
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

VARIOUS WAYS ACADEMICS TEACH SIMULATION:
ARE THEY ALL APPROPRIATE?

(PANEL ON EDUCATION IN SIMULATION)

Tayfur Altiok (Moderator)

Department of Industrial Engineering
Rutgers University

Piscataway, NJ 08854, U.S.A.

 W. David Kelton

Department of Management Science
and Information Systems

The Pennsylvania State University
University Park, PA 16802-1913, U.S.A.

Pierre L’Ecuyer

Departement d’informatique
et de Recherche Operationnelle (I.R.O.)

Universite de Montreal, C.P. 6128
Centre-Ville, Montreal, H3C 3J7, CANADA

 Barry L. Nelson

Department of Industrial Engineering
and Management Sciences
Northwestern University

Evanston, IL 60208-3119, U.S.A.

Bruce W. Schmeiser

School of Industrial Engineering
Purdue University
1287 Grissom Hall

West Lafayette, IN 47907, U.S.A.

 Thomas J. Schriber

Business School
University of Michigan

701 Tappan Street
Ann Arbor, MI 48109-1234, U.S.A.

Lee W. Schruben

Department of Industrial Engineering
and Operations Research
University of California

Berkeley, CA 94720, U.S.A.

 James R. Wilson

Department of Industrial Engineering
North Carolina State University

Raleigh, NC 27695-7906, U.S.A.

ABSTRACT

This panel discusses goals and educational strategies for
teaching simulation in academia. Clearly, there is consider-
able material to cover in a single course or a sequence thereof
in, say, an undergraduate program. The issue is how to moti-
vate and empower students to analyze complex problems cor-
rectly and to prevent the pitfall of misusing the concept.

1 INTRODUCTION

Computer simulation modeling has been taught in engineer-
ing schools, business schools and computer science depart-

1580
ments in academic institutions worldwide for decades. This
discipline teaches students how to develop computer models
of systems, both real-life or on the drawing board, depend-
ing on the area. It is comprised of theoretical aspects (e.g.,
statistics and time series) as well as practical aspects (pro-
gramming). In view of the complexity of large-scale prob-
lems that engineers, scientists and business managers face
today, simulation modeling has grown into possibly the only
practical approach of analyzing them. Indeed, the simula-
tion methodology is widely accepted and broadly applied in
many application domains. Consequently, a tremendous
growth has been achieved over the past two decades in both
theoretical and technological facets of simulation, both edu-

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

cational and commercial. Simulation systems are increas-
ingly evolving from general-purpose languages to direct-
engagement, visual programming environments supported
by powerful graphics tools.
 Nowadays, we are faced in academia with the baffling
decision of what to cover in a course or a series of courses in
simulation. The main problem is how to select varied simu-
lation-related topics into a one-semester course in view of
the knowledge the educator wishes to impart to the students.
This problem is complicated by the constraints imposed on
the educator who must factor in the students’ skill set.
 Fundamentally, there are two basic approaches to
teaching simulation: one emphasizing theoretical aspects
and the other emphasizing hands-on aspects. Accordingly,
a simulation course may include the following basic topics:

• Discrete-event simulation
• Random number and variate generation
• Input and output analyses
• Verification and validation

In the theoretical approach, these topics, which are

largely based on probability and statistics, can be comforta-
bly taught in some depth either without regard to any simu-
lation tool, or by using an educational software tool for
demonstration purposes. This approach teaches students the
proper simulation methodology (the “right” things to do in a
simulation project) as well as theoretical underpinnings.
However, it would not teach them the hands-on skills to
simulate a complex system with a strict deadline, which is
what the marketplace mandates. Furthermore, the students
may suffer from modeling-skill deficiencies, leading them to
produce invalid or oversimplified models.

The hands-on approach would briefly review the fun-
damentals, and spend most of the time in the lab, practicing
with a (typically commercial) simulation tool, to teach
programming details. In this approach, students will defi-
nitely acquire extensive hands-on knowledge of such a tool
and most likely the capability of modeling complex prob-
lems under strict deadlines. However, it is fraught with se-
rious dangers, including failure to verify and validate the
model, misinterpretation of results, too much detail in the
model and last but not least GIGO.

An important question facing this panel is how to mix
and match the two approaches above to the goals of the
course and the capabilities of the attending students. Fur-
thermore, can such mixtures be spiced with practices such as
having groups of students modeling real-life systems involv-
ing data collection and validation, and mentored by indi-
viduals working in the corresponding application domains.

This panel consists of educators with many years of
experience in preaching, teaching and practicing simula-
tion. It is expected that the panel discussion will touch
upon many relevant and controversial issues. Below are
the position statements of the member panelists.
158
2 PANEL MEMBERS’ STATEMENTS

2.1 Undergraduates Should Not Take a
Course in Simulation (B. L. Nelson)

This is my thesis: Undergraduate industrial engineers and
management scientists should not take a course in com-
puter simulation. Here is a quick quiz that illustrates why:
Is the following a “simulation problem?”

• How many parking spaces should there be in the
parking garage of a large shopping mall?

I claim that the answer depends on a number of factors be-
yond the problem statement itself, including:

• How quickly do we need an answer?
• Are there any data available?
• What performance measures will we use to evalu-

ate a solution?
• How accurate do we need to be (or, stated differ-

ently, how will the answer be used)?

For instance, suppose that the mall has yet to be built, so
there are no data available on how much customer traffic the
mall will generate beyond the marketing department’s esti-
mates. However, studies at similar malls have given us some
idea how long people spend shopping. The mall developers
tell us they want the chance that there are not enough spaces
for everyone to be quite small, but the type of structure we
have in mind comes in floors of 200 spaces, so whatever our
answer is it will be in multiples of 200. Finally, we need the
estimate quickly to roll it into our financing proposal.
 In this situation, a relatively simple M/G/∞ queueing
model may be adequate for the rough-cut analysis needed
to size the structure.
 On the other hand, suppose we are replacing surface
parking at an existing mall with a parking garage. Since
our traffic volume is heavy, we are worried about how long
it will take for drivers to find open spaces in a large park-
ing structure, not just whether there are enough spaces.
Therefore, we want to consider different designs for the fa-
cility as well as different sizes. Maybe we also want to lo-
cate spaces especially for patrons with disabilities, with
compact cars, etc. We have lots of data on this mall and
others we own. Further, since we have surface parking
now, we are willing to invest substantial time into getting
this garage design right.
 In this case, simulation might be the only tool capable
of the analysis we desire.
 Clearly the same problem may require very different so-
lutions, and this is obvious to most of us. Unfortunately,
when students take distinct course in stochastic processes
(analytical or numerical solution of certain well-studied
classes of models) and simulation, their natural inclination is
1

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

to try to map problems one-to-one with solutions. They end
up with a thought process something like this: Parking garage
problems require Markovian queuing models, but evaluating
the use of cross-trained workers requires simulation, because
we solved a parking garage problem in the queueing class,
and a cross-training problem in the simulation class.
 I am a proponent of generic courses in stochastic
modeling and analysis, in which mathematical, numerical
and simulation solution techniques all appear. I have been
teaching a two-quarter (20-week) sequence in this way for
over six years, and I am convinced that there are at two
features that are critical to making it work:

1. For every stochastic modeling problem, start
working on it by thinking about how to simulate
it. Simulation (inputs, events, states, etc.) provides
the formulation language, much like the decision-
variable, objective-function and constraint con-
cepts do for optimization. Simulation is also intui-
tive. We then we teach students to recognize those
situations in which a mathematical or numerical
solution is possible or appropriate.

2. When a large-scale simulation is required, force
students to do a rough-cut model prior to simulat-
ing. (I am pretty sure I stole this idea from Lee
Schruben.) Sometimes the rough-cut model is just
plugging in mean values for all the stochastic
stuff, or deriving best-case and worst-case
bounds. More often it involves using some sort of
simplified model, such as an M/M-type queue.
This allows students to understand that both ap-
proaches apply to the same types of problems.
They also see that the numbers that come out of
the simulation typically do not match the rough-
cut model---demonstrating that there is a reason
for simulation---but they also see that the best so-
lution, as determined by the rough-cut model, is
often identical to the one indicated by the far more
detailed simulation.

2.2 Teaching Modeling and
Analysis Together (W. D. Kelton)

When teaching a simulation course, there is usually the is-
sue of how to divide the available time between modeling
topics and analysis topics. Seldom is there time to do a
complete job with both in a single course.

By “modeling topics” I mean how to construct a model
of a static or dynamic system, issues about level of detail,
and how strong the simplifying assumptions can be before
model validity starts to come under question. Model valida-
tion and verification are also taught under this heading as
well. Of course, there is the issue as well of whether to use a
high-level modeling package or a lower-level programming
language (but I won’t get into this debate).
1582
By “analysis topics” I mean the methodological un-
derpinnings of simulation, which usually pertain to prob-
ability and statistics. These subjects include specifying in-
put distributions and processes, methods for generating
random numbers and processes, statistical analysis of out-
put, variance reduction, gradient estimation, experimental
design, and perhaps optimizing simulation models.

Now it’s of course impossible to imagine a first course
in simulation (at either the undergraduate or beginning-
graduate level) not to cover modeling topics. The issue,
rather, is how much of the analysis topics should be covered.

Sometimes the answer is none. This is, in my opinion,
unfortunate since students walk away thinking this is all
about computer programming with some piece of software
or in some language. They may be able to build nice mod-
els, but they won’t know what to do with them. And they
won’t be able to react to challenging or difficult problems
if they’ve had no exposure to the underpinnings.

The “none” answer is not only unfortunate, but also
unnecessary. In fact, I feel that it is possible and helpful to
teach at least the basics of analysis alongside the modeling
in an integrated fashion, and not treat analysis as a separate
set of topics included (maybe) at the end of the course.
This can be done almost from the very beginning, even if
one chooses, as I do, to start the first course with a simula-
tion done “by hand.” It can be redone a couple of times to
illustrate the variance in the results, or at least described
without taking the class time to do several by hand. Then
when we move to computer-based simulations, it is easy to
replicate across different configurations and start doing
valid two-sample or paired statistical tests. As richer mod-
els are developed, the more advanced analysis topics like
variance reduction, gradient estimation, and optimization
can be introduced in the context of these richer models.

I like to call this method of presentation “tutorial style,”
and my ideal model for it is AMPL: A Modeling Language
for Mathematical Programming by Fourer, Gay, and Ker-
nighan (1999). Though not on simulation, this book skill-
fully crafts a sequence of increasingly complex examples
that simultaneously teach how to model with the AMPL sys-
tem, how to interpret the results, and to a large extent what’s
available in AMPL. I feel that we should be able to do very
much the same kind of thing when teaching simulation.

2.3 How Not to Teach a
Simulation Course (L. W. Schruben)

“I wish I didn’t know now what I didn’t know then” –
Bob Seger.

I am going to share some bad ideas I have had for teaching
simulation courses. These are real bad ideas (also really bad)
– I have tested them all in my classes, sometimes repeatedly.
Most of these ideas will take little effort to avoid. Avoiding
others may require abandoning some conventional teaching
methods and traditional simulation course content.

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

 I have taught simulation for 26 years at several
universities, to students with widely different backgrounds
– from Freshmen to Advanced PhDs. I started teaching
simulation at the University of Florida where I taught Sim-
script to graduate students (on Television) and GPSS to a
class of IE juniors - using the original notes from Tom
Schriber’s now-famous text. The following year, I moved
to Cornell where, for decades, I taught a very large class
(up to 170 students) of seniors and Master’s students along
with an occasional PhD research course. Once, I tried to
teach SLAM to Freshman (a bad idea). For the past few
years at Berkeley, I have a taught a Master’s course, a cas-
ual PhD research seminar, and a required junior course.

I am currently happy with about 90% of the content in
my courses. I think that is about as well as one can do if
they care about teaching.

The objectives of my courses are to teach students how
to ask worthwhile questions and to recognize legitimate an-
swers. I want them to become more demanding consumers
of simulation technology - and of knowledge in general.
Simulation is the means, neither the topic or context. I ex-
pect my students gain a comfortable understanding of uncer-
tainty and how to model it. I want them to learn how to cre-
ate and use dynamic models to make better decisions – and
how such models might mislead them. I also hope they find
building and experimenting with discrete event simulations
easy, fun and useful, but not mysterious! In short, I take a
“consumer education” approach to teaching simulation. I
should warn you that this can backfire: several of my former
students have later become my consulting clients.

My elements-of-a-simulation-study flow chart also in-
cludes a step called ‘identify prejudices’. I think it is im-
portant for my students to realize that political agendas can
have a greater influence on decisions than the very best
simulation studies. (See Figure 1.)

Some of my particularly bad ideas follow. If you want
to teach the worst simulation course I can imagine just fol-
low the advice that appears in boldface type.

Homework: To try and keep my students busy, I used
to give students extended homework assignments span-
ning several weeks. This doesn’t work: most students put
off doing homework as long as possible, then try to grind it
out the night before it is due. I did it; my students do it; so
did you. I once thought monster homework sets were a
swell idea. I stopped doing this after seeing an informal
teaching evaluation gouged into the men’s room wall. This
was neither constructive or complimentary, but he spelled
my name correctly (It’s probably still there)2.

I give students complex problems, but keep them small
scale. There is no way that I can replicate the magnitude of a
significant, industrial-strength simulation study like those I
have seen in my consulting work. I tell students about these
projects, but give them the simplest exercises that effectively
illustrate the point. I also tell them why I am asking them to
do something, this is more for my benefit then theirs. Justi-
fying a homework is sometimes harder than writing it.
158
I require my students to explain clearly, concisely, and
neatly why they did something, not just what they did and
how. I also ask them to try and make it interesting reading
and try to sell their ideas to us.

Another way I have tried to keep my class busy is to in-
sist that students collect ‘Real World’ data. Lately, rather
than have students collect real data, I ask them to tell me
specifically what data they would collect, how they would
collect it (with data collection forms), what this might cost in
time and money, and how they would use the data. This is
not the same as doing it; on the other hand, students can be
very creative in inventing data. Furthermore, I think data is
highly rated (more later). As seen in Figure 1, I emphasize
not collecting data until one has a pretty good idea what data
is necessary after doing some sensitivity analysis.

Formulate questions

Characterize answers

Design experiments

Develop, verify, refine model - as necessary

(Re)plan study and (re)secure resources

Do sensitivity analysis

If necessary, collect data

Analyze, Advise
- and Caution

Start

Redesign and Run Experiments

Identify
Prejudices

Enough time
and money?

Anticipate system and human behavior

Code, re-code until have ‘no known errors’

Adjust Expectations

Formulate questions

Characterize answers

Design experiments

Develop, verify, refine model - as necessary

(Re)plan study and (re)secure resources

Do sensitivity analysis

If necessary, collect data

Analyze, Advise
- and Caution

Start

Redesign and Run Experiments

Identify
Prejudices

Enough time
and money?

Anticipate system and human behavior

Code, re-code until have ‘no known errors’

Adjust Expectations

Figure 1: Concurrent Steps in Simulation Project1

Incidentally, I also do not require my students’ com-

puter codes to be error free – or even running. How they
design their model is more interesting to me then how they
code it. I believe that the best a simulation program can
achieve is ‘no known errors’.

I have found that no matter how easy the homework
assignment, the more persuasive students will try to get me
or my Teaching Assistants to do the work for them – some
succeed (future managers?). Which leads me to a closely
related bad idea. Hold extended office hours the day be-
fore a big assignment is due. My posted office hours
read: ‘2:00pm until the queue is empty’. If an assignment
is due the next day, my queue might not be empty until the
next day when they follow me to lecture2.

Motivating Students: I once received, and followed,
the following bad advice from a senior colleague: don’t
waste class time motivating students. My undergraduate
courses have always been required for graduation. This is
an automatic strike against motivation for most students
and the only motivation for some. My courses also take a
lot of work, some hard analytical thinking, use mathemat-
ics and statistics, and involve some serious computation.
(As if I needed another strike.) Still, I have managed to get
consistently high course evaluations and have even won a
3

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

few teaching awards. I think this is largely because I spend
a great deal of thought on how to motivate each concept
and place methodology in a problem- solving context.

I once shamelessly used fancy animations from soft-
ware vendors to motivate my students. Now, I don’t like to
spend any more than part of a single lecture on animation,
and that is mostly cautionary. My consulting practice has
taught me that animation is an analytically worthless activ-
ity that is often a waste of study resources (but it is fun!).
Maybe animations were more important before Nintendo,
but today’s better managers want quantitative results.

My Berkeley undergraduates have had two years of
calculus, physics, chemistry, thermodynamics, mechanics
or electronics; they are eager to learn something they can
‘do’. I discovered the best motivator for simulation stu-
dents is to point out that this is probably their first college
course about something someone might actually pay them
to do. The summer after taking my class, a student once
was offered more money than an average Stanford MBA to
do simulation studies.2 That gets a Berkeley student’s at-
tention – think of the tuition savings!

Peer pressure is also a terrific motivator. Last year, my
students did their simulation projects over the internet3. On
the web, they can run and evaluate their classmates’ simu-
lations. I am keeping the really strong projects to motivate
next years’ class – did I say motivate? maybe intimidate is
a better word.

While I am on motivation: I use a grading method that
keeps kids who flunk the midterm exam from giving up. I
use multiple weighting schemes for exams, projects, and
homework. One of the schemes assigns effectively no
weight to the midterm exam. After the course is over, stu-
dents retrospectively get the weighting that gives them
their highest grade – thank goodness for spreadsheet mac-
ros. Caution: if you try this, make sure that all weightings
include the final exam; if not, the better students may all
cut it giving some slackers an easy A in the course2.

Attendance: Most students and some faculty feel that
lecture attendance should be optional. I have a twist on
an old trick that assures nearly perfect class attendance. I
give random in-class quizzes. Wait! This is key: I no
longer call these quizzes, I call them “advanced placement
(AP)” questions. A student’s AP score is added to their
score on the next exam. This takes pressure off the exams.
In fact, students usually request more ‘pop quizzes’ as ex-
ams approach. This also tells me if they understand a point
I tried to make, before the exam. That reminds me: I once
wrote a “million point exam” to try to get students to stop
hounding me for partial credit – ten thousand points here,
ten thousand points there.

Fairness: This is a big deal to me. The worst advice I
can give here is to base grades, at least in part, on sub-
jective measures like “class participation”. Of course, to
treat students fairly is easy, just do it. More important, and
harder, is to appear to be fair. Occasionally I have had to
1584
explain the difference between unfairness and irrationality.
Students sometimes accused me of the former when they
meant the latter, of which I have been guilty. I let students
pick ‘secret course IDs’. They put these and not their
names on all their work. These IDs are useful for posting
grades and handing back assignments. But, I primarily use
them to curve the course without looking at students’
names – and I do this with my TAs as witnesses. After
curving the course, we look at the names below each grade.
If a student put in an exceptional effort, we sometimes
lower the line – but preserve the ordering. Once my TA ar-
gued successfully that a student had worked hard enough
for an A, he later married her2. Whoa.

Cheating: you could rely on the honor system. I be-
lieve most people are honest; however, there are always a
few students who would rather spend 10 hours working a
scam then 1 hour studying. A single successful cheater can
drain their classmate’s morale and ruin a course. I have tried
everything I can think of (shuffled multiple choice exams, a
bounty, common random numbers…) I have concluded that
prevention is the only approach to cheating that can work.
Once you catch a student cheating, it is too late.

Teaching Assistants: maybe the worst thing you can
do here is ignore the opinions of your teaching assis-
tants. At Cornell my TAs almost always won the out-
standing TA award (several have won it twice and one won
it three years straight)2. Since moving to Berkeley, both my
TAs have also won TA awards. Some if this is probably a
manifestation of the “good cop/ bad cop” effect. My TAs
are important, and not just for their work. I depend on their
judgment and count on them to tell me when something is
not working – this is actually how I found out that many of
the ideas presented here were such losers. I also adjust the
course content to the background and skills of my TAs. If a
TA knows a particular simulation language, I invite them
to present it to the class. I always require and pay TAs to
attend my lectures. If I have strong TAs, I try something
new; if not, I back off a bit.

Relationships to other courses: A bad idea here is to
present simulation as an alternative to analytical model-
ing. As seen in Figure 1, I feel it is important to anticipate
system behavior with analytical models before starting cod-
ing. Depending on a student’s background, this might be in
the form of an analytical queueing model, or maybe only a
rough-cut qualitative (unscaled) response surface drawing.
This has the side effect of forcing abstraction to suppress the
natural tendency to put too much detail in a simulation
model. I always introduce basic queueing models and con-
cepts and present Little’s law from a variety of different per-
spectives. I am not sure a better name for my course might
be applied stochastic modeling. Probably the most mislead-
ing thing you can do is tell students that simulation is the
tool of ‘last resort.’ Your credibility will be gone after they
graduate and find it is often the tool of choice.

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

Software: I think probably the worst thing one can do is

focus your course around a commercial software pack-
age. When I am asked: ‘what language do you teach in your
simulation course?’ I respond: ‘All of them’. It’s true. The
success of my students in using a wide variety of commer-
cial simulation packages is solid evidence that this works.

Teaching a so-called, language-based simulation course
has no place in a University. For better or worse, most simu-
lation software is changed regularly, making such a course
obsolete. It is like teaching a class in drivers’ education, after
which students can only drive a ‘94 Oldsmobile Cutlass.
Simulation education, as opposed to training, should teach
what goes on “under the hood” where all simulation pack-
ages have fundamentally the same engines. Commercial
simulation software training is best left to the short courses
offered by the software vendors who have developed and
sell the product – I have helped teach such courses and aca-
demia can’t compete.

Nevertheless, I try to introduce one or two commercial
simulation packages to my students. This is primarily to
make them better consumers. I emphasize language simi-
larities rather than their differences. My students get an
overview of the language, a demonstration and usually an
exercise to do. For the homework I ask them to model a
highly congested system; they are surprised how quickly
most simulation software packages come to a virtual stand-
still when simulating a simple queue with heavy traffic!
(See Figure 2.)

There are several programs that are specifically de-
signed for teaching the fundamentals of simulation. I use
one to teach all three classical modeling world-views. The
software can be learned in a few minutes and can be used
to model any discrete or continuous dynamic system. What
I did not like about it, I changed.

Modeling uncertainty: I used to spend much of the
course on input distribution estimation and random
variate generation. This material contributes nearly half the
weight of several popular simulation textbooks and I once
thought it was important. Unless changing the system has no
effect on its environment, then fitting distributions to real-
world data for modeling exogenous simulation input is non-
sense. If a system has no effect on its environment, why
study it? If one were not thinking about changing a system,
they probably should not be simulating it in the first place. If
we include distribution-fitting software in a simulation
course, we show students how easy it is to remove most of
the useful information from a data set - such as trends, de-
pendencies, and cycles. I am continually amazed in my con-
sulting work to find people who collect a few weeks’ worth
of system data, fit it to the wrong scalar iid distributions, and
then simulated a different system for years of operation to
get narrow confidence intervals. The likelihood that their
confidence intervals will actually include the performance
measures they are studying gets worse the more they run
their model. I am glad these were not my students.
1585
0

10

20

30

40

50

60

70

0 0.5 1 1.5
traffic intensity

Ru
n

Ti
m

e
(M

in
ut

es
 p

er
 M

 jo
bs

)

Arena - Job driven
Sigma - Resource driven

Figure 2: Run Times for a Simple Queue
Simulation Using Different Methodologies4

How to model uncertainty? I tell my undergraduate stu-

dents to start with a Beta distribution and then show them
how they might create dependencies in and among the input
processes and tell them try a fractional factorial design of dis-
tribution shapes. (I also tell them to never use an exponential
distribution in an actual simulation study – who waits in line
for three months anyway? – only someone memoryless.)

I do introduce basic algorithms for generating pseudo-
random numbers and the four fundamental techniques for
generating scalar variates identified by Bruce Schmeiser. I
regard these as cultural, useful mainly as building blocks
for modeling dependent processes.

Lest I give the wrong impression: understanding un-
certainty is a major goal in my course. I use the time I save
by not going through the litany of variate generation algo-
rithms to emphasize different approaches to sensitivity
analysis. I want my students to ask how a system would
behave if the inputs were shifted, skewed, increasing, ac-
celerating, cycling, less variable, more dependent, con-
stant, chaotic… On every exam I give, an answer to a
question is to perform a sensitivity analysis – and I tell stu-
dents this in advance (Remarkably, some still manage to
get it wrong – maybe they thought it was a trick?)

Finally, I think the point about teaching students how to
ask better questions and recognize valid answers is worth re-
iterating. Much of Engineering education focuses on teach-
ing students how to answer questions; little on how to ask
good questions, and rarely to question the questions. (Ironi-
cally, university professors are usually pretty good at this -
particularly when refereeing each other’s research papers5.)

1 Contrast this with similar figures in most popular

simulation textbooks.
2 All anecdotes are unfortunately true.

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

3 Arlen Khodadadi wrote an excellent set of tutorials on

how to do this.
4 From Theresa Roeder.
5 Research support from NSF, SRC, and ISMT has made

a significant difference in how I teach my simulation
courses.

2.4 Some Thoughts on Teaching
Monte Carlo Simulation (B. W. Schmeiser)

Rather than focusing upon a single issue, I comment
briefly on various aspects of teaching Monte Carlo (that is,
stochastic-model) simulation. My comments, like the
other panel members, are supported (and tainted) by being
old enough to have begun my career in an era in which
“doing” mathematical modeling (whether discrete-event
simulation, system dynamics, probability, statistical, or op-
timization) required an understanding of first principles,
including computer programming (for most of us, on
punch cards). I also am similar to the other panel members
in that my professional life bounces among trying to ex-
tend the research frontier to working with practitioners (as
a consultant) to teaching students ranging from young col-
lege undergraduates to Ph.D. students. In addition, our ca-
reers have centered on stochastic models analyzed via digi-
tal-computer simulation. Our approaches, styles, interests,
and abilities to teach simulation courses (at various levels)
might have little relevance to the (common) situation
where a faculty member is teaching simulation only be-
cause someone has to do it. Nevertheless, here are some
thoughts, which I have organized into six points.

Point 1. University classes should focus on topics that
are both timeless and difficult to learn in practice. Learn-
ing new concepts is difficult for a practitioner, who typi-
cally lacks time and guidance. A practitioner will learn,
almost automatically, many of the practicalities of the real
world. Real-world data collection and extended projects
are inefficient use of a student’s time. In an engineering
curriculum, some exposure to the real world is traditional,
at least via a senior design course. Much more efficient
and useful is a sequence of relevant summer jobs. The
other simulation practicality is the need to know a relevant
simulation language, but this need is best met by the rele-
vant company’s one-week short course.

Point 2. Courses (in general) should integrate topics.
Simulation courses, at many levels, can combine modeling
constructs such as system dynamics, discrete-event, prob-
ability, statistics, and optimization, as well as mathemati-
cal, numerical, and Monte Carlo analysis methods. Course
evaluations from my introductory dual-level “simulation”
course regularly include comments that the learning of
computer programming, probability, and statistics was a
non-negligible course benefit. Using Microsoft Excel, I
use simple Monte Carlo sampling in my sophomore-level
introduction to probability and statistics. Event-probability
problems are solved both mathematically and with Monte
158
Carlo, foreshadowing the inferential statistical thinking
that underlies the second probability and statistics course.
I mention to the students, but don’t emphasize, that the
same thinking underlies the dynamic-simulation analysis
that the IE students see later in their course work.

Point 3. The particular combination of modeling and
analysis methods should depend upon the course’s context.
Course contexts differ dramatically: undergraduate/ gradu-
ate; stand-alone/sequence; management/technical. Purdue
IE has the luxury of two parallel dual-level (under-
grad/graduate) introductions to simulation, IE 580 (which
is language based) and IE 581 (which is concepts based),
as well as IE 680, a graduate-level research-frontier course.
In IE 581, which I discuss more below, I tell the students
that they may stop me at any time to ask me to explain why
a course concept is relevant to practice; in IE 680 I make
no such claim.

Point 4. To the extent allowed by budgets, courses
should be segmented by student backgrounds and goals.
With a homogeneous student background and goal, deter-
mining a good course structure is easy. Heterogeneous
backgrounds and goals are far more challenging. This past
spring, for example, IE 581 contained undergraduate in-
dustrial engineering students, Ph.D. students from mathe-
matics and statistics, as well as M.S. students from depart-
ments such as forestry, construction management, traffic
systems, management, and industrial engineering. Several
of the students took the class because it is required for Pur-
due’s Computational Finance certificate. Few of the stu-
dents had extensive background in computer programming,
probability, and statistics, but most had a solid background
in one or two of these three topics.) Far too often the in-
structor with heterogeneous students faces the uncomfort-
able situation of boring part of the class while “blowing
away” the rest. Law and Kelton’s SimLib (see Law and
Kelton (2000)) can be a challenge for a mathematics Ph.D.
student while being straightforward for an IE undergradu-
ate student; a few days later a discussion of random vectors
(with arbitrary marginal distributions and dependency
structure) lights up an entirely different set of faces. For-
tunately, some topics work well for most students, for ex-
ample, a discussion of how simulation analysis can fail.

Point 5. Integrate simulation topics within a course.
The structure of IE 581 is based on increasing model com-
plexity rather than on a sequence of topics. Topics such as
U(0,1) random numbers, random-variate generation, input
modeling, output analysis, and variance reduction arise
multiple times. Dynamic models (those with a state that
evolves over time), arise only during the last few weeks of
the fifteen-week course. Only three models are used
throughout the semester, although with some variations.
The first model, which can serve for three or four weeks of
the course, has no time component, is analytically solvable,
and has only indicator variables as output. Typical would
be a four-component reliability network, at first with inde-
6

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

pendent components and later with dependent components.
This simple model motivates the need for random numbers
(with a discussion of what that means on a deterministic
computer), the need to convert those random numbers into
coin flips, the need for standard-error calculations, the ef-
fect of statistical dependencies within a model, a simple
intuitive variance reduction idea or two, the ease of doing
some Monte Carlo simulations in a spreadsheet, the con-
ceptual point that simulation’s natural talent is high-
dimensional integration, and a sense that analysis can be
based on a combination of methods. The second model is
more complex, requiring continuous random variables,
logic complicated enough that a spreadsheet is unwieldy,
and non-binary output data. Typical would be a muffler-
warranty simulation, in which distributions must be speci-
fied for car lifetime, muffler lifetimes, and muffler costs.
Such a model motivates the need to move beyond a spread-
sheet, the need for some random-variate-generation ideas,
the need for standard-error estimation for non-binary data,
and the effect of another one or two variance reduction
ideas. The course’s third model requires discrete-event
modeling. Typical would be a cleaning-and-patching sta-
tion, two servers in tandem. New issues include the need
for maintaining system state, the concept of event, time-
based statistics, transient versus steady-state behavior, a
sense of the problem of autocorrelation, the effect of non-
stationary behavior (via a non-homogeneous arrival proc-
ess), and the general modeling power of the simple next-
event framework (as in GASP II and SimLib).

Point 6. Use an appropriate textbook as background
reference. Such a reference includes far more information
than can be included in the class. I spend little time on top-
ics such as the structure of simulation projects or model
validation; students can easily read the textbook author’s
ideas, which will differ from other people’s ideas and for
which simulation practitioners (and modelers in general)
need to create their own philosophies. A good reference
also helps the student later when he or she comes across a
particular need, such as properties of various statistical dis-
tributions or ideas for model validation.

2.5 A Key Topic: How Simulation
Software Works (T. J. Schriber)

Some other members of this panel have addressed the trade-
offs involved and balance needed in teaching the elements of
both modeling and analysis in a first course (which unfortu-
nately is often also the only course) in discrete-event simula-
tion. It’s not possible to provide a “master’s degree in simu-
lation” in a first course, and so the many important topics
falling under the umbrella of simulation have to compete
with each other for some degree of inclusion in the first
course. Each of us (who teaches simulation) has his or her
own take on how the candidate topics rank in relative impor-
tance. For example, some might think that random number
generators are not of enough relative importance in a first
1587
course to give more than maybe 20 or 30 minutes of airtime.
Others might think that the logical foundations of discrete-
event simulation software are not of enough relative impor-
tance to be included in a meaningful way (or even at all) in a
first course. I myself am a believer in giving students the
substantial intellectual satisfaction and practical benefits
that result from bringing them to the point of truly
understanding how discrete-event simulation software works
(both in generic terms, and also in terms of the specific
software they are using). I would like to argue here for
meaningful inclusion of that topic in a first course.
 In practice, a “black box” approach often seems to be
taken in teaching and learning a discrete-event simulation
software package. The external characteristics of the soft-
ware are studied (“arrange the blocks or statements in this
sequence and, voila, you have a model for three serial sta-
tions in a production line”; or “to model line switching in a
multiple-line, multiple-server situation, arrange the blocks
or statements this way”), but the logic on which the soft-
ware is based is ignored or is touched on only briefly.
Choices made on the part of the language designer (not the
model designer) in implementation of the foundation might
not be studied at all and related to step-by-step model exe-
cution. The modeler therefore might not be able to think
things through when faced with needs like these:

• developing good (or even correct) approaches for
modeling complex situations;

• using interactive tools (provided as part of the
software) to come to a rapid understanding of er-
ror conditions arising during model development;

• using interactive tools to verify that complex sys-
tem logic has been captured correctly in a model.

 How feasible is it to include such material in a first
course? In my experience, it is eminently feasible. A ge-
neric (language independent) model for the logical founda-
tions of discrete-event simulation can be introduced and
discussed in one (50-minute) class. In another single class,
a fundamental subset of the corresponding step-by-step
particulars (for the software being used in the course) can
be introduced, and use of the software’s interactive tools to
support step-by-step tracing of execution of several fun-
damental models can be demonstrated (via use of an in-
class computer and projection of the computer screen). Ex-
ercises stimulating additional learning on the part of the
students can then be assigned. The fundamental under-
standing of what the software is doing can then be incre-
mentally refined and exercised as additional features of the
software are introduced.
 The benefit of this is that students come to understand
what happens at a step-by-step level when a discrete-event
simulation is performed. This puts them in a powerful posi-
tion to be intelligent and aggressive users of the software.
Having learned only a subset of the software, this also brings

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

them to the point where they can predict what additional ca-
pabilities the software probably offers and how those capa-
bilities might be supported at an underlying level (e.g., how
does the language likely support features like these: model-
ing resource unavailability to reflect breakdowns, scheduled
maintenance, or shift workers; modeling pre-emptive use of
resources; and modeling inter-entity communication?)
 Of course, the inclusion of any topic (even at only an
introductory level) in a course does take time, with the
possible (and maybe inevitable) effect of crowding out
other topics. In terms of the discussion of software, the ex-
tent of coverage of a simulation package can be scaled
back to free up time to include the “how simulation soft-
ware works” topic. It is arguably better for a student to be
familiar with, say, only 40% of a language and understand
how it works than to be familiar with 75% of a language
but not understand how it works.
 Those who might want to delve further into “how
simulation software works” are referred to Schriber and
Brunner (1998) and Schriber and Brunner (2000). The phi-
losophy and particulars of teaching “how it works” is given
in Schriber (1991) for the case of GPSS/H.

2.6 Modeling, Programming,
and Analysis (P. L’Ecuyer)

2.6.1 Modeling vs. Programming

I will use the same definitions as David Kelton for model-
ing and analysis, except that I put the specification of input
distributions and processes in modeling instead of in analy-
sis. Stochastic modeling thus involves probability and sta-
tistics. I also want to emphasize the distinction between
modeling and programming. People often refer to their
simulation program as “the model”‘, which I believe is un-
fortunate and sometimes misleading.
 A model of a system is a purely mathematical abstrac-
tion, usually with many simplifying assumptions about the
system. Building an appropriate model, realistic enough for
answering the questions of interest but otherwise as simple
as possible, is the most important and difficult part of a
simulation project. Once the model is clearly specified, pro-
gramming it is usually routine. Too often, however, assign-
ments in simulation courses and exercises in standard simu-
lation textbooks concentrate only (or mostly) on the
programming aspects: The model is fully specified and the
students are just asked to program it. This is a bit like enter-
ing a 10 km race at the 9 km mark. And I must admit that I
have often been one of the culprits as a teacher. Why?
Maybe because it is easier to assign an exercise taken di-
rectly from the book than to come up with data from which a
model is to be built. Perhaps another reason is that appro-
priate tools for stochastic modeling are not always easily
available to the students. Such tools involve the use of statis-
tics, which students often find rebarbative, but which I be-
158
lieve is necessary especially in computer science depart-
ments such as mine. In my opinion, unless they are for
computer science students, simulation courses should put
more emphasis on how to build models than how to program
them. This does not mean spending time collecting data on a
real system, but rather starting from a small incompletely
specified model, together with some data, perhaps with an
open possibility of collecting more data, and learn about
what to do from there. Students should come out of a simu-
lation course realizing that modeling is really the difficult
and important part, and get at least a bit of intuition about
appropriate ways of modeling uncertainty. For this, teaching
material (both textbooks and software) that better supports
the stochastic modeling activity would be welcome.

2.6.2 What kind of Simulation Software to Use?

Most of the attendance of the undergraduate simulation
course in my department are computer science students, so it
is natural that simulation programming remains an important
topic (more than if I was in industrial engineering, say) and
that some emphasis be put on the design and implementation
of simulation software. Our graduate course in simulation,
on the other hand, targets mostly students from operations
research and computational finance, and is more oriented
towards analysis and advanced topics, with very little em-
phasis on programming. For both courses, I find it important
that the students have access to the internals (computer code)
of the simulation software. Giving assignments that ask to
add or modify facilities in the software (e.g., adding non-
uniform variate generators, adding statistical tools or even
changing the event-list implementation, etc.) is a great way
to teach how simulation software is built. This is one of the
reasons why simulation courses in my department are taught
with homemade simulation libraries, written in general pur-
pose simulation languages (currently Java and C). I never
use commercial simulation languages or environments in my
teaching and research. The use of graphical simulation envi-
ronments is low on my list of teaching priorities. It is not
hard to write libraries or frameworks for discrete-event
simulation, in widely used high-level languages such as Java
or C++ for example, with the same powerful simulation
tools that are offered in specialized simulation languages. In
my opinion, there is no need for distinct simulation pro-
gramming languages, not only for teaching, but in the indus-
try as well. Using a standard language has important advan-
tages: it removes the need to learn another programming
language with its own syntax (this saves time), and it facili-
tates the use of the standard compilers, the software engi-
neering tools, and the rich software libraries that are avail-
able for this language (e.g., for optimization, statistics,
computer graphics, etc.). By “standard”, I mean languages
that are well supported over all kinds of operating systems.
This excludes Visual Basic, for instance. High-level simula-
tion environments with graphical interfaces, such as those
8

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

currently on the market, could be adapted to fit on top of
such frameworks.

2.6.3 Analysis, etc.

Analysis issues should be addressed at least to a certain ex-
tent in a first simulation course, with emphasis on principles
and ideas rather than recipes. What are the important issues
to address early? The students must certainly understand the
philosophy behind the design of (pseudo)random number
generators (RNGs). They should be given concrete examples
of why not to trust the RNGs available in commercial soft-
ware, in general, and be provided with concrete alternatives.
(See my tutorial paper on RNGs in these proceedings.)
There is no need to cover theorems about the period lengths
of LCGs, the spectral test, bad ideas such as the mid-square
method, etc. Regarding non-uniform variate generation, one
should explain the main ideas such as inversion, accep-
tance/rejection, etc., and give some examples.
 For output analysis, concentrate on giving intuition
about the noise in the simulation results due to all sources
(including the model building). Show how to estimate it
and to compute confidence intervals, while insisting that
the normal approximation is not always appropriate for
this. One can forget about steady-state analysis in a first
course. Stochastic optimization via simulation is a very
important topic in practice, but also very difficult to real-
ize. The students should be made aware of this. Finally,
they should get some intuitive idea of efficiency improve-
ment, (e.g., using common random numbers, control vari-
ates, etc.) via concrete examples.

2.7 The Interplay of Practice and Theory
in Teaching Simulation (J. R. Wilson)

The title of my contribution is a shorthand for general con-
siderations of balance in (a) the topics to be presented in a
university course on system simulation; and (b) the relation-
ship of those topics to the broader curriculum in which they
are found. In my experience, especially at the undergraduate
level, it is essential to maintain an effective balance between
the hands-on, practice-oriented aspects of a simulation course
and the theoretical principles of engineering, computer sci-
ence, and probability and statistics that underlie simulation.
 In recent years, I have found that in all courses I teach
(not just the simulation-related courses), it is critically im-
portant to motivate students strongly at the outset by show-
ing them the direct practical applications of the material that
will be covered in the course. For students in my under-
graduate simulation course, this involves a brief discussion
of recent high-visibility senior design projects that involved
simulation (and nearly all do) as well as recent consulting
applications that involved the research of my master’s and
doctoral students. Showing the associated animations is
particularly effective in stimulating the students’ interest.
1589
For graduate students, the corresponding motivation is to
discuss my recent work with other professors’ graduate stu-
dents that involved the effective use of simulation modeling
and analysis techniques in their research.
 As a follow-up to the motivational pep talk, in my un-
dergraduate course I begin the hands-on portion of the course
with a lab exercise that involves a manual simulation of a
simple queueing system to introduce the students to the enti-
ties, attributes, events, lists, and resources that comprise a
discrete-event stochastic simulation. This is rapidly followed
by construction of a simulation model of the same system us-
ing a commercial simulation package. I try to weave all of
the point-and-click bells and whistles into the discussion as
unobtrusively as possible while emphasizing the correspon-
dence to the elements of the manual simulation.
 In the presentations and labs that follow, I introduce an
increasingly complex series of examples that (I hope) illus-
trate good modeling practice as well as the specific fea-
tures of the simulation package that enable the students to
implement the simulation model, animate it, debug it, plan
an experiment exercising it, and then finally to analyze the
results that it generates. Interspersed with the hands-on
labs are presentations on input modeling and transient and
steady-state output analysis that are much more “theoreti-
cal,” linking directly to previous courses on probability and
statistics and applied stochastic models. I have found that
is it necessary to “remind” the students about a number of
basic results from these courses that they have had little
opportunity to use until they take the simulation course.
To maintain the students’ motivation, I use the previous
homeworks and labs as the vehicles for illustrating various
issues that arise in input modeling and output analysis. Al-
though I doubt that many students would say this is their
favorite part of the course, on the whole the students find
the alternation between practice and theory to be (tolera-
bly) interesting. For many of the students, this is their first
real opportunity to see the direct application of the various
probability distributions, statistical methods, and queueing
models that they learned earlier. Thus the simulation
course provides many students with an opportunity to inte-
grate and internalize many topics that are essential for
practicing engineers, scientists, and managers.
 In both my undergraduate and graduate courses, I as-
sign a term project that is designed to tie together much of
the material covered in the course. In the undergraduate
course, the students are organized into teams, and they are
responsible for arranging a project in a local industry. If
this activity is carefully monitored, it can give the students
invaluable experience in conducting a successful simula-
tion study with an industrial client; and in some cases this
project has formed the basis for a larger senior design pro-
ject or even a master’s project.
 Although I find that in short order the students are able
to point-and-click rings around me, they often seem to need
an inordinate amount of help in (a) conceptualizing (model-

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

ing) some aspects of the systems they encounter in their term
projects; and (b) debugging the resulting simulation models.
For this reason, I have made a concerted effort to provide in-
class examples and homework problems that require the stu-
dents to think more creatively about how to model systems
that do not appear in the familiar form of a queueing net-
work model in which work pieces enter the network, move
among the various work centers (nodes) in the network, then
exit the system. Moreover, I have augmented the in-class
discussion and labs on model verification (debugging) in an
effort to make the students more self-sufficient.
 Turning to the issue of graduate courses in simulation, I
want to make two main points. The first is that I believe an
introductory graduate course in simulation should include a
detailed, comprehensive treatment of the basic principles of
discrete-event stochastic simulation so that the students are
well grounded in current techniques for random-number
generation, (nonuniform) random-variate generation, and
discrete-event programming as well as the usual material on
input modeling and output analysis at the level of Law and
Kelton (2000). Depending on the mix of students in the
course, their interests, and the available time, it is also highly
desirable to provide a comparable treatment of the basic
principles of combined discrete-continuous simulation.
 In moving beyond the topics in an introductory gradu-
ate-level simulation course, my second point is that there
seems to be a significant gap in textbooks of an appropriate
level and scope of coverage. This gap should be closed.
All these points will be elaborated in the oral presentation.

REFERENCES

Fourer, R., D.M. Gay, and B.W. Kernighan. 1999. AMPL:
A Modeling Language for Mathematical Program-
ming, second edition. Duxbury Press.

Law, A. M. and W. D. Kelton. 2000. Simulation Modeling
and Analysis, third edition, , New York, New York:
McGraw Hill.

Schriber, T.J. 1991. An introduction to simulation using
GPSS/H, New York, New York: John Wiley & Sons.

Schriber, T.J. and D.T. Brunner. 1998. How Discrete-
Event Simulation Software Works. Chapter 24 in
Handbook of Simulation: Principles, Methodology,
Advances, Applications, and Practice, ed. J. Banks.
New York, New York: John Wiley & Sons.

Schriber, T.J. and D.T. Brunner. 2000. Inside simulation
software: how it works and why it matters. In Pro-
ceedings of the 2000 Winter Simulation Conference,
ed. J.A. Joines et al., 90-100. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

AUTHOR BIOGRAPHIES

TAYFUR ALTIOK is Professor and Chair of the Depart-
ment of Industrial Engineering at Rutgers University. He
159
has co-authored the recent book Simulation Modeling and
Analysis using Arena. His email is <altiok@rci.
rutgers.edu>.

W. DAVID KELTON is Professor of Management Sci-
ence and Chair of the Department of Management Science
and Information Systems in the Smeal College of Business
Administration at Penn State. His interests are in simula-
tion methods and applications, stochastic modeling, and
applied statistics. In 1987 he was Program Chair of the
WSC, and in 1991 was WSC General Chair. He served on
the WSC Board of Directors from 1991 through 1999, co-
representing INFORMS. His email is <david.kelton@
uc.edu>.

PIERRE L’ECUYER is a professor teaching simulation
in the Departement d’Informatique et de Recherche Opera-
tionnelle, at the University of Montreal. He received a
Ph.D. in operations research in 1983, from the University
of Montreal. From 1983 to 1990, he was with the Com-
puter Science Department, at Laval University, Quebec. He
obtained the prestigious E.W.R. Steacie grant from the
Natural Sciences and Engineering Research Council of
Canada in 1995—97 and a Killam Grant in 2001. His main
research interests are random number generation, quasi-
Monte Carlo methods, efficiency improvement via vari-
ance reduction, sensitivity analysis and optimization of
discrete-event stochastic systems, and discrete-event simu-
lation in general. He is an Area Editor for the ACM Trans-
actions on Modeling and Computer Simulation. His email
is <lecuyer@IRO.UMontreal.CA>.

BARRY L. NELSON is a Professor in the Department of
Industrial Engineering and Management Sciences at
Northwestern University, and is Director of the Master of
Engineering Management Program there. His research
centers on the design and analysis of computer simulation
experiments on models of stochastic systems. He has held
many positions for the Winter Simulation Conference, in-
cluding Program Chair in 1997 and current membership on
the Board of Directors. His e-mail and web addresses are
<nelsonb@northwestern.edu> and <www.iems.
northwestern.edu/~nelsonb>.

BRUCE W. SCHMEISER is a professor in the School of
Industrial Engineering at Purdue University. His interests
lie in applied operations research, with emphasis in sto-
chastic models, especially the probabilistic and statistical
aspects of stochastic simulation. He is an active participant
in the Winter Simulation Conference, including being Pro-
gram Chair in 1983 and chairing the Board of Directors
during 1988-1990. His email is <bruce@purdue.edu>.

THOMAS J. SCHRIBER is a Professor of Computer and
Information Systems at The University of Michigan. He is
0

Altiok, Kelton, L’Ecuyer, Nelson, Schmeiser, Schriber, Schruben, and Wilson

a Fellow of the Institute of Decision Sciences and is a re-
cipient of the INFORMS College of Simulation’s Distin-
guished Service Award. He teaches modeling, decision
analysis, and the design of business-application software in
Michigan’s MBA program. He is a member of ASIM (the
German-language simulation society), DSI, IIE, and
INFORMS, and is listed in Who’s Who in America. His
email is <schriber@umich.edu>.

LEE SCHRUBEN is Professor and Chair in Industrial
Engineering and Operations Research at the University of
California at Berkeley. His research interests are in statisti-
cal design and analysis of simulation experiments and in
graphical simulation modeling methods. His simulation
application experiences and interests include semiconduc-
tor production, dairy and food science, health care, banking
operations, and the hospitality industry. His email is
<schruben@ieor.berkeley.edu>.

JAMES R. WILSON is Professor and Head of the De-
partment of Industrial Engineering at North Carolina State
University. He is currently a co representative of
INFORMS–CS to the WSC Board of Directors. His e-mail
address is <jwilson@eos.ncsu.edu>, and his web
page is <www.ie.ncsu.edu/jwilson>.

1591

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

