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ABSTRACT

We compare several simulation estimators for a perfor-
mance measure of a process having multiple regeneration
sequences. We examine the setting of two regeneration se-
quences. We compare two existing estimators, the permuted
estimator and the semi-regenerative estimator, and two new
estimators, a type of U -statistic estimator and a type of
V -statistic estimator. The last two estimators are obtained
by resampling trajectories without and with replacement,
respectively. The permuted estimator and the U -statistic
estimator turn out to be equivalent, but the others are in
general different. We show that when estimating the second
moment of a cumulative cycle reward, the semi-regenerative
and V -statistic estimators have non-negative bias, with the
semi-regenerative bias being larger. The permuted estimator
was previously shown to be unbiased. Although some of
the estimators have different small-sample properties, they
all satisfy central limit theorems with the same asymptotic
variance constant.

1 INTRODUCTION

A regenerative process is a process that has an infinite
sequence of stopping times, known as regeneration points,
at which times the process probabilistically restarts. The
evolution of the process between two successive regeneration
points is called a regenerative cycle, and cycles are i.i.d. (e.g.,
see Shedler 1993). For example, for an irreducible, positive-
recurrent Markov chain, the successive hitting times to a
fixed state constitute a regeneration sequence. The standard
regenerative method (Crane and Iglehart 1975) exploits the
i.i.d. cycle structure in regenerative processes to construct
asymptotically valid confidence intervals for a large class
of performance measures.

Many regenerative processes possess several different
regeneration sequences. For example, for a Markov chain,
each fixed state yields a regeneration sequence, but there are
many choices for the state to use. The standard regenerative
method only uses one of these sequences, and in this paper,
we examine several estimators that exploit more than one
sequence. Throughout the paper, we consider estimating the
second moment of the cumulative cycle reward of a discrete-
time Markov chain on a discrete state space, but the ideas
can also be applied to other performance measures and more
general processes having multiple regeneration sequences.
Also, we consider only two regeneration sequences.

Several methods to exploit multiple regeneration se-
quences have been proposed. Calvin and Nakayama (1998,
2000) developed permuted regenerative estimators, which
can be described in the context of 2 regeneration sequences
as follows. Run a simulation of a fixed number of cycles
from one sequence, and based on the resulting sample path,
calculate an estimate of the performance measure. Construct
a new sample path from the original one by permuting the
cycles from both sequences, and calculate an estimate based
on the new path. Averaging over all permutations yields the
permuted estimator. Calculation of this estimator does not
require constructing all permutations since a simple closed-
form representation for the estimator can be derived. Calvin
and Nakayama (2000) show that the permuted estimator al-
ways has the same expectation as the standard regenerative
estimator, so if the standard estimator is unbiased, so is the
permuted estimator. Moreover, compared to the standard
estimator, the permuted estimator always has no larger, and
typically strictly smaller, variance.

Calvin, Glynn, and Nakayama (2002) developed an-
other approach, the semi-regenerative method, which gets
its name from its close connection to semi-regenerative
processes (see Section 10.6 of Çinlar 1975). The idea is
to fix a set A of states, and to break up the sample path
into trajectories determined by successive entrances into A.
Using the semi-regenerative structure, one derives an alter-
native representation of the performance measure in terms
of expectations of random quantities defined over trajec-
tories, and then constructs an estimator by replacing each
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expectation by its natural estimator. (Calvin, Glynn, and
Nakayama 2002 also present a stratified semi-regenerative
estimator in which trajectories are sampled in an i.i.d. fash-
ion, but we will not consider that approach in this paper.)
Other methods for simulating processes with multiple regen-
eration sequences include the almost regenerative method
(Gunther and Wolff 1980) and A-segments (Zhang and
Ho 1992).

In this paper, we present two new ways to construct
estimators. Both approaches start with a sample path of
a fixed number of cycles with respect to one regeneration
sequence. The path is then broken into trajectories deter-
mined by visits into a set A, and the new estimators are
obtained by resampling the trajectories and averaging over
all possible resamples. One estimator considers resampling
without replacement, which is a type of U -statistic, and
the other resamples with replacement, which is a type of
V -statistic. (See Serfling 1980, Chapter 5, for details on
U - and V -statistics.)

We compare four estimators: the permuted, semi-
regenerative, U -statistic, and V -statistic estimators. We
show that the U -statistic and permuted estimators are equiv-
alent. The other two estimators are different, and we derive
the exact differences of all the estimators based on a sample
path of a fixed number m of cycles from one regeneration
sequence. It turns out that the semi-regenerative and V -
statistic estimators are biased high for any m, with larger
bias for the semi-regenerative estimator. Asymptotically,
all four estimators are equivalent and satisfy central limit
theorems with the same asymptotic variance constant.

The rest of the paper has the following organization.
In Section 2 we describe the mathematical model and the
performance measure considered. We derive the semi-
regenerative estimator in Section 3, and we present the
permuted estimator from Calvin and Nakayama (2000) in
Section 4. Section 5 contains the resampled estimators, and
we compare the four estimators in Section 6. We state some
conclusions in Section 7. All proofs of theorems stated in
this paper are given in Calvin and Nakayama (2002).

2 FRAMEWORK

For simplicity, we specialize the development to discrete-
time Markov chains, but the results hold for more general
processes with multiple regeneration sequences. Let X =
(Xj : j = 0, 1, 2, . . .) be an irreducible positive-recurrent
discrete-time Markov chain on a discrete state space S =
{1, 2, 3, . . .}. For any state x ∈ S, we can define a sequence
of regeneration points T (x) = (Tk(x) : k = 0, 1, 2, . . .),
where T0(x) = inf{j ≥ 0 : Xj = x} and Tk(x) = inf{j >

Tk−1(x) : Xj = x}, k ≥ 1. We call the sample-path segment
(Xj : Tk−1(x) ≤ j < Tk(x)) the kth x-cycle.
Fix a state w ∈ S. For x ∈ S, define

α(x) = Ex

(
τ−1∑
k=0

f (Xk)

)2 ,

where τ = inf{k ≥ 1 : Xk = w} and f : S → � is a
“reward’ function. Our goal is to estimate α(w).

We will compare the estimator of α(w) using the
semi-regenerative method and the permuted estimator of
Calvin and Nakayama (2000), and we will present two
other estimators of α(w) based on resampling. Fix a set
A ⊂ S with w ∈ A. Define T0 = inf{j : Xj ∈ A} and
Tk = inf{j ≥ Tk−1 + 1 : Xj ∈ A} for k ≥ 1.

We will carry out our analysis with A = {1, 2} and
w = 1. Also, we will assume that we simulate one sample
path of a fixed number m of 1-cycles, and let the sample
path be �Xm = (Xj : j = 0, 1, . . . , Tm(1)), where X0 = 1.
Note that τ = T1(1). Also, let W = (Wk : k = 0, 1, 2, . . .)

with Wk = XTk
for k ≥ 0, which is the embedded chain

of X on visits to the set A. Let M = m + |{Tk(2), k ≥ 0 :
Tk(2) < Tm(1)}|, which is the number of returns to the set
A up to time Tm(1), so TM = Tm(1).

The standard estimator of α(1) based on the sample
path �Xm is

tSTD( �Xm) = 1

m

m∑
k=1

Y 2
k , (1)

where

Yk =
Tk(1)−1∑

j=Tk−1(1)

f (Xj )

for k = 1, 2, . . . , m.

3 SEMI-REGENERATIVE ESTIMATOR

We now derive the semi-regenerative estimator for α(1). The
key to applying the semi-regenerative method is deriving
an alternative representation for α(1) based on returns to
the set A. Let T = inf{k ≥ 1 : Xk ∈ A}. For x ∈ A, note
that

α(x) = Ex

[(
T −1∑
k=0

f (Xk)

+
∑
y∈A

I (τ > T, XT = y)

τ−1∑
k=T

f (Xk)

2

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Expanding this formula for α(x), we see that it is composed
of three terms:

α(x) = Ex

(
T −1∑
k=0

f (Xk)

)2
+2

∑
y∈A

Ex

I (τ > T , XT = y)


τ−1∑
k=T

f (Xk)

T −1∑
j=0

f (Xj )




+
∑
y∈A

Ex

I (τ > T , XT = y)

(
τ−1∑
k=T

f (Xk)

)2 . (2)

We now derive new expressions for the second and third
terms in (2). Each summand in the second term in (2)
satisfies

Ex

I (τ > T , XT = y)

τ−1∑
k=T

f (Xk)

T −1∑
j=0

f (Xj )


= F(x, y) e(y),

where

F(x, y) = Ex

[
I (τ > T , XT = y)

T −1∑
k=0

f (Xk)

]
,

e(y) = Ey

[
τ−1∑
k=0

f (Xk)

]
.

Also

e(x) = Ex

[
T −1∑
k=0

f (Xk)

]
+

∑
y∈A

Ex [I (τ > T , XT = y)] e(y),

so letting

q(x) = Ex

[
T −1∑
k=0

f (Xk)

]
,

and G(x, y) = Ex [I (τ > T , XT = y)] , e = (e(x) : x ∈
A), q = (q(x) : x ∈ A), and G = (G(x, y) : x, y ∈ A),
we see that e = q + Ge, or e = (I − G)−1q. Thus, each
summand in the second term in (2) satisfies

Ex

I (τ > T , XT = y)

τ−1∑
k=T

f (Xk)

T −1∑
j=0

Xj


= F(x, y) ((I − G)−1q)(y).
For the summand in the third term in (2), we make the
observation that

Ex

I (τ > T , XT = y)

(
τ−1∑
k=T

f (Xk)

)2
= G(x, y) α(y).

Now define

c(x) = Ex

(
T −1∑
k=0

f (Xk)

)2 .

Let α = (α(x) : x ∈ A), c = (c(x) : x ∈ A), and F =
(F (x, y) : x, y ∈ A). Then, putting this all together, we
get α = c + 2F(I − G)−1q + Gα, so

α = (I − G)−1(c + 2F(I − G)−1q).

Now suppose A = {1, 2} and w = 1. Note that
G(x, 1) = F(x, 1) = 0 for x ∈ A. Let J = (J (x, y) :
x, y ∈ A) with J = (I − G)−1, and note that

J =
(

1 −G(1, 2)

0 1 − G(2, 2)

)−1

=
(

1 G(1, 2)/(1 − G(2, 2))

0 1/(1 − G(2, 2))

)
.

Thus,

α =
(

1 J (1, 2)

0 J (2, 2)

)[(
c(1)

c(2)

)
+ 2

(
0 F(1, 2)

0 F(2, 2)

)(
1 J (1, 2)

0 J (2, 2)

)(
q(1)

q(2)

)]
=

(
c(1) + J (1, 2)c(2)

J (2, 2)c(2)

)
+ 2

(
(F (1, 2) + J (1, 2)F (2, 2))J (2, 2)q(2)

J (2, 2)2F(2, 2)q(2)

)
,

so

α(1) = c(1) + J (1, 2)c(2)

+ 2[F(1, 2) + J (1, 2)F (2, 2)]J (2, 2)q(2). (3)

To derive an estimator based on (3) from the sample path
�Xm of m 1-cycles, we need estimates of the quantities on the
right-hand side of (3). Recall that M was defined such that
TM = Tm(1). For x, y ∈ A, we call a trajectory that begins
in state x and ends in state y an (x, y)-trajectory, and define
h(x, y) = ∑M−1

k=0 I (Wk = x, Wk+1 = y) as the number of
such trajectories along the sample path �Xm. Let H(x) =
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∑M−1
k=0 I (Wk = x), which is the number of trajectories in

�Xm that begin in state x. Note that h(x, 1)+h(x, 2) = H(x)

for x ∈ A. Also, h(1, 2) = h(2, 1) since �Xm is a path of a
fixed number of 1-cycles, and H(1) = m.

For x, y ∈ A, let T1(x, y) = inf{Tk : k ≥ 0, Wk =
x, Wk+1 = y} and Ti(x, y) = inf{Tk ≥ Ti−1(x, y) + 1 :
k ≥ 0, Wk = x, Wk+1 = y} for i ≥ 2. Also, let T ′

1(x, y) =
inf{Tk+1 : k ≥ 0, Wk = x, Wk+1 = y} and T ′

i (x, y) =
inf{Tk+1 : k ≥ 0, Tk ≥ Ti−1(x, y) + 1, Wk = x, Wk+1 =
y} for i ≥ 2. Thus, for k = 1, 2, . . . , h(x, y), the kth
trajectory starting in state x ∈ A and ending in state y ∈ A

begins at time Tk(x, y) and finishes at time T ′
k(x, y), and

we define Yk(x, y) as the sum of the rewards along that
trajectory; i.e.,

Yk(x, y) =
T ′

k(x,y)−1∑
j=Tk(x,y)

f (Xj ).

Define Sj (x, y) = ∑h(x,y)
k=1 Yk(x, y)j .

Now for x ∈ A, observe that (S2(x, 1)+S2(x, 2))/H(x)

and (S1(x, 1) + S1(x, 2))/H(x) are the natural estimators
of c(x) and q(x), respectively. Also, we use h(x, 2)/H(x)

and S1(x, 2)/H(x) as estimators for G(x, 2) and F(x, 2),
respectively. Our estimator of J (1, 2) = G(1, 2)/(1 −
G(2, 2)) is then

Ĵ (1, 2) = h(1, 2)

H(1)

(
1 − h(2, 2)

H(2)

)−1

= h(1, 2)

H(1)

(
H(2)

h(2, 1)

)
= H(2)

H(1)

since h(2, 1) + h(2, 2) = H(2) and h(1, 2) = h(2, 1).
Similarly, our estimator of J (2, 2) = 1/(1 − G(2, 2)) is
Ĵ (2, 2) = H(2)/h(1, 2). Thus, the semi-regenerative esti-
mator of α(1) based on the sample path �Xm is

tSR( �Xm) = 1

H(1)
(S2(1, 1)+S2(1, 2))

+
(

H(2)

H(1)

)
S2(2, 1) + S2(2, 2)

H(2)

+ 2

[
S1(1, 2)

H(1)
+

(
H(2)

H(1)

)
S1(2, 2)

H(2)

]
×

(
H(2)

h(1, 2)

)
S1(2, 1) + S1(2, 2)

H(2)

= 1

m

(
S2(1, 1) + S2(1, 2) + S2(2, 1) + S2(2, 2)

+ 2

h(1, 2)
[S1(1, 2)S1(2, 1) + S1(2, 1)S1(2, 2)

+ S1(1, 2)S1(2, 2) + S1(2, 2)2
])

(4)
since H(1) = m. To simplify the comparison with other
estimators, we define

Q = 1

m

(
S2(1, 1) + S2(1, 2) + S2(2, 1) + S2(2, 2)

+ 2

h(1, 2)

[
S1(1, 2)S1(2, 1) + S1(2, 1)S1(2, 2)

+ S1(1, 2)S1(2, 2)
])

, (5)

so

tSR( �Xm) = Q + 2

mh(1, 2)
S1(2, 2)2. (6)

4 PERMUTED ESTIMATOR

The permuted estimator of α(1) based on the sample path
�Xm is obtained as follows. Recall we defined the stan-
dard estimator of α(1) as tSTD( �Xm) in (1). The permuted
estimator of α(1) is obtained by permuting 2-cycles and
1-cycles to obtain a new sample path �X′

m, and averaging
tSTD( �X′

m) over all possible permuted paths �X′
m. Calvin and

Nakayama (2000) showed that the permuted estimator is

tP( �Xm)

≡ 1

m

(
S2(1, 1) + S2(1, 2) + S2(2, 1)

+ 2

h(1, 2)

[
S1(1, 2)S1(2, 1)

+ S1(1, 2)S1(2, 2) + S1(2, 1)S1(2, 2)
]

+ h(1, 2) − 1

h(1, 2) + 1
S2(2, 2) + 2

h(1, 2) + 1
S1(2, 2)2

)
= Q + 2

m(h(1, 2) + 1)

(
S1(2, 2)2 − S2(2, 2)

)
, (7)

where Q is defined in (5).

5 RESAMPLED ESTIMATORS

We now present two estimators obtained via resampling the
(x, y)-trajectories for x, y ∈ A. One estimator is based on
resampling the (x, y)-trajectories without replacement (i.e.,
a permutation of trajectories), and the other resamples with
replacement.

Fix a sample path �Xm. For x, y ∈ A, define �(x, y)

as the set of permutations of (1, 2, . . . , h(x, y)), and let
� = ×x,y∈A�(x, y). Let �̂(x, y) = {(i1, i2, . . . , ih(x,y)) :
1 ≤ ij ≤ h(x, y) for j = 1, 2, . . . , h(x, y)}, which
is the set of all h(x, y)-dimensional vectors in which
the components are selected with replacement from
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{1, 2, . . . , h(x, y)}. Let �̂ = ×x,y∈A�̂(x, y). Define � =
{(i1, i2, . . . , ih(1,2)) : i1 = 1, ih(1,2) ≤ h(2, 2) + 1, ij ≤
ij+1 for j = 1, 2, . . . , h(1, 2) − 1}. Let � = � × �

and �̂ = �̂ × �, and let (K, D) denote a generic el-
ement of �̂, with K = (K(x, y) : x, y ∈ A) ∈ �̂,
K(x, y) = (Ki(x, y) : i = 1, 2, . . . , h(x, y)) ∈ �̂(x, y),
and D = (D1, D2, . . . , Dh(1,2)) ∈ �. Also, define
Dh(1,2)+1 = h(2, 2) + 1 and the function g : �̂ × � → �
as

g(K, D)

= 1

m

[h(1,1)∑
i=1

YKi(1,1)(1, 1)2

+
h(1,2)∑
i=1

(
YKi(1,2)(1, 2) + YKi(2,1)(2, 1)

+
Di+1−1∑
j=Di

YKj (2,2)(2, 2)

)2]

= 1

m

[h(1,1)∑
i=1

YKi(1,1)(1, 1)2

+
h(1,2)∑
i=1

(
YKi(1,2)(1, 2)2 + YKi(2,1)(2, 1)2

+


Di+1−1∑
j=Di

YKj (2,2)(2, 2)


2

+ 2YKi(1,2)(1, 2)YKi(2,1)(2, 1)

+ 2
{
YKi(1,2)(1, 2) + YKi(2,1)(2, 1)

}
×

Di+1−1∑
j=Di

YKj (2,2)(2, 2)

)]
. (8)

Observe that the function g is conditional on the original
sample path �Xm.

Note that �(x, y) (resp., �̂(x, y)) is the set of all possi-
ble orderings of h(x, y) (x, y)-trajectories, where the (x, y)-
trajectories are chosen without (resp., with) replacement,
and in (8), K(x, y) ∈ �̂(x, y) is one such ordering of h(x, y)

(x, y)-trajectories. Also, note that � is the set of vectors
specifying which (2, 2)-trajectories fall in between each pair-
ing of (1, 2)-trajectory and (2, 1)-trajectory determined by
K(1, 2) and K(2, 1); i.e., for (D1, . . . , Dh(1,2)) ∈ �, “slots”
Dj to Dj+1 − 1 are the locations of the (2, 2)-trajectories
in the ordered list K(2, 2) ∈ �̂(2, 2) of (2, 2)-trajectories
that fall between the (1, 2)-trajectory indexed by Kj(1, 2)

and the (2, 1)-trajectory indexed by Kj(2, 1). Observe that
if Dj = Dj+1, then there are no (2, 2)-trajectories that fall
between the (1, 2)-trajectory indexed by Kj(1, 2) and the
(2, 1)-trajectory indexed by Kj(2, 1).
Suppose we set K◦(x, y) = (1, 2, . . . , h(x, y)) for all
x, y ∈ A, and let K◦ = (K◦(x, y) : x, y ∈ A). Note
that K◦(x, y) ∈ �(x, y) for all x, y ∈ A, and K◦ ∈ �.
Define D◦ = (D◦

1, D◦
2, . . . , D◦

h(1,2)) with D◦
i = min{j :

Tj (2, 2) > Ti(1, 2)} for i ≥ 1. Note that D◦ ∈ �. Then

g(K◦, D◦) = tSTD( �Xm),

the standard estimator of α(1).
We now define the resampled estimators

tU ( �Xm) = 1

|�|
∑

(K,D)∈�

g(K, D) (9)

and

tV ( �Xm) = 1

|�̂|
∑

(K,D)∈�̂

g(K, D), (10)

where tU ( �Xm) is the estimator based on resampling with-
out replacement, and tV ( �Xm) is the estimator with replace-
ment. In addition to resampling trajectories, both estimators
also average over all possible allocations of h(2, 2) (2, 2)-
trajectories to the 1-cycles containing a hit to state 2, which
is accomplished in (9) and (10) by averaging over D ∈ �.
Note that tU ( �Xm) is a type of U -statistic and tV ( �Xm) is a
type of V -statistic.

Figure 1 presents an example of a sample path �Xm (top)
and a path (middle) obtained from �Xm by resampling without
replacement the (x, y)-trajectories, for x, y ∈ A. State 1
corresponds to the horizontal axis, and state 2 corresponds
to the dashed horizontal line. The original path �Xm, which
is shown on top, has m = 5 1-cycles. Also, the original
path has h(1, 1) = 2 (1, 1)-trajectories, h(1, 2) = 3 (1, 2)-
trajectories, h(2, 1) = 3 (2, 1)-trajectories, and h(2, 2) = 3
(2, 2)-trajectories. Moreover, K1(1, 1) = 1, K2(1, 1) = 2;
K1(1, 2) = 1, K2(1, 2) = 2, K3(1, 2) = 3; K1(2, 1) = 1,
K2(2, 1) = 2, K3(2, 1) = 3; K1(2, 2) = 1, K2(2, 2) = 2,
K3(2, 2) = 3; D1 = 1, D2 = 2, D3 = 4, D4 = 4. The
resampled path shown on the bottom has K1(1, 1) = 2,
K2(1, 1) = 1; K1(1, 2) = 3, K2(1, 2) = 1, K3(1, 2) = 2;
K1(2, 1) = 2, K2(2, 1) = 3, K3(2, 1) = 1; K1(2, 2) = 3,
K2(2, 2) = 1, K3(2, 2) = 2; D1 = 1, D2 = 1, D3 = 3,
D4 = 4.

The bottom path in Figure 1 is one possible path ob-
tained from �Xm by resampling with replacement the trajec-
tories. The resampled path has K1(1, 1) = 2, K2(1, 1) = 2;
K1(1, 2) = 3, K2(1, 2) = 1, K3(1, 2) = 3; K1(2, 1) = 2,
K2(2, 1) = 3, K3(2, 1) = 1; K1(2, 2) = 3, K2(2, 2) = 3,
K3(2, 2) = 2; D1 = 1, D2 = 1, D3 = 3, D4 = 4. In the
resampled path, Y2(1, 1) appears twice, and Y1(1, 1) does
not appear. Also, for the (1, 2)-trajectories, Y1(1, 2) appears
once, Y2(1, 2) does not appear, and Y3(1, 2) appears twice.
For the (2, 1)-trajectories, each Yk(2, 1) appears once. For



Calvin and Nakayama
Y (1,1)1

Y (1,2)1

Y (2,2)1 Y (2,1)1 Y (1,1)2

Y (1,2)2

Y (2,2)2 Y (2,2)3 Y (2,1)2 Y (1,2)3 Y (2,1)3

1

2

1

2

Y (1,2)3 Y (2,1)2 Y (1,2)1 Y (2,1)3 Y (2,1)1Y (1,2)2Y (1,1)1Y (1,1)2

Y (2,2)3 Y (2,2)1 Y (2,2)2

1

2

Y (1,2)3 Y (2,1)2 Y (1,2)1 Y (2,1)3 Y (2,1)1Y (1,1)2

Y (2,2)3 Y (2,2)2
Y (1,1)2

Y (2,2)3 Y (1,2)3

Figure 1: A Sample Path (top) and Paths Obtained by Resampling Trajectories Without Replacement (middle) and With
Replacement (bottom)
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the (2, 2)-trajectories, Y1(2, 2) does not appear, Y2(2, 2)

appears once, and Y3(2, 2) appears twice.
Theorem 1 For all �Xm and m, tU ( �Xm) = tP( �Xm)

and

tV ( �Xm) = Q + 2(h(2, 2) − 1)

m h(2, 2) (h(1, 2) + 1)
S1(2, 2)2, (11)

where Q is defined in (5).
Thus, since tU ( �Xm) = tP( �Xm), we see that permuting

trajectories and reallocating (2, 2)-trajectories to the 1-cycles
leads to the same estimator as permuting cycles.

6 COMPARING THE ESTIMATORS

We start by comparing the semi-regenerative estimator
tSR( �Xm) in (6) and the permuted estimator tP( �Xm) in (7).
In the second term in the right-hand side of (7), the sum of
the squares of the Yk(2, 2) (i.e., S2(2, 2)) is subtracted from
the square of the sum (i.e., S1(2, 2)2), whereas the sec-
ond term in the right-hand side of (6) only has the square
of the sum. A similar situation occurs when comparing
the V -statistic estimator tV ( �Xm) in (11) and the permuted
estimator tP( �Xm).

The estimators of α(1) satisfy a complete ordering.
Theorem 2 For all �Xm and m,

tSR( �Xm) ≥ tV ( �Xm) ≥ tU ( �Xm) = tP( �Xm), (12)

where

• the first inequality in (12) is strict if and only if
S1(2, 2) �= 0;

• the second inequality in (12) is strict if and only
if not all the Yk(2, 2), k = 1, 2, . . . , h(2, 2), are
the same (i.e., there exists i, j ∈ {1, 2, . . . , h(2, 2)}
such that Yi(2, 2) �= Yj (2, 2));

• tSR( �Xm) > tP( �Xm) if and only if Yk(2, 2) �= 0 for
some k = 1, 2, . . . , h(2, 2).

Moreover,

E[tSR( �Xm)] ≥ E[tV ( �Xm)] ≥ E[tU ( �Xm)] (13)

= E[tP( �Xm)] = α(1),

where

• the first inequality in (13) is strict if and only if
P [S1(2, 2) = 0] < 1;

• the second inequality in (13) is strict if and only
if Var[Y1(2, 2)] > 0;

• E[tSR( �Xm)] > E[tP( �Xm)] if and only if
P [Y1(2, 2) = 0] < 1.

Thus, tSR( �Xm) and tV ( �Xm) are biased high.
We now compare some asymptotic properties of our

estimators. Let
D→ denote convergence in distribution and

N(a, b) denote a normal distribution with mean a and
variance b.

Theorem 3 Assume E[(∑T1(1)−1
j=0 |f (Xj )|)4] < ∞.

Then for t ( �Xm) defined as either tP( �Xm), tSR( �Xm), or
tV ( �Xm), we have that t ( �Xm) converges with probability
one to α(1) while a suitably standardized version of t ( �Xm)

converges in distribution to a normal distribution with mean
zero and variance σ 2

α , i.e.,

t ( �Xm) → α(1), a.s.,

and

√
m
[
t ( �Xm) − α(1)

] D→ N(0, σ 2
α )

as m → ∞, for some constant σ 2
α > 0, where σ 2

α is the
same for all three estimators and is given in Calvin and
Nakayama (2000).

For all of the estimators of α, one can estimate the
asymptotic variance constant σ 2

α from one simulation run.
Thus, one does not need to run multiple replications to
obtain estimates of the asymptotic variance. See Calvin
and Nakayama (2000) for details.

7 CONCLUSIONS

In this paper we showed that a wide spectrum of estima-
tors can be obtained in simulations of processes having
multiple regeneration sequences. We compared some of
these estimators, two of which were proposed previously
(the permuted and semi-regenerative estimators) and two
are new (the U - and V -statistic estimators). We showed
that the U -statistic and permuted estimators are equivalent.
All of the other estimators are in general different, but
they are asymptotically equivalent and they all satisfy the
same central limit theorem. When estimating the second
moment of a cycle reward, we showed that the estimators
satisfy a complete ordering, with the semi-regenerative es-
timator being the largest, the V -statistic estimator being
next largest, and the U -statistic and permuted estimators
being the smallest. More work is needed to analyze the
behavior of these estimators for other performance measures
and to determine which is the “best” (perhaps in terms of
smallest mean squared error) for a specific measure in the
small-sample context.
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