
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

OPTIMISTIC PARALLEL SIMULATION OF A LARGE-SCALE VIEW STORAGE SYSTEM

Garrett Yaun
Christopher D. Carothers

Sibel Adali
David Spooner

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, U.S.A
ABSTRACT

In this paper we present the design and implementation
of a complex view storage system model that is suitable
for execution on a optimistic parallel simulation engine.
What is unique over other optimistic systems is that reverse
computation as opposed to state-saving is used to support
the rollback mechanism. In this model, a hierarchy of view
storage servers are connected to an array of client-side local
disks. The term view refers to the output or result of a
query made on the part of an application that is executing
on a client machine. These queries can to be arbitrarily
complex and done using SQL. In our performance study of
this model, we find that speedups range from 1.5 to over
5 on 4 processors. Super-linear speedups are attributed to
a slow memory subsystem and the increased availability of
level-1 and level-2 cache when moving to a larger number
of processors.

1 INTRODUCTION

CAVES is a configurable applications view storage system.
This system in practice is designed to work as a middle-ware
system, connecting multiple possibly distributed servers to
multiple possibly distributed clients. The main purpose of
any storage system is to reduce the overall turnaround time
between an application and a data provider. To achieve
this, storage systems make use of the possible locality
between different data requests and try to optimize the
overall performance by storing data that is most likely to
be re-requested in the near future in a fast storage medium.
In this storage system, we consider the local disk of a
storage management system as a fast medium compared to
networked and possibly distant servers that process complex
database queries. We use view to refer to the output of a
query in any application.
1363
Examples of applications that involve costly queries
include data warehousing and data mining applications that
process complex queries over large data sets, applications
that use spatial aggregations and correlations over complex
vector data, biological databases that process highly com-
plex sequence comparison algorithms, and large data sets
obtained from scientific experiments. In such applications,
the time to process and transmit a single query may be
rather high even in the presence of indices and the size of
the output may be very large. The cost of producing such a
data set might be much larger than the cost of writing and
reading back the data set from the local disk. In regular
storage replacement algorithms, the goal of the system is to
optimize the total number of hits. This assumes that the cost
of producing each item in the storage is uniform. However,
this is not the case for complex queries that are transmitted
over a network which optimizes the overall savings in time.
As a result, the replacement policies for an application may
vary greatly based on its workload.

The CAVES system is designed as a general purpose
storage management system that can be stored either at a
middle-ware server or at a client machine. Its purpose is
to store views from multiple applications and re-use them
whenever possible. This system is fully programmable,
making it possible for applications programmers to specify
various storage management protocols that are best suited
for a given application. CAVES can also work as a fast
policy prototyping framework. Here, it constantly monitors
the general system behavior, collects statistics and measures
the effectiveness of the predefined storage management rules
for a given instance. This is accomplished with the help
of a simulation model of the actual system that can be run
periodically to perform specific system optimizations. It is
therefore crucial that the simulation model run as fast as
possible.



Yaun, Carothers, Adali, and Spooner
The primary focus of this article is on the design
and implementation of the CAVES simulation model for
high-performance execution. In particular, this discrete-
event model is reversible and is well suited for highly
efficient execution on a optimistic parallel simulation en-
gine. By reversible, we mean a simulation model that
uses a reverse computation approach to achieve state-saving
(Carothers, Perumalla and Fujimoto 1999(a), Carothers, Pe-
rumalla and Fujimoto 1999(b), Carothers, Perumalla and
Fujimoto 1999(c), Carothers, Bauer and Pearce 2000). To
the best of our knowledge, this is the first reversible simu-
lation model of a storage management system.

We begin our presentation with an overview of our
reversible, optimistic simulation engine, ROSS in Section 2.
In Section 3, we then describe the CAVES model and
how it was realized atop the ROSS engine. It is here we
present how the CAVES model was made reversible. In
Section 4, our performance results are presented. The cause
and effect relationships are established between CAVES
model parameters and ROSS performance. Related work
is presented in Section 5 followed by our conclusions in
Section 6.

2 OPTIMISTIC SIMULATION

In optimistic simulation systems (Jefferson 1985), the most
common technique for realizing rollback is state-saving.
In this technique, the original value of the state is saved
before it is modified by the event computation. Upon roll-
back, the state is restored by copying back the saved value.
An alternative technique for realizing rollback is reverse
computation (Carothers, Perumalla and Fujimoto 1999(a),
Carothers, Perumalla and Fujimoto 1999(b), Carothers, Pe-
rumalla and Fujimoto 1999(c), Carothers, Bauer and Pearce
2000). In this technique, rollback is realized by performing
the inverse of the individual operations that are executed in
the event computation. The system guarantees that the in-
verse operations recreate the application’s state to the same
value as before the computation.

The key property that reverse computation exploits
is that a majority of the operations that modify the state
variables are “constructive” in nature. That is, the undo
operation for such operations requires no history. Only the
most current values of the variables are required to undo
the operation. For example, operators such as ++, −−,
+ =, − =, ∗ = and / = belong to this category. Note, that
the ∗ = and / = operators require special treatment in the
case of multiply or divide by zero, and overflow/underflow
conditions. More complex operations such as circular shift
(swap being a special case), and certain classes of random
number generation also belong here.

Operations of the form a = b, modulo and bitwise
computations that result in the loss of data are termed to be
destructive. Typically these operations can only be restored
136
using conventional state-saving techniques. However, we
observe that many of these destructive operations are a
consequence of the arrival of data contained within the
event being processed. For example, the arrival of a new
view in our CAVES model would change the state of the
view cache by causing the eviction of a currently cached
view. To solve this problem, one can simply swap the data
in the event with the state of the logical process (LP). In
this example, it is the view in the view cache that would be
swapped with the view contained within the event message
denoting the arrival of a new view. When the event is
rolled back, the event data and LP data is just re-swapped
to effect the undo operation. This solution works well as
long as there is a one-to-one mapping between message
data and the amount of LP state being modified. However,
as we observed in our CAVES model, this is not always
the case. It may come to pass that the insertion of a new
view may cause the eviction of many views because of its
size. Unlike typical microprocessor caches, view caches
may cache items which differ in size. As we will see in
the next section, this greatly complicates the reversibility
of the simulation model.

It has been demonstrated that the reverse computation
approach has insignificant forward computation overheads
and low state memory requirements in fine-grain models.
The parallel simulation performance of reverse computation
has been observed to achieve better caching effects, with as
much as six-fold speedup in several model configurations
when compared to copy state-saving, periodic state-saving
and incremental state-saving (Carothers, Perumalla and Fu-
jimoto 1999(b)).

The CAVES model was implemented on top of ROSS,
which is Rensselaer’s Optimistic Simulation System. This
optimistic simulation engine employs reverse computation
to implement rollback functionality. For more detailed
information on ROSS we refer to (Carothers, Bauer and
Pearce 2000).

3 CAVES MODEL

The CAVES model is based on three object types: client,
middle server, and the database server. The client cache
server is attached to the client applications and processes
requests from those applications as shown in Figure 1.
When a request occurs the client cache server increments
its Requests variable. Then it searches its cache for the view.
If the view is found the view’s priority and position in the
cache get updated. The cache is sorted from lowest to the
highest priority. When the priority of the view changes the
view needs to be moved to the right location in the cache.
Also the client increments the Hits variable and updates the
Time and TimeWithOut variables. The Time variable is the
total time it takes for a request to get answered with the
4



Yaun, Carothers, Adali, and Spooner
Neighbor 

increment Requests

View in cache?

to Neighbor
Neighbor Request

View in cache? Increment N Hits

Requesting 
Neighbor?

no

to Neighbor

increment Hits
reposition view in cache,
update view’s priority,

no
GOTO Client Response

Update Time

no

yes

yes

yesyes

no

t
t

t

t

Request Arrives

Send Request
Arrives

Send Request

Respond to orginal
Requestor

Client? TimeWithOut

Respond to orginal
Requestor

GOTO Neighbor Request

Figure 1: Flow Chart for Request Arrival and Neighbors
Request

caches. The TimeWithOut is the time it would have taken
without the caches.

If the view is not in the cache, the client sends a request
for the view to its neighbor shown in Figure 1. The neighbor
searches its cache and if the view is in its cache it sends
a response back and increments the NclientHits variable.
The client that receives the response updates the Time and
TimeWithOut variables (Figure 2) and then it frees up room
in its cache if needed. Once there is enough free space the
view is inserted (Figure 4). When the client frees up room
in its cache it removes views and sends those views to the
middle server cache (Figure 4). The middle server checks
if the view is in its cache and if so it increments the Already
variable. If not then the view is inserted into its cache.

If the neighbor does not have the view it sends a request
to its neighbor. The request continues to go from neighbor
to neighbor until a response gets sent back or the request
propagates back to the original initiator of the request. If
the request gets back to the initiating client, the client then
sends a request up to the middle server.

The middle server receives the request from the client
cache server (Figure 1). The middle server increments its
Request variable and searches its cache for the requested
view. If it has the view it will respond to the client and
update the view’s priority and position in the cache. The
middle server also updates its hits variable.

If the middle server does not have the view it will
request the view from its neighbor. If the neighbor has
the view it will respond and it will update the NmidHits
variables. The middle server that receives the response
1365
GOTO Client Response

GOTO Client Response

Neighbor Response

View in
Response?

no

no

increment Requests

no

increment Hits
yes

Update Time

yes

no

GOTO Increment Misses

yes

yes

t

t

t

Client?

to Middle Server
Send Request

Client?

Send Request
to Database Server

Request Arrives

data set?
view in

Send Request
to database with
view in data set

TimeWithOut

GOTO Request Arrives

Figure 2: Flow Chart for Neighbor Response and Database
Request

will then send the view back to the initiating client. If the
neighbor does not have the view it will send a request to
its neighbor. The requests from neighbor to neighbor will
continue like they did for the client. If the request gets
back around to the initiating Middle Server, it will send a
request up to the Database Server.

The database server receives a request from the middle
server and updates its Request variable (Figure 2). It then
searches for the view in its data set. If the search finds the
view (i.e., hit), it responds to the client with the view and
updates the Hits variable. If the search fails, the database
server requests the view from the database server with the
view. That database server updates its Request variable and
its Hits variable. It then responds to the client with the
view.

When the client gets the response it updates the Time
and TimeWithOut variables (Figure 3) and inserts the view
into the cache if the view is not currently cached (Figure 4).



Yaun, Carothers, Adali, and Spooner
already?
in cache
View

increment already

Client Response

yes

no
update Time, TimeWithOut

GOTO Increment Misses

Figure 3: Flow Chart for Client Response

3.1 Implementation

A natural way to map CAVES would be to make each cache
server, clients and middles, along with each Database server
into LPs. All the requests and responses are mapped to
timestamped events that are passed from LP to LP.

Having each cache server realized as a single LP al-
lows caching and cache management to happen sequentially.
This leads to some challenges for the reverse computation
because the computational complexity of these events is
high. Dividing the cache server into other LPs such as a
cache management LP, disk LP, and RAM LP was ruled
out because the cache management LP design was to have
a list of all views in the cache and their locations. Since
the cache management LP has all this information it was
redundant to have the disk and RAM.

Each database server and all the cache servers under
it are mapped to a single KP. This was for performance
reasons. With all the neighbor requests from both the client
cache servers and the middle cache servers the system
performance was much better when all these requests are
kept within one KP. We experimented with mapping KPs
to the middle cache servers. The results of this experiment
show that the performance was weak. This was due to
the fact that middle cache servers where sending remote
neighbor requests. These requests lead to a greater number
of rollbacks on average.

When the simulation starts, a global pool of views is
created. Each view is given a number or id, a size, a
computational complexity, and a filter factor. All variables
have a range of values that are determined by the application
136
View
meets entry

critia?

Room
in cache?

no

Calculate view’s
priority and insert
view into cache

Remove view from cache

Send Add view
to Middle Server

View
in cache increment Adds

increment already

yes

yes

yes

Increment Misses yes

no
already?

t

Client?

Middle Server
Add view to

Figure 4: Flow Chart for Add View

parameters. Then by using a normal distribution, exact view
values are selected based on a standard deviation and mean.

In addition, a neighbor and server table is created. These
tables are used by an LP to calculate where to schedule
events. In the cache server’s initialization, it is allocated
with a lookup table for views in the cache along with RAM
and disk caches. Each cache consists of a size available
parameter and two linked lists. The nodes of the linked
lists are cache blocks that contain a view number, a Hits
variable and a priority. There is one cache block for each
view in the cache. All the allocated cache blocks are put
on the free list and are later moved to the used list upon
a view’s entrance into the cache. A database is initialized
with a range of views that it contains.

Upon the client cache servers initialization, it generates
a given number of view requests uniformly from the pool
of views. These view request events are scheduled into
the future and will be processed by the client cache server
requests method. In this method the view requested is
looked up in the table to see if it is in either cache (RAM
or disk). If so then the cache block, which contains the
view number, Hits variable is incremented and the priority
is recalculated. The view is then removed from the used
list and reinserted based on its new priority. The used link
list is kept with the lowest priority at the head. If it is a
6



Yaun, Carothers, Adali, and Spooner
miss, a request is issued to the client’s neighbor. At the end
of this method a new view request would be self generated
and scheduled into the future for the current client LP.

When the response is received, time is increased by
the amount of time it took to receive the response. At each
cache server and database that processed the request, time
is incremented. The time will be at least the view size
divided by the network speed plus the view size divided by
the disk speed.

Then the view in the response gets put into the caches.
There is a write through policy implemented, so the view
gets inserted to both caches. Before the view is put into
the cache the size available parameter is checked to see
if the view fits. If so, a cache block from the free list is
removed and the view number is set. The priority of the
cache block is calculated and the view is inserted into the
cache. If there is not enough room, views are removed
from the cache used list and put on the free list until there
is enough free space. Each view that is removed generates
an Add event that is sent to the middle server. A cache
block is then removed from the free list, the view number
is set, priority is calculated, and the view is inserted into
the cache.

The above describes sequential execution of the model.
To enable parallel execution, however, reversible execution
of the model must be supported. In particular, the freeing
of necessary space in the view cache in a reversible way
was a problem that had to be solved. The problem stemmed
from the fact that the system could remove multiple views
from the cache to free up enough space for an incoming
view that was significantly larger than any cached single
view.

Our solution was to utilize a free-list of views. This
list structure allows the view cache to be made reversible
for single inserts and multiple deletes. To illustrate this
functionality, consider the following example. Suppose and
event is scheduled which adds view number 8 to the cache.
In order to fit this view, 5 other views (1,2,3,4,5) must be
removed from the cache. These 5 cache blocks are put
on the free list (5,4,3,2,1). The head of the free list (5)
is removed to put view 8 in. Prior to modifying the view
number of the cache block, the state of that cache block is
stored in the current event (i.e., swapped). We then insert
8 into the cache. Another event, which adds view 9, comes
in and there is enough room in the cache to fit it. A cache
block is removed for the free list (4) and the cache block’s
previous view information is swapped with the event data.
View 9 is then put in the cache block and the cache block
is inserted into the cache. The next event that comes in
causes a rollback of the last two events. First we remove
view 9 from the cache and set the cache block back to it’s
old state (4) by re-swapping the data. The cache block is
then put back on the free list. We then remove view 8 from
the cache and again we set the cache block back to its old
1367
state, along with putting it on the free list (5). Five views
were removed from the cache to fit view 8, these views are
then removed from the head of the free list and put on the
head of the cache (1,2,3,4,5).

The middle cache server acts just like the client cache
server in the way its cache is configured and managed.
However the middle cache server never initiates a view
request or inserts a neighbor’s response in its cache. The
middle cache only adds view that are sent up from the
clients.

The database upon receiving a request looks for the view
and either sends a response back to the client or redirects the
request to the right database server. The database server uses
the view size, filter factor, and computational complexity,
along with the disk speed and network speed to calculate
the time it will take to compute and transfer the view. A
response event is scheduled for that time into the future to
the requesting client.

3.2 Model Parameters

The CAVES model has the following application parameters
with the respective configuration values used in the exper-
iments described below: (i) number of global views (400
and 2400), (ii) size of the clients RAM cache (2 MB and 4
MB), (iii) size of the clients disk cache (4 MB and 16 MB),
(iv) request arrival time (10 seconds and 40 seconds), (v)
mean view size and standard deviation (250 KB, stddev 100
KB), (vi) mean view computational complexity and standard
deviation (4 with stddev of 2), (vii) mean view filter factor
and standard deviation (150 with stddev of 60), (viii) disk
speed of the servers (ix) network speed (100 KB/second),
(x) weights of the priority functions (permutation of 0.2 and
0.6 for w1, w2 and w3), (xi) number of clients per middle
server (4, 8 and 16), (xii) number of middle servers per
database (4 and 8), (xiii) number of databases (4 and 8)
Each of these parameters is discussed below.

Number of global views is the number of different views
that can be requested. The RAM and disk size parameters
determine the amount of available space for the storing of
views in the caches. The request arrival time was used to
set how frequently view request would occur at the client.
The view size, computational complexity and filter factor
parameter are used to create the global view pool. The filter
factor is the ratio of the amount of data to search through
to find the view, over the view’s size. The computational
complexity is the difficulty level of computing the view.
All of these factors go into the amount of time to receive
a requested view. These factors along with the disk speed
are used in the calculations of one of the priority functions.

Each priority function is given a weight. The weights
of the priority functions are used to give precedence to the
functions above. Currently, there are three functions, f 1,
f 2 and f 3, with weights w1, w2 and w3 respectively that



Yaun, Carothers, Adali, and Spooner
are used to calculate a view priority. Each function is given a
weight. By changing the weights, the optimum combination
of weights for a given workload will be utilized. The number
of clients per middle server, the number of middle servers
per database and the number of databases make up the
number of LPs in the system. By changing the weights
we hope to find the optimum combination of weights for
a given workload to lead to the maximum CAVES speed
up. This, however, is not in the scope of this paper. The
priority is used to keep the cache sorted with the lowest
priority at the head.

This set of parameter configurations resulted in 576
experiments being run for each processor. The results
below focus on the 4 processor results as compared with
the uniprocessor results.

4 PERFORMANCE STUDY

A number of performance metrics are used to compare
and contrast the cause and effect relationships of various
model parameters to ROSS performance metrics. Event
rate is defined to be the total number of events processed
less any rolled back events divided by the execution time.
We define event rate ratio as the percentage of the event
rate a particular configuration yields as compared to some
base event rate. In this study, a model parameter’s effect
on ROSS’ performance is determine by its average, best
and worse case event rate ratio. Speedup is defined to be
the event rate of the parallel case divided by event rate
of the sequential. Because the total number of events are
the same between sequential and parallel runs of the same
model configuration, this definition is equivalent to using
execution time.

Our computing testbed consists of a single quad pro-
cessor Dell personal computer. Each processor is a 500
MHz Pentium III with 512 KB of level-2 cache. The total
amount of available RAM is 1 GB. Four processors are
used in every experiment. All memory is accessed via the
PCI bus, which runs at 100 MHz.

4.1 Overall Speedup Results

Our experimental data in the aggregate showed a number of
interesting trends. In particular, many of the runs showed
super linear speedup, while others showed much weaker
speedups. Varying of parameters for the CAVES system
had an interesting effect on the Time warp system and is
detailed below. The effect of the parameters on CAVES
performance is beyond the scope of this paper because
it deals with the complexities of changing cache policies
which vary in response to changes in workload statistics.

Of the 576, four processor runs, 117 resulted in super
linear speed up. Nine had a performance speed up above
5.0. The highest speed up was 5.30. These super linear
1368
speedups are attributed to the system’s high workload, good
look ahead, and minimum remote messages combined with
four times the level-1 and level-2 cache space. In many cases
where the sequential version was executing well outside the
level-2 cache space, the parallel version would fit inside the
level-2 cache of all 4 processors.

The minimum remote message and good look ahead
can be attributed to the fact that the middle cache servers
had larger caches and the global view pool was 400. Of the
117 runs, 111 had large middle caches and 107 had a view
pool of 400. With the larger middle cache and smaller view
pool the 117 averaged about three times more middle cache
hits and 1.5 times more client cache hits than the system’s
average. The 117 had 2.6 times less roll backs and about
two times less remote messages sent than the average.

The average speedup of the system was 3.56 on four
processors and of the 576 runs, 382 had speed ups between
3 and 4. The lowest speedup, however, was 1.57. There
are 77 runs with a speedup under three. This lack of
performance is directly related to the fact that 50 of those
runs had a large view pool and 63 had small middle caches.
With the small middle cache and the large view pool the
77 runs had four times less middle hits and 1.26 times less
client hits than the average of all the runs. The 77 runs had
2 times more roll backs (25% of events where rolled back)
and 1.61 times more remote events than the average.

4.2 Effect of Client Cache Size

Recall from the previous discussion, our client side caches
have two components: the first is a RAM cache that varies
between 2 MB to 8 MB (base case for event-rate ratio
calculation) and the second is a disk cache that varies from
4 MB and 32 MB. Also, We vary the client cache size from
2 MB RAM and 8 MB disk to 4 MB RAM and 32 MB
disk and examine at the best and worst case performance.
The average event-rate ratio was .95%.

In the worst case the event rate ratio for this configuration
across all processor groups was 50%. This means by only
varying the client side cache configuration, we observe a
drop in event rate of 50%. However, we observe that this
configuration did have the large view pool and the large
mean request time. The large mean request time meant
that view requests were coming in slower and therefore
the workload of both runs would be less. The system,
however, has a higher event granularity for misses and the
small cache has more misses. This increased the smaller
caches workload over the larger cache. In a system that is
not heavily loaded it can get too optimistic which leads to
processing of a lot of future events. The rollback distances
will be much greater increasing the amount of time lost in
recomputing events. The larger cache had 5890 rollbacks
and 302409 event rollbacks. The smaller cache had 4578
and 65175 events rollback. The rollback distance of the



Yaun, Carothers, Adali, and Spooner
smaller cache is substantially smaller and therefore would
lead to the better performance.

The best case event rate ratio across this configuration
was 1.57. Thus, the larger cache configuration resulted
in an even rate that was 1.57 times the event rate of the
smaller cache configuration for the 4 processor case. This
performance difference is attributed to the overall configu-
ration being a case where the view pool size is small and
thus has a high degree of locality, combined with the a
small inter-arrival time between requests which increases
the LP workload per unit of simulation time. Also, the
smaller cache results in miss messages being sent to the
middle level server’s cache. Here, a cycle of messages is
sent between the client LP and middle server LP, which
results in a large number of rollbacks since the client and
its middle server are mapped to the same KP.

4.3 Other Parameters

4.3.1 Effect of Middle Server Cache Size

By varying the middle cache size from 16 MB RAM and 128
MB disk down to 4 MB RAM and 32 MB disk (base case for
event-rate ratio computation) we had similar performance to
the client cache size parameter. The average event rate ratio
across all configurations was 83%. The worst case event rate
ratio was 43%. Once again the rollback distance was much
farther in the large cache and therefore it was too optimistic as
previous discussed. The view pool was 2400 (large) and the
mean request time was 40 (high) which are the same factors
that contributed to the worst case performance for the client
cache size parameter. The best event rate ratio was 1.61.
This time the view pool was 400, however the request time
was 40 (large inter-arrival time). With a large inter-arrival
time between requests, the simulation model has a tendency
to run overly optimistic. In the case of the large middle
server cache with small view pool, optimistic execution is
allowed because few remote messages are scheduled to the
off processor database server LP. In the case of the small
cache, fewer hits occur at the middle tier which increases the
number of remote messages sent to the database server LP.
These remote messages increase the number of rollbacks
and leads to slower simulator performance.

4.3.2 Effect of View Pool Size

Recall, the view size pool is the set of views from which the
view generator may select. By decreasing the size of this
pool, locality is increased. As the view size pool increases
from 400 views to 2400 views (base case) we observe an
average event rate ratio of .96. The high event rate ratio is
2.07 and the low was .64. The main different between the
two is the mean arrival time. We observe that when the
mean time is high the performance is best for a small pool
1369
case (i.e., 400 views). The opposite is true in the large pool
case. The reason for this is because a small pool results in
a higher hit-rate at both the client and middle server levels,
which reduces the number of remote events and lowers the
probability of rollback. With a large pool of views, more
misses at the client and middle level server ensue. Thus,
having a shorter inter-arrival time between requests slows
the client and middle server LPs down while the database
server responds. In the longer inter-arrival time case, there
is less work per unit of simulation time and the likelihood
of generating a rollback is increased.

4.3.3 Effect of Number of Databases

By varying the number of database servers between 8 and 4
(base case) we saw an average event-rate ratio of .98. The
best event-rate ratio is 2.14 and the worse is .65. The main
performance factor is the size of the caches. The 8 database
case performed best with a large cache configuration and
the 4 database case performed best with the smaller cache
configuration. In the 8 database case with a large cache,
few messages are sent between KPs. With a small cache,
the likelihood of sending messages between KPs that will
be rolled back increases. If one KP rolls back, it can cause
the others to falsely roll back since KPs can introduce a
stronger form of causality than actually exists between the
LPs. In the 4 database case with small cache, there are
only 4 KPs and thus the causality linkage between KPs is
reduced when compared to that of the 8 database case.

4.3.4 Effect of Number of Middle Level Servers

By varying the number of middle servers from 8 to 4 (base
case) we observe an average event-rate ratio of .90. The best
event-rate ratio was 1.79 and the low was .70. The main
factor effecting performance in this configuration is the size
of the cache. For the 8 middle level server case the best
event-rate ratio occurred with a large cache configuration.
For the 4 middle level server case the best even-rate ratio
occurred with a small cache configuration. Because each
middle server could be searched to find a view, the number
of hops a request takes is greater as the number of middle
servers increase. This creates a dependency between those
LPs and thus increases the rollback distance when a rollback
does occur.

4.3.5 Effect of Number of Client Servers

By varying the number of client servers between 4, 8 and
16 we observe an average event-rate ratio of 1.02 across all
configurations. Over all permutations of base case possi-
bilities, case (4, 8) yielded the highest event-rate ratio and
case (4, 16) yielded the lowest event-rate ratio. The best
event-rate ratio is 1.49 and the worst was .48. The 16 client



Yaun, Carothers, Adali, and Spooner
configuration performs better with a large middle cache, a
high mean request time and large view pool. The 4 client
configuration performs better with a low mean request time,
smaller middle cache and the small view pool. The reason
for these findings is attributed to the number of hops it takes
to find a view at the client level. The fewer clients, the
fewer hops, which decreases the dependency among client
LPs and ultimately decreases the rollback distance.

It was determined that neither the weight factors nor the
mean request time had a significant impact on performance.

5 RELATED WORK

In the area of reverse computation, there has been a great
deal of research with seminal work done by Charles Bennett
(Bennett 1982). For a detailed summary of reverse com-
putation research for both hardware and software systems,
we refer the reader to Carothers, Perumalla and Fujimoto
1999(b).

A number of web-caching architectures and strategies
have been proposed, including Abrams et al. 1996; Arlitt
and Williamson 1997; Pitkow and Recker 1994; Shi, Watson
and Chen 1997; Wessels 1995; and Abrams et. al 1996. The
fundamental difference between this work and our caching
approach is the complexity of queries. Our view storage
system assumes that views are the results of arbitrarily
complex SQL queries and not web-pages. Consequently,
it is generally sufficient to measure the effectiveness of
the caching strategy in terms of hit rate. That measure
is insufficient for view storage systems. The reason is
because views are typically not the same size, nor the same
complexity to produce and because of varying network
latencies that will take longer to transmit depending on the
location of the source database system. Thus, hit rate is
not an accurate indicator of performance.

The parallel synchronization issue has been widely
studied. We refer the reader to Bagrodia 1996; Fujimoto
1990; Fujimoto and Nicol 1992; Misra 1986; Nicol and Liu
1997; Richter and Warland 1989.

6 CONCLUSIONS

In this paper we present the design and implementation of a
model for a configurable view storage system (CAVES). This
model is suitable for execution on a optimistic simulation
engine and makes use of reverse computation to support
the detection and recovery synchronization mechanism.

Overall, we find that our model performs well with an
average speedup of 3.6 on 4 processors over all configu-
rations. Many cases yield super-linear speedup, which is
attributed to a slow memory subsystem on the multipro-
cessor PC. We find that a number of parameters effect key
Time Warp performance metrics. In particular, the cache-
size effects the rollback distance and the mean request time
1370
effects the lookahead of models which in the presence of
remote messages will generate more rollbacks. Finally, the
number of middle level servers and clients per server appear
to increase the dependencies among LPs and thus would
result in more rollbacks.

REFERENCES

Abrams, M., C. R. Standridge, G. Abdulla, E. A. Fox and S.
Williams. 1996. Removal policies in network caches
for world-wide web documents. In Proceedings on Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communications, 293–305.

Arlitt, M. F., and C. L. Williamson. 1997. Trace-drive
simulation of document caching strategies of internet
web servers. Simulation 68(1): 23–33.

Bagrodia, R. 1996. Perils and pitfalls of parallel discrete-
event simulation. In Proceedings of the 1996 Winter
Simulation Conference eds. J. Charnes and D. J. Mor-
rice. 136–143.

Bennett, C. 1982. Thermodynamics of computation. Inter-
national Journal of Physics, 21: 905–940.

Carothers, C. D., D. Bauer and S. Pearce. 2000. ROSS:
A high-performance, low memory, modular time warp
system. In Proceedings of the 14th Workshop on Par-
allel and Distributed Simulation (PADS 2000), 53–60.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto.
1999(a). Efficient optimistic parallel simulations using
reverse computation. In Proceedings of the 13th Work-
shop on Parallel and Distributed Simulation (PADS’99),
126–135.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto.
1999(b). Efficient optimistic parallel simulations us-
ing reverse computation,” (journal version). ACM
Transactions on Computer Modeling and Simulation
(TOMACS), 9(3): 224–253.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto.
1999(c). The effect of state-saving in optimistic simu-
lation on a cache-coherent non-uniform memory access
architecture, In Proceedings of the 1999 Winter Simu-
lation Conference. 373–381.

Fujimoto, R. M. 1990. Parallel discrete event simulation.
Communications of the ACM 33(10): 30–53.

Fujimoto, R. M. and D. M. Nicol. 1992. State of the art in
parallel simulation. In Proceedings of the 1992 Winter
Simulation Conference, 122–127.

Jefferson, D. R.,. 1985. Virtual time. ACM Transactions on
Programming Languages and Systems 7 (3): 404–425.

Misra, J. 1986. Distributed-discrete event simulation. ACM
Computing Surveys, 18(1):39–65, March 1986.

Nicol, D. and X. Liu. 1997. The dark side of risk: what your
mother never told you about time warp. In Proceed-
ings of the 1997 Workshop on Parallel and Distributed
Simulation, 188–195.



Yaun, Carothers, Adali, and Spooner
Pitkow, J. E. and M. M. Recker. 1994. A simple yet robust
caching algorithm based on dynamic access patterns. In
Proceedings of the First International Conference on
the World-Wide Web, <citeseer.nj.nec.com/
pitkow94simple.html>.

Richter, R. and J. C. Warland. 1989. Distributed simulation
of discrete event systems. Proceedings of the IEEE
77(1):99–113.

Rosenblum, M., E. Bugnion, S. Devine and S. A. Her-
rod. 1997. Using the SimOS machine simulator to
study complex computer systems. ACM Transactions
on Modeling and Computer Simulation 7(1): 78–103.

Shi, Y., E. Watson, and Y-S. Chen. 1997. Model-driven
simulation of world-wide-web cache polices. In Pro-
ceedings of the 1997 Winter Simulation Conference,
1045–1052.

Wessels, D. 1995. Intelligent caching for world-wide web
objects. Master’s Thesis, University of Colorado.

ACKNOWLEDGMENTS

This work was supported by NSF Grant #9876932. The
authors also appreciate the invaluable effort on the part of
Jim Percent in helping to construct an initial version of this
parallel simulation model.

AUTHOR BIOGRAPHIES

GARRETT YAUN is a Ph.D. student in the Department of
Computer Science at Rensselaer Polytechnic Institute. His
interests include parallel and distributed systems, networking
and modeling and simulation. His e-mail address <yaung@
cs.rpi.edu>.

CHRISTOPHER D. CAROTHERS is an Assistant Pro-
fessor in the Computer Science Department at Rensselaer
Polytechnic Institute. He received his Ph.D., M.S. and
B.S. degrees from Georgia Institute of Technology in 1997,
1996 and 1991 respectively. His research interests include
parallel and distributed systems, modeling and simulation,
networking, and real-time systems. His e-mail address is
<chrisc@cs.rpi.edu>.

SIBEL ADALI is an Assistant Professor in the Computer
Science Department at Rensselaer Polytechnic Institute. She
received her Ph.D. and M.S. degrees from University of
Maryland in 1996 and 1994 respectively. Her research
interests include information integration, multimedia infor-
mation systems and query optimization. Her e-mail address
is <sibel@cs.rpi.edu>.

DAVID SPOONER is a Professor and Acting Chair of the
Computer Science Department at Rensselaer Polytechnic
Institute. He received his Ph.D. and B.S degrees from
1371
Pennsylvania State University in 1981 and 1975 respectively
and M.S. degree from Cornell University in 1978. His
research insterest include engineering database systems,
object-oriented systems, database security, and Computer
Science and Information Technology education. His email
is <spoonerd@cs.rpi.edu>.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

