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ABSTRACT

Agent-based simulations are models where multiple entiti
sense and stochastically respond to conditions in their loc
environments, mimicking complex large-scale system b
havior. We provide an overview of some important issues
the modeling and analysis of agent-based systems. Exa
ples are drawn from a range of fields: biological modeling
sociological modeling, and industrial applications, thoug
we focus on recent results for a variety of military applica
tions. Based on our experiences with various agent-bas
models, we describe issues that simulation analysts sho
be aware of when embarking on agent-based model dev
opment. We also describe a number of tools (both graphic
and analytical) that we have found particularly useful fo
analyzing these types of simulation models. We conclu
with a discussion of areas in need of further investigatio

1 INTRODUCTION

What is an agent-based simulation (ABS)? While definition
vary, we use this term to mean a simulation made up
agents, objects or entities that behave autonomously. Th
agents are aware of (and interact with) their local env
ronment through simple internal rules for decision-makin
movement, and action. ABS has been proposed for ma
situations involving a large number of heterogeneous ind
viduals, such as vehicles and pedestrians in traffic, peo
in crowds, artificial characters in computer games, agents
financial markets, and humans and machines on battlefiel
The aggregate behavior of the simulated system is the res
of the dense interaction of the relatively simple behavio
of the individual simulated agents.

ABSs have been used for different purposes. One
as an efficient means of graphically portraying behavio
that seems realistic. Flocks and schools have been used
examples of robust self-organizing systems in the literatu
of parallel and distributed computing systems for quite som
time (Kleinrock 1985, Reynolds 1987).
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Another reason for employing ABS is to leverage sim
ulation’s advantages in cost and time relative to many rea
world experiments. For example, Dudenhoeffer, Bruemme
and Davis (2001) use an ABS model to examine the ab
ity of a human operator to coordinate and interact wit
large-scale robotic forces. ABS is attractive because th
technology, cost, and time limitations prohibit extensiv
live testing—even though live testing is preferred.

Sometimes the focus of ABS development is on th
modeling aspects. Mason and Moffat (2001) develop objec
oriented tools in C++ for implementing command-and
control in military simulations. The “proof of principle” is
their ability to implement command agents representing ea
of 12 different roles in a simulation of a services-assiste
noncombatant evacuation operation.

An emerging area of interest is that ofcreating or
defining behavior. Dickie (2002) considers simple rules
for controlling unmanned autonomous vehicles involved i
a search-and-detection mission. In such cases, the wa
simulation is designed, analyzed, and used can be marke
different. Mizuta and Yamagata (2001) describe anoth
ABS meant to create behavior. Their model of greenhou
gas emissions trading is intended to help establish efficie
rules for governing this developing international marke
Erlenbruch (2002) explores tactical concepts in Germa
peacekeeping operations by examining the impact of a
thorizing soldiers to use different types of actions whe
dealing with a variety of civilian behaviors.

Our interest in agent-based modeling arose from wo
we are doing with the United States Marine Corps’ProjectA
bert (Marine Corps Combat Development Command 200
see also Horne and Leonardi 2001, Horne and Johns
2002). This is an unclassified, international effort to pro
vide both the research and technological infrastructure f
examining new technologies, and provide a mechanism f
transferring this knowledge and skills from the analysts t
the decision-makers. Agent-based modeling is a cornersto
of Project Albert’s efforts because of the strong interest i
so-calledintangibles: human characteristics such as trust
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unit cohesion, fatigue, morale, leadership, aggressivene
fear, compassion, and so forth. Decision-makers might se
answers to questions such as: What factors affect the abi
to quickly complete the mission with minimum casualties
Intangibles, as well as equipment, tactics, and personnel,
thought to play an important role in determining the succe
of many operations. Applications currently under investig
tion include small-unit military operations, reconnaissanc
peacekeeping, convoy protection, food distribution, cou
terterrorism, and minesweeping.

In Section 2 we describe a few key modeling aspects
agent-based simulations. In Section 3 we discuss why
analysis of these relatively simple simulations can, noneth
less, be quite complex. We also describe some effect
approaches for systematically exploring these models,
ing examples from recent studies that illustrate some
the design and analysis techniques we have found par
ularly useful. In Section 4 we conclude with a discussio
of issues related to ABS modeling and analysis that me
further investigation.

2 SIMPLE MODELS

Consider the process of people leaving a stadium afte
major sports event. Scripting the paths for a large numb
of individual objects would be tedious at best, and attemp
to make global changes to the models would be difficu
In contrast, an agent (in this case, a person) may be giv
very simple rules such as:

• Try to move toward the closest exit gate.
• If there are too many people in front of you, try

moving to the left or right.
• If you’ve waited a certain amount of time without

getting closer, try moving away from the crowd.
• Try to stay close to others in your group of family

and friends.

As another example, Reynolds (1987) describes three ba
behaviors for his notional birds (called “boids”):

• collision avoidance,
• velocity matching, and
• flock centering.

While these rules are simple to list, coding them in
reasonable manner can sometimes be tricky. Once the ru
have been coded, however, it is easy topopulatean ABS
with either a small or a large group of agents. As we lat
discuss, it may or may not be easy torun large-scale ABSs.

Agents can be programmed to evolve or learn durin
the course of the simulation run. For example, they mig
have a set of 10 possible rules they could use. Over tim
they could assess how well the different rules are workin
The appearance of “learning” can take place by an ag
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updating its probability of taking certain actions (or updatin
the weights it assigns for different rules) because of the
perceived past effectiveness. For example, an increase
student enrollment and a concurrent decrease in park
spaces on our campus meant that during the first few we
of the academic term, parking was extremely difficult to fin
between 8:30 and 10:30 in the morning. After a few week
people had changed their behaviors: some arrived ear
to assure they could park close to their building(s); som
arrived later when spaces opened up as morning clas
were completed and others headed home or out to lun
others parked off campus and walked in to avoid searchi
for parking spaces; and many began biking or (in the ca
of students) using the shuttle between campus and b
housing. Similarly, with many agents in a model one ca
simulate this behavior. Agents that begin the simulatio
as identical entities may end up exhibiting quite differen
behavior.

3 COMPLEX ANALYSES

Why do we feel that analyzing these simple models is
complex task? There are several reasons. First and forem
it requires a different frame of mind than we are used
for the analysis of, e.g., manufacturing simulation.

Sacks et al. (1989) state that “The three primary o
jectives of computer experiments are: (i)predicting the
response at untried inputs, (ii)optimizinga function of the
input parameters, and (iii)calibrating the computer code to
physical data.” Unfortunately, for many agent-based mode
we cannot credibly do any of these! For example, disas
relief efforts are thankfully not an every day occurrenc
When they do happen there are only a few factors we mig
be able tomanipulate, such as distributing food from a
single convoy or scattering several smaller distribution sit
over a larger area. We cannot “control” the fear, hunger,
aggressiveness of people seeking food or attempting to ev
uate an area after a natural disaster. Ethical implications
experimenting on human subjects also must be consider
So, while we may be able to collect anecdotal eviden
on whathappened, we may not be able to measure—eith
during the incident or after the fact—any of the intangibl
factors that might tell uswhy it happened. There may be
no possibility of collecting sufficient data even to calibrat
our ABS, let alone credibly predict or optimize.

Instead, we assert that in many situations the mo
relevant analysis issearching for insightsor gaining a basic
understandingof theABS. This is discussed in more detail b
Kleijnen et al. (2002), along with two other potential goals
finding robust configurations(e.g., systems, decisions, o
policies), andcomparing configurations. Insights we might
hope to glean relate to identifying important factors an
their interactions, as well as finding regions, ranges, a
thresholds where interesting things happen.
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Table 1: The Experimental Environment

Traditional DOE Assumptions Agent-based Model Characteristics
Small or moderate number of factors Large number of factors
Linear or low-order effects Non-linear, non-polynomial behavior
Sparse effects Many substantial effects
Negligible higher-order interactions Substantial higher-order interactions
Homogeneous errors Heterogeneous errors
Normally distributed errors Various error distributions
Black box model Substantial expertise exists
Univariate response Many performance measures of interest
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There is certainly a need for a systematic, scientifi
approach to analyzing ABSs. Statistical design of expe
ments (DOE) has been very beneficial in both real-wor
and simulation settings, so we can seek to exploit DOE co
cepts for investigating agent-based models. However, th
are differences—some obvious and some more subtle—t
mean a straightforward application of traditional DOE met
ods may not adequately address the questions of inter
Table 1 lists some common assumptions for traditional DO
approaches, as well as characteristics that we feel port
the environment for many ABS studies. In short, whil
ABS models are often much smaller and simpler than oth
types of simulation models, their environment can be qu
complex.

3.1 Implementing Simple Rules

Whenever a new ABS is developed, it is tempting to beg
immediately exploring for insights. However, our exper
ence suggests that the analyst should begin by perform
runs for some very simple scenarios. This is part of th
process of debugging the logic of the code. For examp
we established symmetrical situations as part of learning
use an early version of a time-step ABS modeling platform
Two lines of opposing forces were put in place, and bo
the Red and Blue agents were given identical behaviors.
100 independently seeded runs of the simulation, the B
side always won! It turned out that the internal model log
kept a list of all potential actions. At the beginning of eac
time step, it processed this list in order. Blue agents we
at the top of the list, so they always got to “go first” an
so could eliminate Red agents before any Red shots w
fired. This undesirable behavior had not been noticed by
developers (during the model development process) or ot
users, who had been creating small but more “interestin
scenarios to find out the modeling capabilities. The softwa
designers solved this sequencing problem by randomiz
the order in which the events were processed. However
this had gone unchallenged, then for certain (and perha
large) portions of the response surface, an analyst mi
mistakenly attribute Blue success to the use of particu
tactics, rather than being an artifact of the model.
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Another aspect that can be problematic is the use o
generic descriptions for specific rules or actions. Sometime
these may have different interpretations, meaning that th
analyst may think they understand the consequences of
particular rule or action, but the program logic implements
things differently. As an example, consider an agent’s
movement decision.

Gill and Shi (2002) discuss difficulties that can arise in
coding movement within ABSs. In what follows suppose
there are only two different types of agents—B Blue agents
andR Red agents—and a single flag positioned at the Blue
agents’final goal. Now suppose the user is allowed to chang
weights which correspond to propensities for Blue to move
toward or away from Red agents (with weightWR) and
the Flag (with weightWF ). Let the possible weights range
between−100 and+100 with default values of zero. In
the default case, the Blue agents have no impetus to head
any particular direction, so their movement patterns will be
random. Let Blue’s distance from the Flag beDF = 15 units,
with five Red agents (at an average distance ofDR = 5 units)
placed in between. If the user sets the weights toWR = −10
andWF = +20, whatconceptual modelmight they have?
One possibility is that Blue is twice as likely to move toward
the Flag than away from the Red agents (treated as a sing
group), sinceWF/WR = −2. Alternatively, perhaps the
total weight to Red is(WR × R)/DR = −10 and that to
the Flag isWF/DF = +1.33. Then one could argue the
agent would be about seven times more likely to move awa
from the enemy than toward the flag. Gill and Shi (2002)
compare the movement penalty function used in MANA
(Lauren and Stephen 2001) to an alternative general formul
that makes use of relative (rather than absolute) distanc
and partial cumulative (rather than average) weighting. Le
Znew denote the direction and magnitude of the resulting
movement,WB denote the weight for movement toward
other Blue agents, andα and r denote tuning constants
between 0 and 1, inclusive. These two movement penalt
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functions are given in equations (1) and (2), respective

Znew = WR

100R

(
E∑
i=1

Di,new +
(
100−Di,old

)
100

)

+WF

100

(
DF,new +

(
100−DF,old

)
100

)
(1)

Znew = WR

Rα

R∑
i=1

(
Di,new −Di,old

Di,old

)r

+WB

Bα

B∑
j=1

(
Dj,new −Dj,old

Dj,old

)r
+WF

(
DF,new −DF,old

DF,old

)r
. (2)

Returning to the conceptual models, if Blue is twice
likely to move toward the Flag as away from Red, one mig
expect Blue to generally head toward the Flag, but avoid R
by bouncing around to one side or the other. If, on the ot
hand, Blue is seven times more likely to move away fro
Red, then one would not expect Blue to head to the tar
However, using the MANA penalty function in equatio
(1) Blue will proceed directly toward the Flag through th
group of Red agents. This behavior holds for anyWF > WR

and for any number of Reds. Figure 1 (adapted from G
and Shi 2002) shows the differences in two performan
measures that result from running the same scenario w
implementing different movement control logic.

This issue is particularly important when we are tryin
to model intangibles. For example, a user might inte
to represent aggressive Blue behavior, cautious Blue
havior, or unit cohesion among Blue agents by specify

Figure 1: Blue Losses vs. Time to Complete Mission f
Various Penalty Functions Determining Movement
d
r

t.

le

-

WF > |WR|, WF < |WR| or WB > |WR|, respectively. If
there is not a clear understanding of the agent behav
that results from such weights, the behavioral labels can
very misleading. These are by no means the only possib
movement algorithms. For example, if the penalties we
mapped into a probability distribution function, then sim
ulated annealing could be used to generate movement
agents that ‘learn’ over time.

3.2 Collecting Data Effectively

The first entry in Table 1 rates special mention—the numb
of factors involved. Many real-world experiments deal with
no more a handful of factors (e.g., five), and rarely ar
more than 10 investigated at the same time. In constra
even for the relatively simple models described in Sectio
2, it is not uncommon to have tens or even hundreds
factors. A model with 100 factors, each able to take o
only one of two possible values, still has 2100≈ 1030 (i.e.,
more than a trillion trillion) potential combinations of the
factor levels! Despite advances in high-speed computin
it is impossible to perform a brute-force analysis of a
combinations. Since even millions of runs constitute
sparse sample in a high-dimensional space, we must coll
our data intelligently. Trial and error is notoriously risky and
inefficient, and relying on visual results of one (or severa
runs is dangerous. Along with constraints on computin
power and time, we may also be limited in our ability to
assimilate large amounts of data.

One way to address the large number of factors is
partition them into classes that will be examined with design
of various resolutions. We discuss only a few designs he
See Lucas et al. (2002) and Kleijnen et al. (2002) for fo
other designs, references, and additional discussion.

Gridded designsare straightforward, and probably the
easiest to explain to someone unfamiliar with the concep
of DOE and statistical analysis. If allk factors have the
same number of categories (m) these are calledmk factorial
designs. The grids need not be identical: we could hav
e.g., a 2k13k2 design that variedk1 factors across two levels
andk2 factors over three levels, wherek1+k2 = k. Gridded
designs are easy to generate, but the exponential growth in
number of scenarios is problematic. For large experimen
this can be overwhelming. A 109 factorial requires one
billion runs per replication. One can argue that using th
much data to generate a response surface reflects tremend
inefficiency rather than effective use of computational powe

Low resolution designscan be used to mitigate this
exponential explosion in data requirements. However, th
efficiency comes at a cost. The analyst must forego the abil
to investigate some (or all) higher-order interactions and/
non-linear characteristics of the surface. (Later experimen
can be conducted to confirm or refute the validity of suc
assumptions.) The simplest low resolution designs are cal
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fractional factorials. If there arek factors each withm
levels, then the minimum number of runs required for
linear metamodel ismp where p is the smallest integer
satisfyingmp > k. For details on these and other low
resolution designs, see a DOE text such as Box, Hun
and Hunter (1978); Chapter 12 of Law and Kelton (200
also has a discussion of several basic designs.

Group screening designs, such as the sequential bi-
furcation (SB) method proposed by Bettonvil and Kleijne
(1997), are other ways of efficiently reducing a long list o
potential factors to a short list of important factors. Thes
designs do require the analyst to make more assumpti
about the underlying response surface. For example,
requires the analyst to know the signs of the factor effec
and assumes that a first-order model with negligible erro
provides a good approximation of the underlying respons
Group screening approaches hold promise for the exp
ration of ABSs, not only as stand-alone techniques, b
also by grouping factors into sets in conjunction with othe
experimental designs.

Frequency-based (FB) designsare another way of
determining factor level settings (Lucas et al. 2002, W
2002). Imagine listing the potential scenarios ast = 1,2,3,
and so forth. The level for factori (scaled between−1 and
+1) during scenariot can then be found by setting it to
sin(2πtfi), wherefi is the frequency (in cycles/observation
associated with factori. Figure 2 displays scatter plots o
all pairwise projections for a five-factor FB design, wher
the oscillation frequencies for factors 1 through 5 are 1/8
4/81, 10/81, 17/81, and 29/81, respectively. There are
design points in total, and this design allows the analy
to estimate all quadratic and two-way interactions witho
confounding.

Latin Hypercube (LH) designs are efficient and easy
to generate (McKay, Beckman, and Conover 1979), a
have been coded into many software packages (Sugiya
and Chow 1997). They do not require the analyst to ma
restrictive assumptions about the response surface and,
FB designs, sample in the interior of the hypercube
factor levels. Thisspace-fillingbehavior allows the analyst
to fit complex, and even non-parametric, reponse surfa
metamodels. Either standard regression packages or o
surface-fitting software can be used. Figure 3 illustrates t
sampling pattern for a randomly generated LH design. A
in Figure 2, scatter plots of all pairwise projections of th
combinations of factor levels are shown, but for LH design
the points are uniformly scattered.

We remark that a 35−1 fractional factorial would have
the same number of runs, but each projection plot wou
show only nine combinations of factor levels: one at ea
corner, one at the center of each side, and only one
the middle. A 95 factorial would project regular grids of
92 = 81 points for each sub-plot, and so have space-fillin
behavior more comparable to the FB and LH designs
r,

s
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Figures 2 and 3. However, it would require 729 times a
much data! Note that the FB designs tend to sample le
frequently near the centers of the hypercubes and mo
frequently near the edges, as compared to LH designs. T
happens because the sine (or cosine) functions are fla

Figure 2: Pairwise Projections of Scaled Factor Levels f
a Five-Factor Second-Order Frequency-Based Design

Figure 3: Pairwise Projections of Scaled Factor Levels f
a Five-Factor Latin Hypercube Design
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near their peaks and valleys, and may make them sligh
better for identifying linear (vs. nonlinear) metamodels.

The designs discussed above should be part of an ite
tive design and analysis process. We tested these on kno
response surfaces, as well as the examples provided be
The ability to compare against “ground truth” is useful fo
assessing their strengths and weaknesses.

3.3 Gleaning Insights from Numbers

Numerical summaries can certainly be used to descr
subsets of the output data, and regression metamodels
be fit to one or more of the performance measures. These
the most common analytical tools, though other approach
for surface-fitting, such as splines and Kriging, may b
better for fitting response surfaces with multiple hill tops
spikes, or thresholds (Cressie 1993, Jin et al. 2001, V
Beers and Kleijnen 2002). Brown (2000) used a five-fact
gridded design to examine several intangibles in an AB
motivated by his experiences in Mogadishu, where squa
of Blue agents manuever through loosely organized R
forces in an urban environment. At the time, he performe
100 replications of a gridded 55 design, but showed that 100
replications of a 25−1 would have been nearly as informative
Wan (2002) used both a full factorial design (with 174,00
runs) and a LH design (with only 4,800 runs) to investiga
the effects of human factors on combat outcomes. He fou
that the LH correctly identified the same important effec
that were statistically significant in the model develope
from the full factorial.

Cioppa (2002) developed and used nearly-orthogon
LH designs to examine a complex military peace
enforcement operation. He varied 22 factors over 129 lev
for each of 100 independently seeded replications of the L
design, and constructed a metamodel of the force excha
ratio as a function of these factors. The results identified t
need for maintaining the initiative and speed of executio
This large number of factors meant the experiment cou
not have been conducted using factorial designs unless
analyst was willing to assumea priori that a main-effects
metamodel would suffice.

However, constructing metamodels of all the importa
factors is not the only approach that can be taken. T
analyst might be interested in finding a combination o
settings for a (perhaps small) group ofdecision factorsthat
yield a robust solution. That is, one which works we
over a host of combinations of other uncontrollable facto
(Sanchez et al. 1996, Sanchez 2000). In the wake of
USS Coleincident in October 2000, a particular concern o
the Navy is waterfront force protection—guarding a high
value, in-port asset from attacks from the sea. Childs (200
built a discrete-event ABS in Java to address this questi
In his model, the decision factors were the number
patrol boats, their patrol and intercept speeds, and pa
y
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pattern. Eight patrol boat configurations were pitted again
different notional terrorist attacks. The robust approac
showed that the patrol pattern and patrol speed were n
important, so patrols could be made at low speeds (savi
fuel) and in simple patterns. For the factor levels studied
improved protection was associated with more patrol boa
and faster intercept speeds. Note that in this example t
policy questions related specifically to patrol boat moveme
characteristics. Thus, realistic movement algorithms we
critical.

3.4 Gleaning Insights Visually

Visualization is also extremely helpful—and perhaps bette
suited for exploratory investigations. Box and whisker plots
bar plots, trellis plots or other small multiples (Tufte 2001)
surface and contour graphs, and other graphical metho
can provide the analyst with useful information that may no
be easy to quantify. We now describe a variety of graphic
and exploratory tools that we have found useful.

Regression treeshave proven beneficial in understand
ing and communicating the results of thousands of runs ov
many factors. Regression trees are more human-reada
and can be easier to understand than multiple regress
models. Trees simply show the structure in the data. Un
a terminal node is reached, the data flowing down the tre
encounters one decision at a time (Chambers et al. 199
Friedman 2002). For example, Figure 4 shows the regre
sion tree for predicting the proportion of Blue casualties i
a simulation of a guerrilla attack on Blue forces defending
hilltop position (Ipekci 2002). The data (51,300 response
over 22 factors) to grow the tree were collected using th
nearly-orthogonal LH designs of Cioppa (2002). In Fig
ure 4, if the Red stealth is less than 111.5, the number
Red agents is less than 24.5 and the reconnaisance ste
is less than 108.5, Blue takes very low casualties. In oth
words, given these conditions the guerrillas will not inflic

Figure 4: Regression Tree Model of the Proportion of Blu
Casualties from an Investigation of Guerilla Combat
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many casualties on the Blue force—no matter what valu
the other parameters take! Furthermore, the relative imp
tance of the variables, using procedures such as MART, c
be displayed in a simple bar chart, as in Figure 5.

Figure 5: Relative Importance of 22 Factors in an Invest
gation of Guerilla Combat

Three-dimensional surface plotsare readily available
in spreadsheet and statistical software packages. In
studies, we have also been making use of the Project Alb
Visualization Toolkit (MHPCC 1998, see also Meyer an
Johnson 2001) that is being developed specifically to su
port data farming on Project Albert’s suite of agent-base
modeling platforms. A screen shot of this visualization too
is shown in Figure 6. Thex andy axes can be set to any
two of the factors varied during the search. Slider bars f
all other factors allow the analyst to quickly scan throug
and see how the response surfaces change. One can ad
delete response surfaces for multiple performance measu
the surfaces themselves can represent performance me
standard deviations, or quantiles. Note that plotting minim
and maxima has proven useful for identifying unexpecte
behaviors—due to unintended consequences of subtle m
eling aspects in some cases, and problems related to
computer code in others.

Trellis plots are small multiple plots of various
types, including the pairwise projections of factor level
for the FB and LH designs in Figures 2 and 3. W
return to the guerrilla combat example (Ipekci 2002
where two performance measures are the proportions
Red and Blue casualties. The trellis plot in Figure
displays the relationships after conditioning on the initia
number of Red agents in the scenario. In this ABS
the Red side can negate the Blue side’s advantage
firepower and number by using 19 to 27 agents in i
infiltration. This can be seen from the upper left grap
in the trellis plot, where Red inflicts high Blue losse
s
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Figure 6: Screenshot Including Multiple Performance Mea
sures from the Project Albert Visualization Toolkit

while suffering low casualties. The Relative Importance
graph of Figure 5 shows that Red tactics are important; th
trellis plot in Figure 7 provides more insight on why this is so.

Neural networks, in combination with visualization
techniques, have proven useful in identifying interesting
subregions in our simulation models. In a study assessin
the impact of information systems and procedures on batt
outcomes, Pee (2002) found that the Blue force can en
sure a positive outcome if it can control two of its process
latencies—regardless of the values of the nine other facto
examined (see Figure 8). The data for this analysis wer

Figure 7: Trellis Plot of the Proportions of Red vs. Blue
Casualties, Conditioned on the Number of Red Agents
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Figure 8: Triangular Region Depicting Outcomes Alway
Favorable to Blue

generated by 2002 runs (22 sets of Latin hypercubes c
sisting of 91 uniformly distributed points for each factor
of a Latin hypercube involving 11 factors. This region wa
found by focusing in on those variables deemed important
the neural network in the data mining software Clementin
(SPSS Institute 2001).

Contour plots, or two-dimensional projections of a
performance measure, are also useful. Vinyard and Lu
(2001) performed billions of runs on a well-known dete
ministic combat model (Dewar, Gillogly, and Juncosa 1996
The two-dimensional graph in Figure 9 is one example
the surprising performance that can result. In this figur
the x and y axes represent the initial size of the Red an
Blue forces, respectively. One would expect that increasi
the initial strength of one side (while holding that of th
other side constant) would have a step function effect. Th
is true in some instances. The horizontal line at a Blu
inital force levelB0 = 800 shows a single change from
Blue winning to Red winning once the initial Red strengt
crosses a threshold. However, the line atB0 = 450 shows
an oscillation of winners (asR0 increases) over an extended
range. These results were determined by a gridded sam
of 69,451 points (Vinyard 2001). If this graph is any in
dication of the subspaces that exist in larger models, th
it is easy to see that extreme non-monotonicity might g
unnoticed, even when it exists, if samples are taken at o
a few intererior points. In larger models the dimensionali
of the phase space is incomprehensively vast. Based on
factor level ranges chosen, the analyst may be explor
the model in regions associated with purely monotonic r
sponses. However, it is also possible that they are teeter
on the edges of non-monotonic regions like that pictured
Figure 9. Palmore (1996) showed that the non-monotonic
is caused by the chaotic battle trace. These results cau
quite a stir in the Defense Modeling and Simulation world
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Figure 9: Winning as a Function of Initial Force Strength
in the Deterministic Dewar Model

This is but one example of chaotic behavior in th
model. Figure 10 shows four other subspaces of performa
measures. Of the nine subspaces investigated, five exh
pervasive non-monotonicity, with it showing up in ove
80% of the surfaces examined. Although this model is n
agent-based, we provide it as an example to illustrate
dangers of assuming that simpleperformancewill result
from a model that may be simple to program.

Figure 10: A Maelstrom of Non-Monotonicity in Four Ad-
ditional Performance Subspaces of the Dewar Model
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4 DISCUSSION

ABS is an interesting problem domain for those interested
either modeling or analysis methodology. From the mode
ing perspective, more work is needed to bring discrete-ev
tools to the table. Most of the examples we have seen
volve time-step models. These have inherent limitation
The results can change dramatically with a different choi
of the time-step. It can also be computationally ineffi
cient (O(n2)) to run such models, particularly if the mode
logic requires every agent to compare their location and
communicate with every other agent at each time-step.

While computational complexity is an issue in ABS
there is no evidence that the complexity of natural flock
is bounded. If so there would be a “sharp upper bou
on the size of natural flocks when individual birds becom
overloaded by the complexity of their navigation tasks
(Reynolds 1987). This suggests that ABS modelers m
be able to develop constructs and algorithms that are
unduly complex in terms of computation, as well as from
a modeling perspective. For example, flocking algorithm
that areO(n2) (where n is the number of agents) are
not suitable for large flocks. The Java-based Simkit
braries have implemented motion and sensing algorith
that make discrete-event models (particularly event-gra
models) more scalable (Buss and Sanchez 2002).

The question of random number generation also m
rear its head again. We are used to thinking of rando
number streams as being “very long.” However, if we a
making literally millions of runs, where each run might per
form millions of random draws, the question as to whether
not random number generators have sufficient cycle leng
is open.

Finally, much (though not all) of the literature describe
the development of specific ABS models, rather than AB
modeling platforms. This may be either a benefit or a dra
back. It can be difficult to come up with generic reusab
agents because of differences in exactly what behavi
should be modeled, and how. To the extent that some p
wrapped agents can be put together, this allows for the ra
development and deployment of ABSs for new scenario
This, in fact, is one of the goals of Project Albert. O
the other hand, different models may have slightly (or ev
markedly) different characteristics and/or decision rules.
this case, testing out insights on multiple modeling pla
forms can be beneficial in determining whether the insigh
are real or functions of the platform-specific modeling an
implementation assumptions (Brandstein 1999). In the lo
run, this might help answer questions about how best
implement simple rules to achieve certain types of behavio

Most of the designs that simulation practioners a
familiar with evolved from traditional DOE methods devel
oped for situations involving only a handful of factors an
a nominal amount of experimental units. Unfortunatel
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many of these traditional designs do not scale well, and
are inefficient for exploring ABS models. Nonetheless, the
dramatic increase in computing power makes it is feasible
to run millions of experiments on simple ABS models. Ex-
ploring this new world requires a different mindset. We have
touched on a few approaches that we have found useful, bu
there is ample room for those with interests in simulation
methodology to develop additional tools and techniques tha
are effective, efficient, and easy to use.
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