
Proceedings of the 2002 Winter Simulation Conference 
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds. 
  
 
 

SIMULATION-BASED OPTIMIZATION 
 
 

Averill M. Law 
Michael G. McComas 

 
Averill M. Law and Associates, Inc. 

P.O. Box 40996 
Tucson, AZ 85717, U.S.A. 

   
   
ABSTRACT 

In this tutorial we present an introduction to simulation-
based optimization, which is, perhaps, the most important 
new simulation technology in the last five years.  We give 
a precise statement of the problem being addressed and 
also experimental results for two commercial optimization 
packages applied to a manufacturing example with seven 
decision variables.  

1 INTRODUCTION 

One of the disadvantages of simulation historically is that 
it was not an optimization technique.  An analyst would 
simulate a relatively small number of system configura-
tions and choose the one that appeared to give the best per-
formance.  However, based on the availability of faster 
PCs and improved heuristic optimization search techniques 
(evolution strategies, simulated annealing, tabu search, 
etc.), most discrete-event simulation-software vendors 
have now integrated optimization packages into their simu-
lation software.  It could arguably be said that optimization 
is the most significant new simulation technology in the 
last five years [see Fu 2001 and Law and Kelton 2000 
(Section 12.6) for further discussion]. 

The goal of an “optimization” package is to orches-
trate the simulation of a sequence of system configurations 
[each configuration corresponds to particular settings of 
the decision variables (factors)] so that a system configura-
tion is eventually obtained that provides an optimal or near 
optimal solution.   Furthermore, it is hoped that this “opti-
mal” solution can be reached by simulating only a small 
percentage of the configurations that would be required by 
exhaustive enumeration. 

In Section 2, we give a precise statement of the prob-
lem that is being addressed by simulation-based optimiza-
tion.  Section 3 discusses available optimization packages 
and the search techniques that they use.  In Section 4 we 
give the results that were obtained from applying two 
commercial optimization packages to a manufacturing ex-

 

ample with seven decision variables, and Section 5 pro-
vides a summary of the paper.    

2 STATEMENT OF THE PROBLEM 

Let V1, V2, …, Vk be decision variables (quantitative fac-
tors) for a simulation model.  Let f(v1, v2, …, vk) be an out-
put random variable for the simulation model correspond-
ing to the set of values V1 =  v1, V2 = v2, …, Vk = vk . 
 Example 1.  Consider the manufacturing system con-
sisting of four work stations and three buffers (queues) as 
shown in Figure 1.  Whenever a machine in work station 1 
is idle, it will pull a blank (new) part in from an infinite 
supply.  A machine cannot discharge a part if the succeed-
ing buffer is full.  Processing times have an exponential 
distribution with a mean that is given in Table 1.  Let Vi 
(for i = 1, 2, …, 4) be the number of machines in work sta-
tion i and let Vi (for i = 5, 6, 7) be the number of buffer po-
sitions in buffer i – 3.  Then f(3, 2, 2, 3, 3, 1, 2) could, for 
example, be the number of completed parts for a 30-day 
period for the configuration shown in Figure 1. 
 Then the optimization problem of interest, in general, 
is given by the following:  
 

max E[f(v1, v2, …, vk)] 

li ≤ vi ≤ ui 

 
subject to the p linear constraints: 
 

a11v1 + a12v2 + … + a1kvk ≤ c1 
a21v1 + a22v2 + … + a2kvk ≤ c2 
 .           .                  .           .                           (1) 
 .           .                  .           .    
 .           .                  .           .    
ap1v1 + ap2v2 + … + apkvk ≤ cp. 
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Figure 1: Manufacturing System Consisting of Four Work Stations and Three Buffers 
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Table 1: Mean Processing Times for Machines in the Four 
Work Stations 

Work  
station 

Mean processing time for  
a machine (in hours) 

1 0.33333 
2 0.50000 
3 0.20000 
4 0.25000 

 
Thus, we want to maximize the objective function E[f(v1, 
v2, …, vk)] [“E” means the expected value (or mean) of the 
random variable f(v1, v2, …, vk)] over all possible values of 
v1, v2, …, vk that satisfy that range constraints li ≤ vi ≤ ui 
(for i = 1, 2, …, k) and the linear constraints given by (1).  
Note that li and ui are lower and upper bounds for vi.  Also, 
the aji’s and cj’s in the constraints (1) are constants.  Fi-
nally, “max” can be replaced by “min” in the objective 
function and the “less than or equal” in a linear constraint 
can be replaced by “equal” or by “greater than or equal.”  
In Example 1, a possible constraint might be  
 
           v1 + v2 + v3 + v4 ≤ 10 
 
i.e., the total number of machines cannot exceed 10. 
 

In general, we will need to make n independent repli-
cations of the simulation for system configuration v1, v2, 
…, vk and to use the sample mean over the n replications, 

1 2( , ,..., )knf v v v , as an estimate of E[f(v1, v2, …, vk )], since 

f(v1, v2, …, vk) is a random variable.  Note also that the 
form of the response surface E[f(v1, v2, …, vk )] will not be 
known before any configurations are simulated, and it 
could, for example, have several local maxima. 

3 AVAILABLE OPTIMIZATION PACKAGES 

Table 2 lists the most prominent optimization packages 
available at the time of this writing, their vendors, the 
simulation-software products that they support, and the 
search techniques used.  As can be seen, the four packages 
use different search heuristics, including evolution 
strategies (Bäck 1996, Bäck and Schwefel 1993), neural 
networks (Bishop 1995, Haykin 1999), scatter  search 
(Glover 1999), simulated annealing (Aarts and Korst 
1989), and tabu search (Glover and Laguna 1997).  Note 
that genetic algorithms (Michalewicz 1996) is another 
well-known heuristic that is used for optimization. 
 
Table 2: Optimization Packages 

Optimization package Vendor Simulation software 
supported 

Heuristic procedures  
used 

AutoStat Brooks-PRI Automation AutoMod, AutoSched Evolution strategies 

Extend Optimizer Imagine That Extend Evolution strategies 

OptQuest Optimization Technologies Arena, Flexsim ED, 
Micro Saint, Pro-
Model, QUEST, 

SIMUL8 

Scatter search, tabu 
search, neural networks 

WITNESS Optimizer Lanner Group WITNESS Simulated annealing,  
tabu search 
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4 A DETAILED EXAMPLE  

In this section we apply the OptQuest (Glover et al. 2002) 
(as implemented in Arena) and WITNESS Optimizer 
(Lanner 2002) optimization packages to the manufacturing 
system discussed in Example 1.  There are seven decision 
variables and we assume that ui = 3 for i = 1, 2, …, 4 and ui 
= 10 for i = 5, 6, 7; li = 1 for all values of i.  Thus, there are 
81,000 = 34 ⋅ 103 different combinations of the decision 
variables.  There are no linear constraints for this problem. 
 
 Let  
 
 n_machines =  the total number of machines in all 

work stations 
 n_positions  =  the total number of positions in all 

buffers 
 throughput  =  the total number of parts produced in 

a 30-day period of time 
 
Then define the objective-function random variable f 
(profit) as follows: 

 
 f =  ($200 ⋅ throughput) - ($25,000 ⋅ n_machines)      
  - ($1000 ⋅ n_positions). 
 
 The simulation run length for our experiments was 
720 hours (30 days) with an additional warmup period of 
240 hours (10 days).  The throughput was computed from 
the final 720 hours of each 960-hour replication.  We made 
n = 5 replications for each system configuration for each 
optimization package. 
 For OptQuest, we used a stopping rule that lets the op-
timization algorithm run until a user-specified number of 
configurations (NC) has been completed.  (An alternative 
stopping rule is to let the optimization algorithm run until a 
user-specified amount of wall-clock time has elapsed.)  We 
set NC = 300 and made five trials with different random 
numbers, with the average (across the five trials) profit for 
the best configuration being given in Table 3.   
 
Table 3: Average Profit for the Best Configuration for the 
Two Optimization Packages 

Optimization package Average profit 

OptQuest  

(as implemented in Arena) 

$593,816 

WITNESS Optimizer $589,256 

 
 The stopping rule for the WITNESS Optimizer has two 
user-specified parameters: the maximum number of configu-
rations (MC) and the number of configurations for which 
there is no improvement (CNI) in the value of the objective 
function. For example, suppose that MC = 500 and CNI = 
25, and that the objective function value at configuration i is 
the largest up to that point.  Then the algorithm will termi-
nate at configuration i + 25 if the objective function values 
at configurations i + 1, i + 2, …,  i + 25 are all less than or 
equal to the objective function value at configuration i; how-
ever, the algorithm will never go beyond 500 configurations.  
We set MC = 500 and CNI = 75, and made five trials using 
different random numbers, with the average (across the five 
trials) profit for the best configuration being given in Table 
3.  Note that the results for the two optimization packages 
are within 1 percent of each other. 
 We have seen that the average profit is approximately 
$590,000 for the two optimization packages that we con-
sidered.  One might ask how close this is to the expected 
profit for the optimal solution and, also, what is the optimal 
system configuration?  Work station 2 is potentially the 
bottleneck since its processing rate, 2 parts/hour, is the 
smallest of the four work stations.  Therefore, we can argue 
heuristically that station 2 should have 3 machines, which 
gives station 2 a potential overall processing rate of 6 
parts/hour.  It follows that station 3 should have 2 ma-
chines – if it had only 1 (an overall processing rate of 5 
parts/hour), then station 3 would be the bottleneck.  (Three 
machines at station 3 are clearly not necessary.)  By similar 
reasoning, station 4 should also have 2 machines.  The 
question, then, is how many machines do we need at sta-
tion 1?  It might seem that we need 2 machines at station 1, 
since its maximum overall processing rate of 6 parts/hour 
would equal the maximum processing rate of station 2.  
However, it turns out that 3 machines are preferable, since 
this results in less idle time and a greater actual processing 
rate for station 2.  (The moral is “never starve the bottle-
neck.”) The resulting additional profit more than compen-
sates for the cost of one more machine at station 1. 

Thus, it would appear that 3, 3, 2, and 2 machines at 
stations 1, 2, 3, and 4, respectively, are optimal.  This is 
substantiated by the fact that the configuration 3, 3, 2, and 
2 was selected in 10 out of the 10 trials (five trials for each 
of the two packages).   

We therefore fixed the machines at 3, 3, 2, and 2 and 
set out to determine the optimal number of buffer positions 
for each of the three buffers.  We used the WITNESS 
Optimizer for this purpose, since it has an option that al-
lows one to do an exhaustive enumeration of all possible 
system configurations.  For each of the 1000 combinations 
of the numbers of buffer positions, we made n = 50 inde-
pendent replications of the simulation model – 50,000 rep-
lications were made in all.  (There was only one trial.)  We 
found that buffer configuration 7, 8, and 4 had an estimated 
profit of $591,588, which was the largest for the 1000 pos-
sible configurations.  Furthermore, a 90 percent confidence 
for the expected profit for this configuration was 
[$591,456, $591,721].  The buffer configuration 7, 7, and 4 
was a close second with an estimated profit of $591,512.  
Therefore, it would appear that the optimal configuration 
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should be close to 3, 3, 2, 2, 7, 8, and 4.  Note that the es-
timated profit for the configuration 2, 3, 2, 2, 7, 8, and 4 
was only $548,488. 

5 SUMMARY 

We have tested two different optimization packages with 
certain settings for their stopping-rule parameters on one 
sample problem.  We found that their performance was 
good for this problem and for the parameter settings used.  
One should definitely not infer from these results how 
these (or other) optimization packages will perform on dif-
ferent problems that might be considerably more difficult 
in terms of the number of possible system configurations, 
the shape of the response surface E[f(v1, v2, …, vk)], or the 
amount of inherent variability in the simulation model.  A 
major concern at this time is how should one select an op-
timization package’s stopping-rule parameters for a par-
ticular problem of interest, since little guidance is given in 
this regard.  In the actual conference presentation, we will 
give a more extensive set of experimental results, in terms 
of the number of example problems and of the number of 
optimization packages tested.   

Simulation-based optimization is a relatively new 
technology.  However, it appears that it will have a consid-
erable impact on the practice of simulation in the future, 
particularly when computers become significantly faster.  
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