
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

ON IMPROVING THE PERFORMANCE OF SIMULATION-BASED ALGORITHMS FOR AVERAGE
REWARD PROCESSES WITH APPLICATION TO NETWORK PRICING

Enrique Campos-Náñez
Stephen D. Patek

Department of Systems and Information Engineering
University of Virginia

Charlottesville, VA 22903, U.S.A.
ABSTRACT

We address performance issues associated with simulation-
based algorithms for optimizing Markov reward processes.
Specifically, we are concerned with algorithms that exploit
the regenerative structure of the process in estimating the
gradient of the objective function with the respect to con-
trol parameters. In many applications, states which initially
have short expected return-times may eventually become
infrequently visited as the control parameters are updated.
As a result, unbiased updates to the control parameters can
become so infrequent as to render the algorithm impractical.
The performance of these algorithms can be significantly
improved by adapting the state which is used to mark regen-
erative cycles. In this paper, we introduce such an adaptation
procedure, give initial arguments for its convergence proper-
ties, and illustrate its application in two numerical examples.
The examples relate to the optimal pricing of communication
network resources for congestion-controlled traffic.

1 INTRODUCTION

In this paper we address performance issues associated with
simulation-based algorithms for optimizing Markov reward
processes. We focus on algorithms that apply to recurrent
processes which operate by (1) deriving a “noisy” estimate
of the gradient of average reward each regeneration cycle and
(2) updating control parameters accordingly. An important
practical issue associated with this type of algorithm is that
regenerative cycles can be extremely long, with correspond-
ingly large variances. This often causes the algorithms to
converge slowly, to the point of being impractical.

We address this issue by introducing a mechanism for
appropriately selecting and adjusting a special “marked”
state i∗, which marks the beginning of each regeneration
cycle. The main idea is to allow frequent updating of the
control parameters by periodically adjusting (adapting) the
marked state according to the most recently observed states in
the simulation. Thus, the normal operation of the algorithm
1306
is interrupted occasionally (especially in situations where the
prevailing i∗ is unlikely to be visited again soon) and restarted
with a new i∗ which is likely to have a shorter expected return
time. Shorter return times generally have the desireable
effect of reducing the variance of the gradient estimate.
Unfortunately, this comes at the expense of throwing away
the data associated with naturally occurring, long renewal
periods. We address potential problems with bias by forcing
the intervals between successive i∗ updates to grow on
average without bound. We show through some heuristic
arguments, and numerical examples, the benefits obtained
through the adoption of the proposed mechanism.

1.1 Related Work

The concept of optimizing a system through simulation,
or even direct observation, has been studied extensively
(see Fu and Hu 1997 for an overview of the use of simula-
tion in optimization). Factorial designs, response surfaces,
and meta models are some examples of these techniques,
each of which seeks to estimate the gradient of a system’s
performance measure with respect to a continuous control
parameter.

In this paper, we are concerned with Monte-Carlo tech-
niques for gradient estimation, and their use in system
optimization, through stochastic approximation recursions
(see Kushner and Yin 1997). Estimates of the gradient of an
objective function can be obtained by simple procedures,
for example by obtaining symmetric samples of the de-
sired performance measures around the current value of the
control parameters. This is the basic nature of the Kiefer-
Wolfowitz algorithm (see Kiefer and Wolfowitz 1952). The
slow convergence of this method is related to the large
number of observations required for each gradient estimate
and the fact that these observations are biased.

Perturbation analysis, introduced by Ho in (Ho, Eyler,
and Chien 1979), uses small perturbations to the control pa-
rameter to obtain unbiased gradient estimates through com-
parison with the unperturbed system (see also (Ho and Cao

Campos-Náñez and Patek
1983), (Suri 1987), and (Suri 1988)). Another approach is
frequency domain experimentation Jacobson 1993, in which
the control parameters are adjusted according to harmonic
(sinusoidal) functions of time. Other methods to obtain unbi-
ased gradient estimates, such as the likelihood ratio method,
introduced by Glynn in (Glynn 1986; Glynn 1987), exploit
the stochastic structure of the system, can operate within
a single simulation run, and can be implemented on-line.
The use of unbiased estimates in a stochastic approximation
constitutes a Robbins-Monro-type algorithm (see Kushner
and Yin 1997). Adaptive versions of stochastic approxi-
mation algorithms, where system parameters are unknown
and need to be tracked during simulation, have also been
studied, see (Benveniste, Métivier, and Priouret 1987).

Other simulation based algorithms, not discussed in
this paper, attempt to solve Markov decisions processes
by estimating value functions explicitly (see Bertsekas and
Tsitsiklis 1996). These methods are also referred to as
Critic algorithms, for the role the value function plays in
evaluating the performance of the parameters. Actor-Critic
methods (see Konda and Tsitsiklis 2001) build value function
approximations, and use them to inform a gradient-descent
type algorithm.

The techniques presented in this paper apply to the two
algorithms presented by Marbach and Tsitsiklis in (Marbach
and Tsitsiklis 2001) for optimizing a Markov reward pro-
cess. Their first algorithm, a “batch” algorithm, constructs
unbiased gradient estimates in a fashion similar to (Glynn
1986), based on the information collected during regener-
ation cycles. As in other gradient estimation algorithms,
visits to a particular state mark the end of regenerative
cycles at which point a Robbins-Monro recursion is used
to update control parameter values. Updates to the control
parameters in this algorithm are made once per regeneration
period. The second algorithm of Marbach and Tsitsiklis,
an “on-line” algorithm, is a modified version of the first
where control parameters can be updated at every step in
the simulation, often resulting in faster convergence.

The rest of this paper is organized as follows. In
Section 2, we review the algorithms proposed in (Marbach
and Tsitsiklis 2001) and discuss performance issues relating
to lengthy regeneration cycles. In Section 3, we formally
introduce a new technique, i∗-adaptation, which addresses
these issues. In Section 4, we provide heuristic arguments
to establish the convergence of the modified algorithms. In
Section 5, we illustrate our approach with two examples
that relate to the pricing of resources in a communication
network. Finally in Section 6, we present our conclusions
and discuss directions for future research.
130
2 SIMULATION-BASED OPTIMIZATION
ALGORITHMS

In this section, we review the two algorithms analyzed
by Marbach and Tsitsiklis in (Marbach and Tsitsiklis 2001).
These are the simulation-based methods to which we apply
our i∗-adaptation method.

We consider a discrete-time Markov reward process
with state space S. Let in be the state of the system after
n state-transitions in the simulation. We will subsequently
use θ ∈ � to denote the vector of control parameters that
modulate the evolution of the process, and we will use λ̃(θ)

as an estimate of the average reward associated with θ . (To
simplify notation in the sequel, we will drop the dependence
on θ , leaving λ̃ as the current estimate of average reward.)
We use gi(θ) to denote the expected transition cost from
i ∈ S associated with θ . Similarly, we use Pij (θ) to denote
the probability that the system transitions to state j , given
that it is currently at state i , again associated with the
parameter vector θ . We use i∗ to denote a special recurrent
state, the “marked” state, which is used by the simulation-
based algorithms to mark the beginning of each new renewal
period. The following assumptions, taken from (Marbach
and Tsitsiklis 2001) are required by the algorithm.

Assumption 1: The Markov chain corresponding to every
policy θ is aperiodic. Furthermore, there exists a state i∗
which is recurrent for every such Markov chain.

Assumption 2: For every i, j ∈ S the functions pi j (θ) and
gi(θ) are bounded, twice differentiable, and have bounded
first and second derivatives.

Assumption 3: For every i and j , there exists a bounded
function Li j (θ) such that

∇ pi j (θ) = pi j (θ)Li j (θ) ∀θ.

2.1 “Batch” Algorithm

Let t0, t1, . . . , tm , . . . be the times of visits to i∗.

1. After the m-th visit to i∗, simulate state transitions
in → in+1 under the parameter vector θm , where
n = tm, tm + 1,

2. If in+1 = i∗, and corresponds to the m + 1 visit
to the marked state (tm+1 = n), compute the final
estimate of the gradient Fm(θm, λ̃m), defined by

tm+1−1∑
n=tm

(
ṽin (θm, λ̃m)Lin−1,in (θm) + ∇gin (θm)

)
,

(1)
7

Campos-Náñez and Patek
where

ṽin (θm, λ̃m) =
tm+1−1∑

k=n

(
gik (θk) − λ̃m

)
, (2)

and Lin−1,in (θ) = ∇ Pin−1,in (θ)/Pin−1,in (θ). Since
ṽin (θm, λ̃m) is the accumulation of the differences
between incurred costs and the average reward, we
must have ṽi∗ (θm, λ̃m) := 0.

3. Update the control parameters θ in the direction
of the gradient estimate and correct the estimate
of the average reward:

θm+1 = θm + γm Fm(θ, λ̃m),

λ̃m+1 = λ̃m + ηγm

tm+1−1∑
n=tm

(
gin (θm) − λ̃m

)
.

Here γm is a decreasing stepsize such that∑∞
m=0 γm = ∞, and

∑∞
m=0 γ 2

m < ∞, and η > 0.

A convergence result, (Marbach and Tsitsiklis 2001),
shows that under assumptions 1-3, and following the stepsize
rules mentioned above, λ(θm) converges, and ∇λ(θm) → 0
as m → ∞.

2.2 “On-line” Algorithm

The on-line algorithm requires in addition:

Assumption 4: There exists a state i∗ ∈ S and a positive
integer N0, such that, for every state i ∈ S and every collec-
tion {P1, ..., PN0 } of N0 matrices in the set {P(θ)| θ ∈ �K

}
,

we have

N0∑
n=1

[
n∏

l=1

Pl

]
ii∗

> 0.

Assumption 5: The stepsizes γn are nonincreasing. Fur-
thermore, there exists a positive integer p and a positive
scalar A such that

n+t∑
k=n

(γn − γk) ≤ At pγ 2
n ∀n, t > 0.

The algorithm proceeds by executing the following at
each state transition in → in+1 (under the parameter vector
θn).

1. If in+1 = i∗, let zn = 0, otherwise, let

zn+1 = zn + Lin ,in+1 (θn). (3)
130
2. Update the control parameter, along with the esti-
mate of average reward:

θn+1 = θn + γn

(
∇g(in , θn) + zn(g(in, θn) − λ̃n)

)
, (4)

λ̃n+1 = λ̃n + ηγn

(
g(in , θn) − λ̃n

)
. (5)

Another result from (Marbach and Tsitsiklis 2001),
shows that under assumptions 1-5, λ(θn) converges, and
∇λ(θn) → 0 as n → ∞.

2.3 Performance of the Simulation-based Algorithms

In both the batch and on-line versions of the simulation-
based method above, the marked state i∗ is chosen in
advance and is held constant throughout the course of the
simulation. Although i∗ is theoretically recurrent for all θ ,
changes to the control parameters during the simulation can
introduce extremely long return-times. This is particularly
true in queueing-type applications (as in Section 5), where
a natural choice for i∗ is the “system empty” state. As the
parameter vector evolves, i.e. as the system becomes more
heavily loaded, the “system empty” state becomes relatively
infrequent.

The existence of long regenerative cycles has a negative
impact on both of the simulation algorithms above. On the
one hand, when transitions to i∗ are infrequent, the “batch”
algorithm has few opportunities to update the control pa-
rameters, and, when updates do occur, the variance of the
gradient estimate is correspondingly large. This leads to
extremely slow convergence in practical applications. On
the other hand, when transitions to i∗ are infrequent, the
on-line algorithm has few opportunities to correct biased ob-
servations, leading to apparent instability, despite theoretical
convergence guarantees.

3 ADJUSTING THE MARKED STATE

To address the practical issue of long regeneration cycles,
we introduce a new mechanism, i∗-adaptation, which seeks
to periodically adjust the marked state in accordance with
the states most recently observed in the simulation. The
goal is to allow more frequent updates with less variance
in the gradient estimate, without introducing bias (at least
over the long term).

3.1 Rules for Selecting i∗

We propose a simple procedure: if the length of the current
regenerative cycle exceeds a given threshold, we interrupt
the process (without stopping the simulation) to select a
new state value for i∗ and, after appropriately reinitializing
the data structures, we resume the gradient estimation and
8

Campos-Náñez and Patek
parameter updates. Before formally describing our i∗ update
procedure, we make the following simplifying assumption.

Assumption 1b. Pθ , the stochastic matrix of the process
under control policy θ , is irreducible under all control
parameters θ .

Without this assumption, it would be possible to choose
new state values for i∗ which are not recurrent under the
prevailing value of θ (or which quickly become non-recurrent
as the parameter vector evolves).

The i∗ adaptation process begins with an initial marked
state i∗

0 ∈ S, a threshold τ0 > 0 which limits the length
of a regenerative cycle, and t0 = 0 to mark the start time.
Subsequently, we let

tm = min
{
tm−1 + τm−1, min{t > tm−1|it = i∗

m−1}
}
,

for all m ≥ 1. Thus, tm marks the time when either a
regenerative cycle has been completed or abandoned. We
simulate the process, and, at stage tm , we employ the
following procedure to select a new state value for i∗.

Generic Update Rule If the current regenerative cycle has
exceeded its limits (itm
= i∗

m−1), we select the current state
as the marked state. This is,

i∗
m =

{
itm if itm
= i∗

m−1,

i∗
m−1 otherwise.

In problems with the structure of a generalized birth-
death processes (as in Section 5), it is possible to use
an alternative update rule. Let us assume that each state
i of the system can be expressed as an N-tuple, i ↔
xi = (xi

1, xi
2, . . . , xi

N), where each xi
k has a quantitative

interpretation such as the “the number of class k customers
associated with state i .” With this representation in hand,
it is possible to define a long-run “average” state

x̄m =
(

1

tm

tm∑
t=0

x1(t), . . . ,
1

tm

tm∑
t=0

xN (t)

)
,

where xk(t) is the k-th component of the N-tuple associated
with state of the system at stage t .

GBD Update Rule We select a new marked state by moving
in the direction of the average observed state. Specifically,
we set

i∗
m =

{
�ai∗

m−1 + (1 − a)īm if itm = i∗
m−1,

i∗
m−1 otherwise.

Here 0 < a < 1. In the examples of Section 5, we set
a = 1/2.
1309
By throwing away regenerative cycles of length greater
than the threshold τm we introduce bias into both the gradient
estimate and the estimate of average reward. To overcome
this problem, we increase the algorithm’s tolerance to lengthy
cycles every time that a cycle is dropped. To do this we let

τm+1 =
{

τm if itm+1 = i∗
m,

τm (1 + b) otherwise.

for some b > 0. Numerical results suggest that any positive
constant b eliminates the bias introduced by discarding some
of the observed cycles.

3.2 Batch Algorithm with i∗-Adaptation

Let {mn}∞n=0 be the subsequence of cycles such that
itmn

= i∗
mn−1; which we will call “successful” cycles. The

batch algorithm with i∗-adaptation consists of updating the
parameter values and the average reward estimate according
to

θn+1 = θn + γn Fmn

(
θn, λ̃n

)
,

λ̃n+1 = λ̃n + ηγn

tmn+1−1∑
k=tmn

(
gik (θn) − λ̃n

)
.

where Fmn (θn, λ̃n) is the gradient estimate obtained during
the successful cycle mn , using control θn , and average reward
estimate λ̃n and calculated according to (1).

3.3 On-line Algorithm with i∗-Adaptation

The on-line algorithm with i∗ adaptation operates as follows.
At each simulation step k, we update the values of θk+1,
λ̃k+1, and zk+1, according to (3)-(5). If k + 1 = tm , we let
zk+1 = 0. Additionally, if the cycle was unsuccessful, we
recover the parameter values and average reward estimations
from the beginning of the last cycle; that is

θk+1 = θtm−1,

λ̃k+1 = λ̃tm−1 .

This way we effectively drop any changes to the param-
eters during an unsuccessful cycle, and recover the original
algorithm. This requires that the algorithm to store K + 1
additional parameters, where K is the dimension of the
parameter vector θ .

Campos-Náñez and Patek
4 CONVERGENCE ANALYSIS

To prove that θm converges to a local minimum using either
the batch or on-line algorithms with i∗ adaptation, it is
necessary to show that the bias introduced by dropping
unsuccessful cycles disappears as m → ∞. In this section
we provide some considerations for the batch algorithm that
show some of the issues involved.

As proved in (Marbach and Tsitsiklis 2001), there exist
C > 0, and ρ ∈ (0, 1) such that for all states k ∈ S and
parameter vectors θ ,

Pθ {T = k} ≤ Cρk ,

where T is the number of transitions starting from k and
ending at the first return to k. This allows us to derive
a useful bound on the expected bias introduced at each
parameter update. Let

f (θm, λ̃m) = Eθ

[
Fm(θm, λ̃m)

]
,

be the expected value of the gradient estimate, under the
original batch algorithm. Let sm = min{t ≥ tm−1 | it =
i∗}, and let

f̂ (θm, λ̃m) = Eθ

[
Fm(θm, λ̃m) |sm − tm−1 ≤ τm

]
,

be the biased expected gradient estimate given that the
cycle is successful. (Here, the conditional expectation of
the gradient ignores the possibility that we can have a
regeneration cycle of length greater than τm .) Since

Pθ {sm − tm−1 > τm} ≤ C
ρτm

1 − ρ
,

we have that

|| f̂ (θm, λ̃m) − f (θm, λ̃m)|| ≤ CF C
ρτm

1 − ρ
,

where CF is a bound on f (θ, λ) for all θ, λ (cf. Marbach
and Tsitsiklis 2001). Thus, the bias in the estimate of
the gradient necessarily converges to zero as τm → ∞.
A similar argument, using the fact that ṽi (θ, λ̃) in (2) is
bounded for all states i (cf.Marbach and Tsitsiklis 2001),
shows that the updates to the estimate of average reward
λ̃m eventually become consistent with the updates in the
original method.

5 APPLICATIONS TO PRICING
OF NETWORK SERVICES

We consider two numerical examples below that relate to
pricing mechanisms for splitting the capacity of a congested
131
C
1

K

Figure 1: Depiction of the Examples Considered in this Paper

network resource among the competing users. We adopt a
network-centered view, where the service provider acts as
a central control authority, fixing prices for access to the
resource to optimize a specific objective, e.g. the expected
rate at which revenue accrues.

Our examples relate to the generic scenario depicted in
Figure 1, where a single link is shared by users belonging
to different classes, with diverse bandwidth requirements
and demand patterns. We assume that average rate at which
requests for file transfers (calls) arrive depends on the vector
of prices u set for each call type. (Thus, u will play the
role of the control parameters θ in the simulation based
algorithms of Sections 2 and 3). We assume that price
information can be instantaneously communicated to the
users, much in the spirit of (Paschalidis and Tsitsiklis
2000), and (Patek and Campos-Nanez 2000). Regulating
access to a network resource through prices can also be
seen as a soft or probabilistic form of admission control.

Further, we are interested in solving this problem for het-
erogeneous traffic, where calls belong to either a guaranteed-
rate class (where each call requires a fixed amount of capac-
ity) or a best-effort class (where calls receive an adjustable
portion of the capacity not consumed by the guaranteed-rate
calls).

Scenarios that involve best-effort traffic tend to exhibit
heavy congestion, since an increasing number of best-effort
calls has a corresponding decrease in the capacity allocated
to them. As a consequence, the “system empty” state,
which is commonly used to mark regenerative cycles in
queueing applications, is infrequently visited and is therefore
an impractical choice for i∗. In fact, in examples of this type,
the best choice for i∗ is strongly dependent on the prevailing
set of prices, and there is a real need for i∗-adaptation in
simulation-based algorithms.

5.1 Formulation

Consider a setting where a single link with capacity C is
shared by K classes of traffic. (In the examples of the
following subsections, we have K = 1, 2.) We assume that
call arrivals and departures are exponentially distributed, so
i = (i1, . . . , iK) denotes the state of the system, where ik

is the number of class-k calls currently in the system. New
class-k calls arrive at instantaneous rates, denoted αk(uk),
regulated by the price uk set for the class. We use βk to
0

Campos-Náñez and Patek
denote the instantaneous average rate at which class-k calls
depart the system. We use Kg ⊂ K to denote the subset
of guaranteed-rate flows. For each class k ∈ Kg , we use
bk to denote the bandwidth requirement for this class, and
the departure rate βk for this class does not depend on the
state of the system.

For each best effort class k ∈ K − Kg , the rate at
which calls depart the system does depend on the state of
the system, as follows. We assume that the average size of
a file transfer is Bk so that the instantaneous departure rate
is βk(i) = bk(i)

Bk
, where

bk(i) = min

{
M,

C −∑
j∈Kg

i j b j∑
j∈K−Kg

i j

}
.

Thus, expected service times increase as a function of
number of best-effort users in the system. The equal sharing
of unreserved capacity in our model corresponds to the
assumption that a congestion-control mechanism is in place,
such as TCP.

5.1.1 Objective Function

Our objective in both examples below is to maximize the
average rate at which revenue accrues. That is, we seek to
maximize, through the choice of u in the set U of admissible
prices, the expression

Ju(i) = lim
T →∞

1

T
E

{∫ T

0

K∑
k=0

αk(uk)ukdt

∣∣∣∣∣ i(0) = i

}
(6)

for all i ∈ S. Since it is assumed that all states are recurrent,
we have that Ju(i) = Ju(j) = λ(u) for all i, j ∈ S.

Alternatively, we could have formulated this problem
as a large-scale continuous-time Markov decision process,
where we would have sought to optimize the mapping from
i ∈ S to admissible prices U . Interestingly, in many pricing
contexts, the gain in revenue associated with dynamic pricing
is relatively small compared to the complexity of solving
(and later implementing) the optimization problem. (Patek
and Campos-Nanez 2000). In fact, for the case Kg = K ,
Paschalidis and Tsitsiklis (Paschalidis and Tsitsiklis 2000)
have shown that in the many-small-users limit optimal static
prices are nearly optimal within the full set class of dynamic
pricing policies.

5.2 Example 1: N On-Off Sources

In this example we consider a single class of N = 100 best-
effort users that share a single link through access lines of
capacity M = 56.6 kbps. The users switch between being
“on,” where they are in the process of downloading a file, and
1311
Table 1: Parameters for Example 1

Best-Effort

C 1.544 Mbps
M 56.6 Kbps
B 64 KB
N 100 Users
φ0 .1 calls per sec.

being “off,” where they are waiting for the next opportunity
to initiate a download. (On/off models of this type are
common for capturing the basic nature of web-traffic.) We
assume that the average rate φ(u) at which an individual user
switches from “off” to “on” depends on the price u ∈ (0, 1)

as φ(u) = φ0 · (1 − u). Thus, αk(u) = φ0(N − i)(1 − u)

is the rate at which new calls arrive to the system, where
i is the current number of “on” users. See Table 1 for
additional example parameters.

5.2.1 Performance of the Algorithms

After uniformizing the process, we employed the simulation-
based algorithms from (Marbach and Tsitsiklis 2001), with
and without the i∗-adaptation procedure from Section 3, to
find a value of u that maximizes average reward. The results
are plotted in Figures 2 and 3, for the batch and on-line
versions of the algorithm, respectively. We note that in all
cases we are able to identify the revenue maximizing price
u∗. Although not shown in the plot, the pure batch and
on-line algorithms work only when the fixed value of i∗ is
carefully chosen and the system is initiazed with a nearly
optimal solution. In general, the i∗-adaptation (using wither
update rule) serves to reduce the variance in the estimate
of the optimal price and at the same time improves the
robustness of the scheme, allowing us to start with any
arbitrarily selected i∗ and initial price estimate.

5.3 Example 2: Heterogeneous Traffic

In this example, two classes of traffic are considered, one
class (class-1) with guaranteed rate requirements, the other
(class-2) being a best-effort class downloading files of aver-
age length B = 64 kB. The average rate α1(u1) of call ar-
rivals for the guaranteed-rate class is given by ᾱ1 ·(1−u1/4),
with u1 ∈ (0, 4). The average rate α2(u2) of call arrivals
for the best effort class is given by ᾱ2 · (1 − u2), with
u2 ∈ (0, 1). See Table 2 for additional information on the
parameter values for this example.

5.3.1 Performance of the Algorithms

Again, after uniformizing the process, we employed the
simulation-based algorithms from (Marbach and Tsitsiklis
2001) to optimize u1 and u2, with and without the i∗-

Campos-Náñez and Patek
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ric

e

Example 1: Batch Algorithms

Optimal Price (u2)

0

0.4

0.8

1.2

1.6

2

0 24000 48000 72000 96000 120000

A
ve

ra
ge

 R
ew

ar
d

Iterations

Pure Batch Algorithm
Batch with Generic Update Rule

Batch with GBD Update Rule
Optimal Average Reward

Figure 2: Performance of the Batch Algorithm for Example 1

Table 2: Parameters for Example 2

C 1.544 Mbps

Guaranteed-Rate, k = 1 Best-Effort, k = 2
Mk 128 Kbps 56.6Kbps (max)
βk 1/180 b2(i)

B
ᾱk 1/5 1/2

adaptation procedure from Section 3. Interestingly, we were
unable to get the pure versions of the batch and on-line
algorithms to converge to a reasonable solution. We tried
many different (fixed) values for i∗, and we tried initializing
the price estimates very close to the optimal solution, and
still the pure versions of the simulation-based algorithms
failed to yield meaningful results. On the other hand, with
i∗-adaptation (using either update rule), the simulation based
methods work remarkably well. The results are shown in
Figures 4 and 5, respectively.

6 CONCLUSIONS

We have introduced a new method, i∗-adaptation, for im-
proving the performance of simulation-based optimization
algorithms. While a thorough analysis of the method is
131
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ric

e

Example 1: On-Line Algorithms

Optimal Price (u2)

0

0.4

0.8

1.2

1.6

2

0 24000 48000 72000 96000 120000

A
ve

ra
ge

 R
ew

ar
d

Iterations

Pure On-Line Algorithm
On-Line with Generic Update Rule

On-Line with GBD Update Rule
Optimal Average Reward

Figure 3: Performance of the On-Line Algorithm for Example 1

currently in progress, we have outlined some of the main
theoretical issues in proving the convergence of the pro-
cedure. Our numerical results indicate that i∗-adaptation
introduces no significant bias in the long term, while signif-
icantly improving the robustness of the underlying method.
Recall that, in Example 1, in order to get the pure versions
of the batch and on-line algorithms to converge, we had to
cheat by initializing the price estimate very close to the opti-
mal solution. In Example 2, no amount of cheating helped.
We conclude that i∗-adaptation is a useful device for im-
proving the performance of simulation-based optimization
algorithms for average reward processes.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foun-
dation Grants, ECS-9875688 (CAREER) and ANI-9903001,
and by scholarship 68428 of Consejo Nacional de Ciencia
y Tecnología.
2

Campos-Náñez and Patek
0

0.5

1

1.5

2

2.5

3

3.5

4

P
ric

e

Example 2: Batch Algorithms

Optimal Price (u1)
Optimal Price (u2)

0

0.1

0.2

0.3

0.4

0 400000 800000 1.2e+06 1.6e+06 2e+06

A
ve

ra
ge

 R
ew

ar
d

Iterations

Batch with Generic Update Rule
Batch with GBD Update Rule

Optimal Average Reward

Figure 4: Performance of the Batch Algorithm for Example 2

REFERENCES

Benveniste, A., M. Métivier, and P. Priouret. 1987. Adaptive
algorithms and stochastic approximations. Springer-
Verlag.

Bertsekas, D., and J. S. Tsitsiklis. 1996. Neuro-dynamic
programming. Athena Scientific.

Fu, M., and J. Q. Hu. 1997. Conditional monte carlo: Gra-
dient estimation and optimization applications. Kluwer
Academic Publishers.

Glynn, P. W. 1986. Stochastic approximation for monte
carlo optimization. Proceedings of the 1986 Winter
Simulation Conference.

Glynn, P. W. 1987. Likelihood ratio gradient estimation: An
overview. Proceedings of the 1997 Winter Simulation
Conference.

Ho, Y. C., and X. R. Cao. 1983. Perturbation analysis and
optimization of queueing networks. J. of Optimization
Theory and Applications 40:559–582.

Ho, Y. C., M. A. Eyler, and T. T. Chien. 1979. A gradient
technique for general buffer storage design in a serial
production line. J. Prod. Res. 17:557–580.
131
0

0.5

1

1.5

2

2.5

3

3.5

4

P
ric

e

Example 2: On-Line Algorithms

Optimal Price (u1)
Optimal Price (u2)

0

0.1

0.2

0.3

0.4

0 200000 400000 600000 800000 1e+06

A
ve

ra
ge

 R
ew

ar
d

Iterations

On-Line with Generic Update Rule
On-Line with GBD Update Rule

Optimal Average Reward

Figure 5: Performance of the On-Line Algorithm for Example 2

Jacobson, S. H. 1993. Variance and bias reduction techniques
for harmonic gradient estimators. Applied Mathematics
and Computation:153–186.

Kiefer, J., and J. Wolfowitz. 1952. Stochastic estimation
of the maximum of a regression function. Annals of
Mathematical Statistics 23:462–466.

Konda, W. R., and J. N. Tsitsiklis. 2001. Actor-critic algo-
rithms. to appear.

Kushner, H. J., and G. G. Yin. 1997. Stochastic approxi-
mation algorithms and applications. Springer-Verlag.

Marbach, P., and J. N. Tsitsiklis. 2001. Simulation-based
optimization of markov reward processes. to appear in
ACM Transaction on Automatic Control.

Paschalidis, I. C., and J. N. Tsitsiklis. 2000. Congestion-
dependent pricing of network services. IEEE/ACM
Transactions on Networking.

Patek, S. D., and E. Campos-Nanez. 2000. Pricing of di-
alup services: an example of congestion-dependent
pricing in the internet. IEEE Conference on Decision
and Control CDC 2000.

Suri, R. 1987. Infinitesimal analysis for general discrete
event systems. J. Assoc. Comput. Mach. 34:686–717.
3

Campos-Náñez and Patek
Suri, R. 1988. Perturbation analysis gives strongly con-
sistent estimates for the m/g/1 queue. Management
Science 34:39–64.

AUTHOR BIOGRAPHIES

ENRIQUE CAMPOS-NÁÑEZ is Ph.D. Student at the
Department of Systems and Information Engineering at
the University of Virginia. His research interest are in the
use simulation based optimization techniques, and adaptive
control, to implement pricing and other mechanisms
to regulate the use of network resources. He received
his Bachelor’s degree in Mathematics from Universidad
Nacional Autónoma de México, in 1990, a M. Sc. in
Operations Research from Stanford University, in 1996.
His email address is ec3z@virginia.edu.

STEPHEN D. PATEK is an Assistant Professor in the
Department of Systems and Information Engineering at the
University of Virginia. His research interests are in Markov
decision processes and stochastic control, with applications
to data networks and traffic engineering. He received his
Bachelor’s degree in Electrical Engineering in 1991 from
the University of Tennessee, Knoxville. He received his
Ph.D. in Electrical Engineering and Computer Science in
1997 from the Massachusetts Institute of Technology. His
email address is patek@virginia.edu.
1314

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

