Variances

There are ten alternative designs under consideration. Su
poseXij ∼ N (i,62), i = 1,2, . . . ,10, whereN (µ, σ 2)

denotes the normal distribution with meanµ and variance
σ 2. We want to select a design with the minimum mean. I
is obvious that design 1 is the best design. The indifferenc
amountd∗ is set to 0.90 for all cases. We compare the
actual P(CS) of Rinott’s procedure, ETSS, and ATa proce-
dures. ATS indicatesa = Sb(X̄b)/d∗. ATC uses CRNs with
a = Sb(X̄b)/d∗. We use two different initial replications
n0 = 20, and 30. The variance of the best design is 62.
Therefore,Sb(X̄b)/d∗ ≈ (6/√n0)/0.9, and whenn0 = 20
and 30, a ≈ 1.49 and 1.22 respectively. Furthermore,
10,000 independent experiments are performed to obta
the actual P(CS). The number of times we successfull
selected the true best design (design 1 in this example)
counted among the 10,000 independent experiments. P(C
the correct selection percentage, is then obtained by dividin
this number by 10,000.

Table 1 lists the results of Experiment 1. TheP(CS)
column lists the percentage of correct selection. TheT

column lists the average of the total simulation replication
(T = ∑10000

R=1
∑k
i=1NR,i/10000,NR,i is the total number

of replications or batches for designi in theRth independent
run) used in each procedure. TheRinott(20), ETSS(20)and
ATa(20) rows list the results of the procedures with initial
replicationsn0 = 20. Note that the observed P(CS)’s are
all higher than the specifiedP ∗ = 0.90 andP ∗ = 0.95.
ATa has better coverage than the ETSS procedure with
slightly larger total number of replications. Moreover, both
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Table 1: P(CS) and Sample Sizes of Experiment 1
P ∗ = 0.90 P ∗ = 0.95

Procedure P(CS) T P(CS) T

Rinott(20) 99.34% 5256 99.74% 6669
ETSS(20) 95.08% 1197 95.73% 1502
AT.5(20) 96.63% 1391 97.63% 1763
ATS(20) 98.07% 1736 98.79% 2174
AT2(20) 98.81% 2047 99.51% 2578
ATC(20) 100.00% 1937 100.00% 2441
Rinott(30) 99.42% 5001 99.76% 6316
ETSS(30) 96.89% 1234 97.66% 1497
AT.5(30) 97.90% 1405 98.60% 1738
ATS(30) 98.68% 1645 99.42% 2040
AT2(30) 99.23% 2037 99.65% 2556
ATC(30) 100.00% 1773 100.00% 2199

the P(CS) and the total number of replications increa
as a increases. Although the total number of simulatio
replications is significantly smaller, the observed P(CS
are very close to Rinott’s procedure whena = 2.

Because the variance of the sample mean is larger w
a smaller initial sample sizen0, the adjustment yields more
improvement in P(CS) whenn0 is small. Furthermore, using
CRNs with adjusted ETSS and two-stage selection proc
dures generally improves P(CS). With CRNs, the numb
of replications or batches is more than independent sa
pling across alternatives, and effectively allocating mo
samples to more promising alternatives since the frequen
with which the best design has the smallest sample me
in the first stage is higher than independent sampling, i.
PrC[X̄i1 = X̄b] ≥ PrI [X̄i1 = X̄b]. When comparing the
results of ATS and ATC , we increase the number of repli-
cations or batches only of the best three alternatives a
significantly reduce the number of replications or batch
of inferior alternatives.

Tables 2 and 3 list the detailed simulation replication
allocated for each design under different selection procedu
with n0 = 20. We did not list the results ofn0 = 30 because
they are similar. TheRinott, ETSSand ATa columns list
the average simulation replications for each design und
the respective procedure. We would like to point out th
Rinott’s procedure will be the same as the equal allocati
for additional simulation replications in this settings, i.e., th
variances are equal for all designs. Our experimental resu
confirm this observation. On the other hand, in the ETS
and ATa procedures, the number of additional simulatio
replications decreases as the differencesδ̂i,b = X̄i−X̄b(> 0)
increase. This makes sense because asδ̂i,b increases, it is
more likely thatX̄i > X̄b. In other words, as the observed
difference of sample means across alternativesδ̂i,b increases,
it is less likely thatµi < µb.

The ratio of the average number of simulation repl
cations allocated for design 10 and design 1 of Rinot
procedure is 1.0019 (527/526) whenP ∗ = 0.90 and
Table 2: Detailed Sample Sizes forP ∗ = 0.90 and
n0 = 20 of Experiment 1
Dn Rinott ETSS AT.5 ATS AT2 ATC
1 526 458 485 506 516 528
2 527 304 354 426 466 528
3 526 175 230 315 387 497
4 526 96 127 206 283 194
5 522 48 67 117 174 68
6 524 30 37 62 94 35
7 522 22 25 34 51 24
8 526 20 21 25 30 20
9 526 20 20 21 22 20
10 527 20 20 20 20 20

Table 3: Detailed Sample Sizes forP ∗ = 0.95 and
n0 = 20 of Experiment 1
Dn Rinott ETSS AT.5 ATS AT2 ATC
1 669 579 615 645 661 671
2 666 389 458 541 596 670
3 666 233 294 395 492 632
4 668 118 169 258 351 244
5 664 60 87 148 218 86
6 669 34 44 74 117 44
7 671 24 29 41 60 28
8 666 21 22 26 33 22
9 661 20 20 22 24 20
10 666 20 20 20 21 20

n0 = 20, which is close to the theoretical value 1
((S10(n0)/S1(n0))

2 = (6/6)2). On the other hand, this ratio
is only 0.0437 (20/458) under the ETSS procedure, see Ta
2. This is where ETSS based procedures can significan
improve the efficiency of the Rinott procedure, i.e., the pe
formance measure of inferior designs are far away from t
best design. Note that 0.0437 is much larger than the theor
ical value 0.01((d∗/di10)

2(S10(n0)/S1(n0))
2 = (0.9/9)2)

becausen0 > Ni for some designi. For example, if we use
n0 = 5 (≥ 0.01× 458), the ETSS procedure would have
eliminated design 10. Moreover, the self-included intrin
sic subset pre-selection of the ETSS procedure has be
performance with largern0, i.e., inferior designs having
Ni = n0.

4.2 Experiment 2 Increasing Variances

This is a variation of Experiment 1. All settings are preserve
except that the variance of each design increases as
mean increases. Namely,Xij ∼ N (i, (6+ (i − 1)/2)2),
i = 1,2, . . . ,10.

The results are listed in Tables 4 through 6. Becau
most designs have larger variances than designs in Exp
iment 1, the total simulation replications are greater tha
Experiment 1. We are less confident of the best selecti
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in the first stage of this setting. Therefore, more simulati
replications are needed to obtain the desired confidence.
procedures allocate more additional simulation replicatio
for designs because of larger variances. For Rinott’s pro
dure, the simulation replications allocation is based entire
on the variances; thus,Ni > Nj when Si(n0) > Sj (n0).
The ETSS and ATa procedures take into consideration th
difference of sample means; therefore,Ni < Nj even though
Si(n0) > Sj (n0). The ETSS procedure has the most si
nificant reduction in the number of replications or batch
in this setting, i.e., the inferior alternatives have the large
variances. All observed P(CS)’s are greater than the sp
fied nominal level. The results of using CRNs are simil
with Experiment 1. Since inferior designs have larger va
ances, we are not confident to exclude those designs fr
further simulations. That is, based onn0 samples from
the first stage, the ETSS procedure cannot conclude
X̄i > X̄b, for i 6= b with a desired confidence. Therefore
additional samples are required for those designs to incre
the confidence.

Table 4: P(CS) and Sample Sizes of Experiment 2
P ∗ = 0.90 P ∗ = 0.95

Procedure P(CS) T P(CS) T

Rinott(20) 99.30% 10224 99.78% 13020
ETSS(20) 93.73% 1518 95.22% 1933
AT.5(20) 95.89% 1835 97.19% 2302
ATS(20) 97.96% 2420 98.60% 3069
AT2(20) 98.50% 2922 99.18% 3697
ATC(20) 100.00% 2507 100.00% 3185
Rinott(30) 99.47% 9757 99.74% 12280
ETSS(30) 96.39% 1489 97.15% 1836
AT.5(30) 97.60% 1763 98.06% 2200
ATS(30) 98.87% 2172 99.22% 2701
AT2(30) 99.22% 2821 99.57% 3524
ATC(30) 100.00% 2178 100.00% 2730

Table 5: Detailed Sample Sizes forP ∗ = 0.90 and
n0 = 20 of Experiment 2
Dn Rinott ETSS AT.5 ATS AT2 ATC
1 526 447 474 505 515 527
2 619 345 407 488 534 620
3 717 241 312 423 509 659
4 822 161 221 326 428 333
5 932 106 143 237 322 140
6 1053 69 94 163 228 77
7 1178 50 67 111 153 51
8 1315 37 46 71 106 38
9 1457 31 37 52 72 31
10 1601 26 30 40 51 27
ll
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Table 6: Detailed Sample Sizes forP ∗ = 0.95 and
n0 = 20 of Experiment 2
Dn Rinott ETSS AT.5 ATS AT2 ATC
1 664 565 599 641 658 670
2 785 444 510 624 683 787
3 911 313 390 540 643 837
4 1042 209 274 417 542 426
5 1181 136 187 301 401 180
6 1344 90 121 203 291 98
7 1500 63 82 133 195 65
8 1679 44 58 94 125 48
9 1861 35 42 62 90 38
10 2049 30 35 48 64 32

4.3 Experiment 3 Decreasing Variances

This is another variation of Experiment 1. All settings are
preserved except that the variance of each design decrease
the mean increases. Namely,Xij ∼ N (i, (6− (i−1)/2)2),
i = 1,2, . . . ,10.

The results are listed in Tables 7 through 9. Becaus
most designs have smaller variances than Experiment 1,
total simulation replications are smaller than Experimen
1. We have more confidence of the best selection in th
first stage of this setting. Therefore, fewer simulation repl
cations are needed to obtain the desired confidence. A
procedures allocate smaller additional simulation replica
tions for designs with inferior designs in this setting, i.e.
the variances decrease as the sample means increase. O
again, ATa has better coverage than ETSS with little ad
ditional replications or batches. Moreover, with CRNs th
procedure effectively allocates extra replications or batch
to more promising alternatives and improves P(CS). Sinc
inferior designs have smaller variances, we are confident
exclude those designs from further simulations, i.e., bas
on the first-stage information the ETSS procedure has co
cluded with certain confidence thatX̄i > X̄b for designi
with Ni = n0.

Table 7: P(CS) and Sample Sizes of Experiment 3
P ∗ = 0.90 P ∗ = 0.95

Procedure P(CS) T P(CS) T

Rinott(20) 99.48% 2361 99.66% 2989
ETSS(20) 95.78% 1038 96.69% 1279
AT.5(20) 97.18% 1164 97.82% 1431
ATS(20) 98.56% 1362 98.84% 1695
AT2(20) 99.02% 1549 99.54% 1948
ATC(20) 99.99% 1563 99.97% 1957
Rinott(30) 99.33% 2247 99.66% 2830
ETSS(30) 97.49% 1078 97.92% 1302
AT.5(30) 98.32% 1206 98.86% 1473
ATS(30) 98.77% 1348 99.37% 1653
AT2(30) 99.27% 1579 99.64% 1954
ATC(30) 100.00% 1476 100.00% 1816
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Table 8: Detailed Sample Sizes forP ∗ = .90 and
n0 = 20 of Experiment 3
Dn Rinott ETSS AT.5 ATS AT2 ATC
1 525 470 493 512 518 527
2 443 267 308 362 400 444
3 367 125 162 223 282 338
4 297 49 69 111 162 116
5 233 24 29 47 73 35
6 179 20 20 23 31 21
7 131 20 20 20 20 20
8 91 20 20 20 20 20
9 59 20 20 20 20 20
10 33 20 20 20 20 20

Table 9: Detailed Sample Sizes forP ∗ = .95 and
n0 = 20 of Experiment 3
Dn Rinott ETSS AT.5 ATS AT2 ATC
1 665 600 619 648 663 671
2 558 334 387 457 511 563
3 465 155 204 284 355 429
4 374 61 84 142 206 147
5 295 27 33 56 93 42
6 228 20 21 25 36 22
7 167 20 20 20 21 20
8 116 20 20 20 20 20
9 74 20 20 20 20 20
10 42 20 20 20 20 20

5 CONCLUSIONS

Many two-stage indifference-selection procedures ign
a large amount of first-stage sampling information. T
ETSS procedure utilizes both the means and variances f
the first stage. Hence, the marginal computational eff
required for the ETSS procedure is minimized, yet t
achieved efficiency improvement is significant. Moreove
the performance of the intrinsic subset pre-selection of
ETSS procedure is as good as the procedure describe
Goldsman and Nelson (2001). Even though ETSS is
heuristic procedure, derived with the assumption that
true means are known, it does have strong basis.

From our experiments, we notice that ETSS often mak
a wrong selection when a non-best alternative has the sm
est sample mean in the first stage. We propose addin
conservative adjustment to ETSS to increase P(CS).
recommend using the adjustmenta = Sb(X̄b)/d

∗, which
is computed dynamically according to the variance of t
best alternative at the first stage. The adjustment effectiv
allocates additional replications or batches to more prom
ing alternatives. We have more confidence in the me
estimator when its variance is small resulting in a smal
adjustment. On the other hand, we have less confidenc
the mean estimator when its variance is large resulting i
in

l-
a

n

larger adjustment. However, conservative users can incre
the value of the adjustment to meet their requirements. F
example, letU(X̄b) be the upper one-tailedP ∗ confidence
limit of µb.

Moreover, since the quality of the first-stage samp
means have great influence in the performance of ET
procedure, we recommend using a larger first-stage sam
size for the ETSS procedure. Note that with the sam
minimal required possibility of correct selectionP ∗, the total
sample sizes usingn0 = 30 are less than usingn0 = 20 and
achieve higher P(CS) at the same time in all our experime
with ATS .

Our experimental results show that the ATa (adjusted
ETSS) procedure is a powerful tool for selecting the be
design out ofk alternatives. The main advantage of th
ATa is that the algorithm determines the number of add
tional simulation replications based on both the means a
variances, which significantly improves the efficiency o
R&S procedures. Furthermore, the added adjustment e
ciently improves P(CS) of the ETSS procedure with on
slightly larger simulation replications. The simplicity of this
method should make it attractive to simulation practitione
or software developers.

One drawback of two-stage selection procedures is t
they rely heavily on the information from only one stage. T
eliminate this drawback, we are working on sequentializin
the ETSS procedure.
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