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ABSTRACT rival times is ignored, then simulation results may grossly
underestimate system congestion.
Providing accurate and automated input-modeling support Much of the past work on time-series input processes

is one of the challenging problems in the application of is based on linear models, such as the ARMA class or
computer simulation. The models incorporated in current those which underlie Kalman filtering and related methods
input-modeling software packages often fall short of whatis (Chatfield 1999). Mallows (1967) shows that the linearity
needed because they emphasize independent and identicallyof these models imply normal marginal distributions, but
distributed processes, while dependent time-series processeshere are many physical situations in which the marginals
occur naturally in the simulation of many real-life systems. of the time series are non-normal. Motivated by this, there
This paper introduces a statistical methodology for fitting has been considerable research on modeling time series
stochastic models to dependent time-series input processeswith marginals from specific families, such as exponential,
Specifically, an automated and statistically valid algorithm gamma, geometric, or general discrete marginal distributions
is presented to fit ARTA (Autoregressive-to-Anything) pro- (see, for example, Lewis et al. 1989). However, these
cesses with marginal distributions from the Johnson trans- models often allow only limited control of the dependence
lation system to stationary univariate time-series data. The structure and a different model is required for each type of
use of this algorithm is illustrated via a real-life example. marginal distribution.
A way to overcome these limitations is to construct the
1 INTRODUCTION desired process by a monotone transform of a Gaussian linear
process. For example, Cario and Nelson (1996) and Cario
Dependent time-series input processes occur naturally in et al. (2001) take this approach to develop models for rep-
the simulation of many service, communications, and man- resenting and generating stationary univariate time-series
ufacturing systems. For example, Melamed et al. (1992) processes and finite-dimensional random vectors, respec-
observe autocorrelation in sequences of compressed videotively. The central idea in the former study is to transform a
frame bitrates, while Ware et al. (1998) report that the times Gaussian autoregressive process into the desired univariate
between file accesses on a computer network frequently ex- time-series input process that they presume as having an
hibit burstiness, as characterized by a sequence of short ARTA (Autoregressive-To-Anything) distribution, while the
interaccess times followed by one or more long ones. Later latter study transforms a multivariate normal random vector
in this article, we model a pressure variable of a continuous- into the desired random vector that they refer to as hav-
flow production line that is measured at fixed time intervals; ing a NORTA (Normal-To-Anything) distribution. In both
these measurements exhibit strong series dependence andtudies, the authors manipulate the correlations of the corre-
have been previously studied by Cario and Nelson (1998). sponding Gaussian process so that they achieve the desired
The development of models for such time-series pro- correlations for the simulation input process. They assume
cesses is motivated by the fact that ignoring dependence — as is common in the simulation input-modeling literature
can lead to performance measures that are seriously in error— that the desired marginal distribution and dependence
and a significant distortion of the simulated system. An structure (specified via correlations) are given. However,
illustration is given by Livny et al. (1993), who examine the there is no rigorously justified method for fitting the input
impact of autocorrelation on queueing systems and report model when only raw data generated by an unknown process
that when positive autocorrelation among, say, the interar- are available. Therefore, the purpose of the present paper
is to solve the problem of fitting stochastic input models to
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stationary univariate time-series data and, specifically, fit- A is a scale parameter, ang(-) is one of the following
ting ARTA processes with marginal distributions from the transformations:
Johnson translation system.

To facilitate a detailed discussion of the data-fitting log (y) for the § (lognormal) family
problem, we first review the essential ideas involved in sinh~1(y) for the S, (unbounded) family
ARTA processes suggested by Cario and Nelson (1996). f(y) =
The rest of the paper is organized around the presentation log (ﬁ—y) for the S (bounded) family
of the three key levels of solving the data-fitting problem.

In Section 3, we provide the iterative fitting algorithm and Y for the Sy (normal) family.

the statistical properties of the resulting estimators, and in
Section 4, we give a brief review of the numerical methods
used to implement the suggested algorithm. Section 5
provides a real-life example demonstrating the use of the
algorithm and Section 6 gives concluding remarks.

There is a unique family (choice gf) for each feasible
combination of finite skewness and kurtosis that determine
the parameterg ands. Any mean and (positive) variance
can be attained by any one of the families by the manipulation
of the parameters andg. Within each family, a distribution
is completely specified by the values of the parameters
(v, 8, A, £); the range o depends on the family of interest
hnson 1949).

The Johnson translation system provides good represen-
tations for unimodal distributions and can represent certain
bimodal shapes, but not three or more modes. lllustra-
tions of the shapes of the Johnson-type probability density
functions can be found in Johnson (1987). The first four
moments of all distributions in the familieg SSg, Sy, and

Sy are finite. Nevertheless, the ability to match any (finite)
first four moments provides a great deal of flexibility that
is sufficient for many practical problems.

2 OVERVIEW OF THE ARTA FRAMEWORK

In this section, we introduce the notation we will use and (Jo
provide a brief review of the Johnson translation system;
we then describe ARTA processes.

2.1 Notation

We let the generic univariate input random variable be de-
noted byX, with marginal cumulative distribution function
(cdf) Fx. The cdf of the standard normal distribution is
denoted by® and its probability density function bg.
The mean of a random variable is denoted /byand its
variance byo?.

A univariate time-series input process is denoted by
{X;;t=12,...}. The term “time series" means that the
random variables may be dependent in sequence, such as th
month-to-month demands for a product by a customer. We

2.3 ARTA Processes

An ARTA process is a time series with arbitrary marginal
distribution and autocorrelation structure specified through
Sinite lag p. It is based on the construction of a Gaussian

o . standard time-series4;; t = 1, 2, ..., n} as a base process,
denote any realization of lengthfrom the input proces¥, . : .
by {xi: 1 =12 n}. Boldface type is used to denote from which we obtain a series of autocorrelaté®] 1)
. A uniform random variablest;; t = 1,2, ..., n} by using

column vectors; e.gx = (x1, x2, ..., X)) .

We account for dependence between random vari-
ables that are lag- apart, say X; and X,_j, via
their product-moment correlation defined ag (k) =
E[072(X; — ) (X;—n — )], whereX, has mean and
varianceo? for all ¢ due to the assumption of stationarity
of the input process.

the probability-integral transformatioti; = ®(Z;). Then,
the transformatiorX, = F;l[U,] is applied, ensuring that
the input time-series procesX{; t = 1, 2, ..., n} has the
desired marginal distributiof’y. This approach works for
any marginal distribution, althoughV};1 may have to be
evaluated by an approximate numerical method when there
is no exact closed-form expression. The inverse cdf method
is an essential ingredient of the framework described in the
remainder of this section.

In the ARTA framework, the base procesg{ t =
1,2,..., n}isastationary, standard Gaussian autoregressive
process of ordep (denoted ARp)) with the representation

2.2 Johnson Translation System

The Johnson translation system for a random varigbie
defined by a cdf of the form

x—§
Fx(x)=o3{y +46f|— ¢, P
X( ) {y f[ A ]} ZI:Zath—h+Yla t:1729"-1n'

h=1
wherey ands are shape parametegds a location parameter,

Theay,, h = 1,2,..., p, are fixed autoregressive coeffi-
cients andY; is white noise, representing that part Bf
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that is not linearly dependent on past observations. The r+ = 1,2,...,n} by an ARTA process whose complete
structure ofY; is such that specification is given by
2 _ _ _
=0 ana = 5 LA 5 = rifeta)
- . o = &+t [u} ()

Choosingr; appropriately ensures that eachis marginally §
standard normal while the autoregressive coefficients
h = 1,2,..., p, uniquely determine the autocorrelation Where
structure of the base procegs,(h), h = 1,2, ..., p. Cario P
and Nelson (1996) have shown that the lagiput auto- Z, = Zahzt—h 1y, )
correlation px (h) of the time-series input processX{; el
t =1,2,...,n}is a continuous, nondecreasing function of

the lag# autocorrelatiorpz (k) of the base process. There- withY;,t = p+1, p+2, ..., n, independent and identically
fore, if both the marginal distributioy and the desired distributed Gaussian random variables with mean zero and

input autocorrelationgy (h), h = 1,2, ..., p, are known, varianceaf. The value ofof that is required to forc€; to
then one can adjust the dependence in Zheprocess to have variance 1 is completely determineddayao, .. ., ap
yield the desired dependence in tigprocess by using any  (Wei 1990). Therefore, we will writey = g (p, ), where
of the computationally feasible methods suggested by Song a = (al, az,...,ap), and no longer considedtﬁ as a

et al. (1996), Cario and Nelson (1998), and Chen (2001). parameter to be estimated. And from here on when we
The problem that has not been addressed is estimating thesay “ARTA process,” we will mean an ARTA process with
parameters of an ARTA process when only raw data pro- Johnson-type marginals.

duced by an unknown process are available. We will attack It is easy to see from Equations (1) and (2) that fitting

this problem in the remainder of the paper. an ARTA process to data corresponds to the estimation of
fyv, 8, A, & p,anday for h = 1,2,..., p. For ease

3 FITTING ARTA MODELS of presentation of the ARTA fitting algorithm, we assume

that the order of the underlying base procgssand the
In this section, we present the ARTA fitting algorithm to-  type of the Johnson transformatighare known. Clearly,
gether with the theory that supports it and the statistical these also need to be determined in general. We address

properties that justify its use. this issue in Section 4.
Let ¥ correspond to the vector of ARTA parameters,
3.1 The Model ¥ = (A8, y.6 a1, a2,...,ap), and consider the standard-

ized white noise process
We are particularly interested in input modeling problems
in which data are plentiful and nearly automated input mod- Y; Zy — Zle apZi_p,
eling is required. Consequently, we use a member of the Vi () g (p, ) = g (p,a)
Johnson translation system to characterize the marginal dis-
tribution of the input process. A robust method for fitting  If we further write the base random varialdgas a function
target distributions from the Johnson translation system to of the input random variablel; using (1), then we get
i.i.d. data is suggested by Swain et al. (1988) and imple- the following expression for the standardized white noise
mented in software called FITTR1. They demonstrate the process:
robustness and computational efficiency of least-squares,
minimum Ly norm, and minimun’L norm techniques for v +8f [#] Y (y +5f [Xr%/*é“])
estimating Johnson-type marginals. We believe that similar V; (¢) =

techniques can be effectively adapted to fitting ARTA mod- g(p. ) 3)

els to dependent univariate data. We outline our approach

below. . .
Let{X;;r =1, 2,..., n}denote a stationary univariate SupposeX; is actually an ARTA process with the

parameter vectoy*. If we have all of the parameter values
correct, ¥ = y*, thenV, (¥*), t = p+1,p+2....n,

are independent and identically distributed (i.i.d.) standard
normal random variables. Thus, the fitting procedure we
propose searches for parameters that mékey), ¢+ =
p+1 p+2, ..., n, appear to be such a sample.

time-series input process. The goal is to approximaig {
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Let Vip41) (V) =< Vipt2) (¥) < -+ < V() (¥) denote
the order statistics corresponding to the random variable

Vi), t=p+Lp+2....,n If y = ¢* then the
transformed variat®, (¥*) = @ {V(,) (¥*)} has the dis-
tribution of ther™" order statistic in a random sample of size
n— p from the uniform distribution on the unit interved, 1).
SinceR(, (¥*) has meam, = (r — p) /(n—p+1) (Kendall
and Stuart 1979), we can wri,, (¥*) = p; + & (¥*) so
that the &, (¥*); t = p+ 1, p+ 2,...,n} are translated
uniform order statistics with mean zero and covariance

Cov(ej (¥"). ex ('/’*))

Let Ro(¥) = (Rip+1 (W), Rpi2) (@), - .-, Ruy@W)), o =
pn)’, and e(¥) = (Serl('ﬁ)v 5p+2('ﬁ)7 cen
en(¥)), sothae(Y¥*) = Ro(¥™)—p. Since the firstand sec-
ond moments of the uniformized order statistics are known
and easily computed, we exploit this fact to develop a single,
distribution-free formulation of the fitting problem. Specif-
ically, we minimize the distance betweegnand Rq ()

as a function ofy with respect to some metric defined
by a quadratic form in thén — p)-dimensional Euclidean
space. IfW is the (n — p) x (n — p) matrix associated
with this quadratic form, then the parameter estimates can
be obtained via least-squares fitting given by

_ P - pr)

, l<j<k<n.
n_praz PTIE/EEET

minv,

Sw () =e¥) We (¥)

subjectto ¥ € V. “)
We define the feasible regiolt as follows:
¥ ={(y,8,Ar,& a1,02,...,0,) :
§ >0,
>0 for f =Sy,
A > X — & for f = Sg,
=1 for f =S, and f = Sy.
< Xq@ for f =S and f = Sp,
§ =0 for f = Sy.
|RootOf (1 — >"F_; &y B" =0, B)| > 1},
®)

where the function RootOf is a place holder for representing
all the roots of the equation & ZLlOthBh = 0 in the
variable B. The first three of the constraints (5) ensure the

giving us the diagonally-weighted least-squares (DWLS) pa-
rameter estimators. In expanded form, the objective function
of the DWLS least-squares estimation problem, using (4)
and (6), can be written as

So(¥) = e(¥) De(¥)
= Y wep.) (@ Vi) - p)
t=p+1
(7)
where
_ 20 _
w (. p.1) n—p+D°n—p+2)

(n—p)?@t—pn+1l—r1

and {V;(¢); t = p+ 1 p+2,...,n} is given by (3).
Notice that the use of the uniformized order statistics for
fitting permits a single formulation for not only Johnson-
type distributions, but all continuous distributions, because
the necessary first and second momentsdV, (¥)}; t =
p+1 p+2, ...,n}, are known and easily computed.

3.2 ARTA Fitting Algorithm

One can minimize the objective function (7) subject to the
constraints in (5) by using a general-purpose optimization
algorithm. Unfortunately, many of these algorithms are
dependent upon good initial estimates of the parameters.
Further, the number of model parameters we need to es-
timate is p + 4, which increases linearly with the order
of dependencey, making it even less likely that we can
obtain robust estimates that are independent of the quality
of the initial solution asp gets larger. Fortunately, there
is a natural decomposition of our optimization problem be-
tween determining the Johnson parametesss, A, £) and
the base-process parameté#s, o, ..., o). Further, we
have empirically observed that solvisg (¢) for any given
fixed feasibley, 8, A, & provides pretty robust estimates of
a1, a2, ..., a,. Therefore, we work iteratively between im-
proving the estimates faty, 8, A, &) and (a1, a2, ..., ;).

First, we define the solution set as the collection of
parameters at which all of the entries of the gradient of the

feasibility of the Johnson parameters depending on the family objective functionSp (¥) attain the value of zero. Then, we
of interest, and the last constraint ensures the stationarity of gtart the algorithm with a parameter vector in the feasible
the autoregressive base process, and hence the stationarityegionw (5). Next we solve the least-squares fitting problem

of the input process (Cario and Nelson 1996).

Based on the experience of Swain et al. (1988) and
Kuhl and Wilson (1999), we choose to use the diagonal
weight matrix, W = D, defined as

D=
diag{1/Var (eps1 (¥*))..... 1/ Var (e, (¥v*))}. (6)
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for the Johnson parameteys§, A, & by keeping the base
process parametess, oy, .. ., «, fixed. We call this Stage

1. Then, we solve the least-squares fitting problem for
a1, a2, ..., o, by keepingy, 8, 4, & fixed and we call this
Stage 2. Until the ARTA fitting algorithm reaches a point
in the solution set, we work iteratively between Stage 1 and
Stage 2, converging to a stationary point.
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3.3 Properties of the ARTA Estimators Since strongly consistent estimators of the parameters

of Gaussian ARp) processes are well known, why not
Suppose thaX1, X», ..., X,, are identically distributed ran- incorporate them into our algorithm? Our motivation for
dom variables with a joint ARTA distribution characterized the formulation (7) was to characterize the joint estimation
by the parameter vectgr™. Even if we assume thatthe type  of (y, 8, A, &, a1, @2, ..., @) by a single objective that did

of the Johnson transformatighand the order of dependence  not favor either the Johnson or the base process parameters,
p are known, the DWLS estimators, are not necessarily  leading to a direct proof of the convergence of the numerical
consistent. In the limit, the DWLS problem requires only algorithm. Alternative formulations that lead to strongly
that the empirical distribution oR;(¢) = ® {V;(¢¥)} con- consistent estimators of the entire vector of paramajférs
verges tolU (0, 1), the uniform distribution o0, 1). This are a subject of future research.

can occur at parameter settings other tifdnfor instance at

(y=y*6=86" A=A &=&a,=0,h=12,..., p). 4 IMPLEMENTATION

Of course, in finite samples the joint distribution of the

order statistics does matter in minimizing (7), and, as The implementation of the ARTA fitting algorithm gives rise

shown in Biller and Nelson (2002b), only @t = ¢* are to a number of issues including the determination of the
the R, (¢) i.i.d. U (0, 1). This accounts for the performance initial values for input process and base process, character-
of our algorithm in recovering/* when the true process ized by(f,y,38, A, &) and(p, o1, 02, ...,ap), respectively,

is ARTA. the optimization algorithms used to solve each stage of the

Since our goal is data modeling, rather than recovery of algorithm, the assurance of the stationarity of the input
the true distribution, consistency is not a critical property. process, and the positive definiteness of the autocorrelation

Nevertheless, it is desirable. Although the estimafor structure of the base process.

iS not consistent in general, it does have certain limited A common procedure for identifying the type of trans-

consistency properties that are of interest: formation to use from the Johnson translation system is
1. Pfi, - A*]=1and Pf§, — £*]=1. to compute the sample skewness and kurtosis, and then
2. ffay=af.h=12...,p, then Pty, — ¥*] = 1. pick the family associated with that point on the (skewness,

kurtosis) plane. Algorithm AS 99 developed by Hill et al.
(1976) does this, for instance. However, we choose to fit
all of the families and compare the goodness of the fits as
bias and variability in the higher sample moments causes
the likelihood of identifying the wrong transformation to
be very high. Using the Algorithm AS 99, we choose
such starting Johnson parameters that they are feasible for
both the prespecified Johnson transformation and the given
gollection of data points.

The first result is of limited practical value. However,
the second result is helpful in two ways:

We proposed decomposing the algorithm for solv-
ing the least-squares problem into two steps—improving
the estimates ofy, §, A, &) and improving the estimates
of (a1, @2, ..., ap)—because we observed that the esti-
mates of(a1, a2, ..., a,) are robust to poor estimates of
(v, 8, A, €). The second result shows that when we get these
base process parameters right, the least-squares estimator ) e -
of the remaining Johnson parameters are consistent. The . ,USINg the initial estimates for the Johnson parameters,
derivation of the corresponding result is available in Biller 7+ 9 *: §, We transform the input datey, x, ..., x, via
and Nelson (2002b). w=E+Af [(xz —7) /8], t=12...,n. By treating

Notice also that wherp = 0, the first stage of the  the transformed datg, as a sample of length from a
ARTA fitting algorithm reduces to the one suggested by Gaussian autoregressive process, we fit an autoregressive
Swain et al. (1988) and it performs least-squares fitting model by least-squares estimation and, at the same time,
by treating the given sample points as independent. If we determine the order of dependenteia the Schwarz

{X:;t=1,2,...,n} were ii.d. Johnson-type random vari-  criterion, an asymptotically consistent AR order-selection
ables with the parameter sgt = (y*, §*, A*, £%), then the method that has been quite popular in recent applied work.
model with p = 0 would be correct and the transformed e take the resulting estimates as the starting parameter
random variateR ;) (¥*) = ® {y* + 8* f[(X () — £*)/1*1} vector for the underlying base process.

would have the distribution of th&" uniform order statistic We choose to perform the DWLS estimation using a

on the unit interval(0, 1). Although Swain et al. (1988) Levenberg-Marquardt (LM) optimization algorithm (Mar-
show empirically that the suggested least-squares estimatorsquardt 1963). Despite its convergence properties, the con-
provide a convenient computational method for fitting any vergence of the LM algorithm in practice might be slow,
member of the Johnson system when= 0, they do not and often this is the case. Therefore, if the termination
present any statistical properties of these estimators. The criterion has not been satisfied in a prespecified number
second result indicates that the fitting procedure of Swain of iterations, then, we resort to the Nelder-Mead algorithm
et al. gives strongly consistent estimators of the Johnson (Olsson 1974).

parameters.
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The ARTA fitting algorithm approximates the input
process by a stationary ARTA model with a positive definite
autocorrelation matrix. It maintains stationarity enforcing
the constraint given as the last line of the definition in (5).
Further, the fitted autocorrelation matrix is always positive
definite, because the autocovariance function of a covariance
stationary sequence with an autoregressive representation is 07
positive definite (Fishman 1973).

207
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5 AN ILLUSTRATIVE EXAMPLE

0.0 T T
In this section, we approximate an input process that has o0 4 o 1 e
been previously studied in Cario and Nelson (1998) by an
ARTA model. They use 519 data points recorded at fixed
time increments on a pressure variable of a continuous-flow
production line at a large chemical manufacturing plant;
these measurements exhibit strong series dependence. 20
Cario and Nelson (1998) chose the Weibull marginal
distribution function. Since their software ARTAFACTS 151
has no capabilities for fitting marginal distributions, they
determined the parameters of the Weibull distribution with 107
the aid of the Arena Input Analyzer (Rockwell Software) that
assumes i.i.d. data and uses maximum likelihood estimation.
In addition, they approximated the input autocorrelation
structure using the estimated autocorrelation function of the

Artafact_pdf(x)
== Artafit(2)_pdf(x)

057

0.0 7

raw data and assumed an order of dependegnee3. We 00 04 ) 08 12
call this model “artafacts" and denote it by “AF" in Table
1. Figure 1: Histogram of the Empirical Pressure Data (with

Our software fit a Johnson unbounded distribution and Nonparametric Density Estimate Superimposed) and the
an autocorrelation structure with = 2 characterized by  propability Density Functions for Fitted Weibull and Johnson
(v, 8,4, &) = (2.046 3.151, 0.457, 1.217) and (a1, &2) = Unbounded Distributions
(1.050, —0.342. We call this model “artafit," denote it by
“ARF(p)" in Table 1, and use to denote its order. The ) )
histogram of the time series and the plots of the probability ~ Table 1: Comparison of the Kolmogorov-Smirnov,

density functions fitted by both models are given in Figure Ander-son-Darling, and KS Spectral Test Statistics
1 AF | ARF(0) | ARF(D) | ARF(2) | ARF(3)

KSx 1764 | 1.038 0.841 0.841 1.538
ADy || 3.295| 0.758 0.758 0.755 2.563
KSyy || 0.004 | 0.509 0.204 0.095 0.099

In the first two rows of Table 1, we report the
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test
statistics comparing the empirical distribution function with
the fitted distributions. The second column corresponds to o ] o
the fit suggested by Cario and Nelson (1998), the third col- &"dAD test statistics, the one with= 2 has a significantly
umn corresponds to the Johnson fit under the assumption of smaller spectral test statistic, providing a better fit for the

independence, and the other columns correspond to JohnsorfUtocorrelation structure of the process. At the same time,
fits under the assumptions of orders 1, 2, and 3, respectively. the artafacts autocorrelations give significantly better fits

The fitted Johnson-type marginal distributions wheg: 1 for the sample autocorrelations than the autocorrelations of
and p = 2 are statistically superior to the one suggested by the artafit(2) model. However, a pure correlation match

Cario and Nelson (1998), particularly in capturing the tail S not the only thing that matters while choosing a good
behavior as indicated by the AD test statistics. representation for the underlying system. This will be clear

In order to check the goodness of the fit of the au- in the the visual analysis of the time-series plots in Figures

tocorrelation structure, we choose to compare the spectral 24 and scatter plots in Figures 5-7.
distribution functions using the Kolmogorov-Smirnov cri- Next, using the artafit and artafacts models, we generate

terion (Anderson 1993). The corresponding test statistics 219 data points. Figures 2, 3, and 4 display the time-series
are provided on the last row of Table 1. Although the plots while Figures 5, 6, and 7 provide the scatter plots of

Johnson-type fits witly = 1 andp = 2 have the same KS  (Xrs ¥r+1), (xr, Xr42), (¥r, x;+3) for the empirical pressure
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data and the data of the fitted artafacts and artafit models. The
sample paths are qualitatively similar, although we observe:
differences that can be partly attributed to the sampling,
error. In the empirical time series, there appear spikes that
cannot be captured by the artafacts model which varies

more consistently about its mean. In addition, comparison=——

of Figure 5 and 6 shows that the artafacts data appears
to be more scattered or random than the empirical data.
Thus, the marginal distribution and autocorrelation structure
of the artafacts process do not perform well in capturing

Figure 5: Scatter Plots afx;, x;+1), (xr, xr+2), (X7, X14+3)
for the Empirical Pressure Data

the characteristics of the time-series process. However, the
artafit(2) model appears to be more successful in representing
the characteristics of the empirical data. Comparison of"
Figures 2 and 4 shows that the artafit(2) model captures

the height of the spikes reasonably well, but the number of

spikes generated by the artafit(2) process is not as large as ~~ ©

the number of spikes generated by the empirical time series.
However, the comparison of Figures 5 and 7 shows that the

Figure 6: Scatter Plots afx;, x;+1), (x7, xr+2), (X7, X14+3)
for the Artafact Data

artafit(2) process is still reasonably successful in capturing
the autocorrelation structure of the empirical time-series,
process. Overall, the artafit(2) process provides a plau5|ble
model for the empirical time series. d

Enpicd PresreDaa

o 100 200 300 aoco 500

Figure 2: Time-series Plot of the Empirical Data

ArdatDaa

Figure 3: Time-series Plot of the Artafacts Data

At Dda

Figure 4: Time-series Plot of the Artafit Data
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Figure 7: Scatter Plots of(x;, x;+1), and

(x;, x;43) for the Artafit Data

(xt ) xt+2) ]

6 CONCLUSION

In this paper, we propose an algorithm to fit stochastic
input models to dependent univariate time-series processes.
In order to demonstrate the use of the algorithm, we fit
an input model to data generated by a physical process.
A comprehensive empirical analysis of the ARTA fitting
algorithm is reported in Biller (2002).

Recently, Biller and Nelson (2002a) suggested a more
comprehensive model for representing and generating sta-
tionary multivariate time-series input processes with arbi-
trary autocorrelation structures and specifically considered
the case of marginal distributions from the Johnson trans-
lation system. Their approach is very similar to the one in
Cario and Nelson (1996), but they use a vector autoregressive
Gaussian process that allows the modeling and generation
of multivariate time-series processes. A natural extension of
the work presented in this paper is to fit stochastic models
to dependent, multivariate time-series input processes. This
is a subject of our future research.
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