
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

FLUID MODEL FOR WINDOW-BASED CONGESTION CONTROL MECHANISM

Richard J. La

Mathematics of Communication Networks
Motorola Inc.

Arlington Heights, IL 60004, U.S.A.
ABSTRACT

We study the stability of two queueing delay-based con-
gestion control algorithms, the (p, 1)-proportionally fair
algorithm and the global optimization algorithm. We lin-
earize the systems around the intended operating point and
show that these algorithms are stable within a range of feed-
back delay. Based on these linearized systems we study
the impact of various (cascade) compensators on the sys-
tem. We show that the PID control improves the transient
behavior of the system. We simulate both the linearized
system and non-linear system and illustrate the validity of
the analysis and improvement in the system behavior with
compensators.

1 INTRODUCTION

Recently there has been much research activity on
optimization-based rate control and active queue mecha-
nisms. Kelly has modeled the problem of rate control as
a problem of maximizing the aggregate utility of the users
(Kelly 1997). He has made the fundamental observation
that this problem can be decomposed into separate subprob-
lems for the network and for the individual users (Kelly
1997). In the papers that build on this work, two classes
of rate allocation mechanisms are proposed to achieve the
system optimum (Kelly et al. 1998, Gibbens and Kelly
1998). Low et al. have approached the same problem, us-
ing the gradient-based algorithm (Low and Lapsley 1999,
Low et al. 2000), and have proposed an active queue mech-
anism called Random Early Marking (REM), as a way of
arriving at the system wide optimal solution. Kunniyur and
Srikant have proposed a different AQM mechanism called
adaptive virtual queue (AVQ) to solve the same system
problem in combination with the same primal algorithm
implemented at the end hosts (Kunniyur and Srikant 2001).

Hollot et al. have investigated the problem of designing
an AQM mechanism from a control theoretic point, analyzed
random early detection (RED) mechanism, and proposed a
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guideline for setting RED parameters (Hollot et al. 2001a).
In another paper they have proposed two different AQM
mechanisms: Proportional and Proportional-Integral con-
trollers (Hollot et al. 2001b). They have shown that the
Proportional controller exhibits better response time than the
RED controller. Further, they have explained the limitations
of the Proportional controller due to the coupling between
the queue size and the marking probability, and propose the
PI controller to decouple the queue size and the marking
probability and to improve the steady state regulation errors.
They have studied the stability of these controllers, using
linearized models, and provided the guidelines for setting
their parameters.

In this paper we first study the stability of the ( p, 1)-
proportionally fair algorithm proposed by Mo and Walrand
(Mo and Walrand 2000) and the global optimization algo-
rithm by La and Anantharam (La and Anantharam 2001),
using a control theoretic approach with a model linearized
around the intended operation points. We show that these
algorithms are stable, which corroborates the convergence
results in Mo and Walrand (2000) and La and Anantharam
(2001). We then investigate the possibility of enhanc-
ing these algorithms by adding various controllers at the
end hosts and study their performance. We show that a
Proportional-plus-Integral-plus-Derivative (PID) controller
can significantly improve the performance of the system.

2 BACKGROUND & ALGORITHMS

In this section we briefly explain the ( p,1)-proportionally fair
algorithm proposed by Mo and Walrand (Mo and Walrand
2000) and the global optimization algorithm by La and
Anantharam (La and Anantharam 2001). These algorithms
are window-based congestion control algorithms and use
estimated queueing delay in order to adjust the congestion
window size.

In a general network we consider there are a network
with a set J of resources or links and a set I of users. Let
C j denote the finite capacity of link j ∈ J . Each user has
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a fixed route Ji, which is a non empty subset of J . We
define a zero one matrix A, where Ai, j = 1 if link j is in
user i ’s route Ji and Ai, j = 0 otherwise. The throughput
of a user i is denoted by xi .

We present a fluid model of the network that describes
the relationship between the window sizes, rates, and queue
sizes. Throughout the paper we assume that the switches
exercise the first-in-first-out (FIFO) service discipline. This
model can be represented by the following equations:

AT x − C ≤ 0 (1)

Q(AT x − C) = 0 (2)

X (AC ′q + d̄) = w (3)

x ≥ 0, q ≥ 0, (4)

where

C = (C1, ..., CJ )T , q = (q1, ..., qJ )T ,

d̄ = (d̄1, ..., d̄I )
T , w = (w1, ..., wI )

T ,

X = diag(x), C ′ = diag(C−1
1 , ..., C−1

J ), Q = diag(q),

wi is the congestion window size of user i , d̄i is the
round trip propagation delay of route Ji not including
the queueing delay, and q j denotes the backlog at link j
buffer. For simplicity of analysis we assume that the buffer
sizes are infinite. The first condition in (1) represents the
capacity constraint. The second constraint says that there is
backlogged fluid at a resource only if the total rate through
it equals the capacity. The third constraint follows from
that the window size of connection i should equal the sum
of the amount of fluid in transit and the backlogged fluid
in the buffers, i.e.,

wi = xi · d̄i + qi ,

where qi denotes connection i ’s total backlog in the buffers.
Mo and Walrand have shown in Mo and Walrand (2000)

that the rates of the users as well as their queueing delays of
the users are well defined given users’ window sizes. This
was also proved by Massoulie and Roberts in (Massoulie
and Roberts 1999). Under the (p,1)-proportionally fair
algorithm by Mo and Walrand (Mo and Walrand 2000) each
connection has a target queue size pi > 0 and attempts
to keep a total of pi packets at the switch buffers. Let
di (t),wi (t), and xi (t) denote the round trip delay with
queueing delay, the congestion window size, and the rate of
connection i at time t , respectively, where user i ’s queueing

delay at time t is defined to be
∑

j∈Ji

qj(t)
Cj

and q j (t) is the

backlog at resource j at time t . Hence, di (t) = wi (t)
xi (t)

=
d̄i +∑

j∈Ji

qj(t)
Cj

.. We use xi (t) to denote xi (w(t)) when
there is no confusion. Suppose that each connection i has a
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fixed target queue size pi . Connection i updates its window
size wi (t) according to the following differential equation

d

dt
wi (t) = −κ

d̄i

di(t)

si (t)

wi (t)
,

where κ is some positive constant, and si (t) = wi (t)−xi (t)·
d̄i − pi . Under this algorithm the window sizes converge
to a unique point w∗ such that for all i ∈ I

w∗
i − xi (w

∗) · d̄i = pi ,

where xi (w
∗) is connection i ’s throughput that satisfy (1)

through (4) when the window sizes are w∗. They show
that at the unique stable point w∗ of the algorithm the
resulting allocation x(w∗) is weighted proportionally fair.
In other words, this algorithm achieves the solution to the
NETWORK problem of maximizing weighted log functions
with each user i ’s willingness to pay equal to pi (Kelly
1997, Mo and Walrand 2000).

La and Anantharam in (La and Anantharam 2001)
have proposed another algorithm, which allows users to
dynamically adjust their target queue sizes based on the
current congestion level in the network in order to solve the
user problem of maximizing the net utility (Kelly 1997).
Suppose that we denote the utility of user i by Ui (xi ) when it
receives a rate of xi . We assume that these utility functions
of the users satisfy the following assumption:

U ′
i (xi) + xi · U ′′

i (xi ) ≥ 0, xi ∈ [0, Ci ],

where Ci = min j∈Ji Cj. Under this algorithm each con-
nection updates its window size wi (t) according to the
following system of differential equations:

dwi (t)

dt
= −κ · Mi (t) · ri (t) (5)

where

Mi (t) = d̄i + U ′
i (xi (t))

λ
+ xi (t)·U ′′

i (xi (t))
λ

di (t)
, (6)

U ′
i (·) = d

dxi
Ui (·), U ′′

i (·) = d2

dx2
i
Ui (·), λ is some positive

constant, and

ri (t) = wi (t) − xi (t)d̄i − xi (t)
U ′

i (xi (t))
λ

wi (t)

= 1 − xi (t)(d̄i + U ′
i (xi (t))

λ
)

wi (t)
. (7)

Note that user i ’s utility function appears in both Mi (t)
and ri (t). They have proved that the algorithm converges
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to the unique stable point w̃, where the resulting allocation
x(w̃) is the solution to the SYSTEM problem of maximizing
the aggregate utility of the users. One can see that the
(p,1)-proportionally fair algorithm is a special case of this
global optimization algorithm with the utility function of
pi · log(·).

3 STABILITY

In the analysis of algorithms in section 2 they assume that
given the window sizes of the users, the rates and round trip
times of the users are known immediately. In other words,
given the window sizes, they assume that the users’ rates
are those that satisfy the conditions in (1) - (4). Hence,
the delay in the feedback is not modeled in the analysis
of convergence. In a real network users’ rates need to be
estimated, based on the current estimates of the round trip
times, i.e., xest

i (t) = wi (t)
dest

i (t)
, where xest

i (t) and dest
i (t) are

the estimated rate and estimated round trip time of user i
at time t . In the case of a network with single link dest

i (t)

can be approximated by di (t − q(t−di (t))
C ), where q(t) is the

queue size at the link at time t and C is the capacity of the
link.

In this section, using the fluid model for the window-
based congestion control mechanism described in sec-
tion 2, we adopt a similar linearized model as in Hollot
et al. (2001a) and Kunniyur and Srikant (2001) and study
the stability of the single bottleneck network with a delay
in the feedback of the queueing delay. Consider a single
link with capacity C . Suppose that there are N ≥ 1 users
that share the link with a common round trip propagation
delay of d , i.e., d̄i = d for all i ∈ I.

3.1 The (p,1)-Proportionally Fair Algorithm

We first analyze the (p, 1)-proportionally fair algorithm
with pi = p for all i ∈ I. At the equilibrium or unique
stable point of the algorithm, which we denote by W ∗ =
{W∗

i , i ∈ I}, we have

∑
i

W∗
i

R∗ = C, (8)

x∗
i = W∗

i

R∗ = C

N
, (9)

R∗ = d + q∗

C
= d + p · N

C
. (10)

We let

δW (t) = W (t) − W∗,
δq(t) = q(t) − q∗ = q(t) − p · N,
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where W∗ denotes the window size of the users at the
equilibrium point. Note that all users have the same window
size at the equilibrium from (9) and (10). The linearized
model can be written as

δẆ (t) = −γ (R∗ − d)2

pR∗2 δW (t)

− γ · d

R∗2C
δq(t − R∗), (11)

δq̇(t) = N

R∗ δW (t) − 1

R∗ δq(t), (12)

where γ = κ·d
R∗ . The dynamics of the linearized system

with the ( p,1)-proportionally fair algorithm are illustrated
in Figure 1.

1
s s + 1/R*

N/R*

(R*−d)γ 2

dγ
2

exp(−sR*)
R*   C

R*  p2

+ Wδ δq

Figure 1: Block Diagram of the Network with ( p,1)-
Proportionally Fair Algorithm

One can simplify the block diagram in Figure 1 and
show that it is equivalent to the following (Nise 1992):

+
s +  (R*−d)

R*  p
s + 1/R*

1

2

2

N/R*

γ

δ q

exp(−sR*)
R*  C2

γ d

Figure 2: Simplified Block Diagram of the Network with
(p,1)-Proportionally Fair Algorithm

From the simplified block diagram in Figure 2 we can
find the poles of the closed-loop transfer function. If we
ignore the delay in the feedback for the moment, we can
easily show that these poles are in the left half-plane. In fact
the poles are given as the roots of the following quadratic
equation:

s2 +
(

γ (R∗ − d)2

R∗2 p
+ 1

R∗

)
s + γ

R∗2

(
(R∗ − d)2

R∗ p
+ Nd

R∗C

)
.

Since all these variables are positive, one can show that the
roots of the equations all lie in the left half-plane. Therefore,
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the system is stable, which corroborates the convergence
results in Mo and Walrand (2000).

We now discuss the system with a delay in the feedback.
The roots of the characteristic equation (or the poles of the
closed loop transfer function), which can be obtained by
taking Laplace transform, are continuous functions of the
parameters. Hence, one can see that the roots of the char-
acteristic function are continuous functions of the feedback
delay R∗ = d + p·N

C . This tells us that by computing the
poles of the closed loop transfer function we can find the
smallest feedback delay R at which one of the roots lies on
the imaginary axis, if there exists such R. From (11) and
(12) we can find the characteristic equation

s + A + B · C

s + D
e−s R∗ = 0 ,

where

A = γ (R∗ − d)2

pR∗2
, B = γ · d

R∗2C
, C = N

R∗ , and D = 1

R∗ .

This is equivalent to solving

B · C

(s + A)(s + D)
e−s R∗ = 1 . (13)

The solutions to (13) need to satisfy the following two
conditions: ∣∣∣∣ B · C

( jw + A)( jw + D)

∣∣∣∣ = 1 (14)

and

∠ B · C

( jw + A)( jw + D)
e− jwR∗ = (2k + 1)π, k ∈ Z . (15)

The condition on magnitude in (14) implies

B · C√
w2 + A2

√
w2 + D2

= 1

or

w4 + (A2 + D2)w2 + (A2 D2 − B2C2) = 0 . (16)

A positive, real solution to (16) exists only if B2C2−A2 D2 ≥
0 and is given by

w(γ, R∗, N) =
√

−E + √
E2 + 4 · F

2
, (17)
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where E = A2 + D2 = γ 2(R∗−d)4

p2 R∗4 + 1
R∗2 and F = B2C2 −

A2 D2 = γ 2 N2

R∗6C2 (2R∗d − R∗2). The condition on angle
yields

wR∗ + arctan
(w

A

)
+ arctan

(w

D

)
= (2k + 1)π , k ∈ Z. (18)

Since w(γ, R∗, N, p) is an increasing function of R∗ (and
equivalently d), the smallest R that solves (18) tells us
when at least one of the roots first hits the imaginary axis.
Therefore, the system is stable for all round trip delays
smaller than the smallest solution to (18) because the poles
of the closed-loop transfer function stay in the lef half-plane.

3.2 The Global Optimization Algorithm

We assume that users have the same utility function U(·). At
the equilibrium of the global optimization problem, which
we denote by W̃ = {W̃i , i ∈ I}, we have

∑
i

W̃i

R̃
= C, (19)

x̃i = W̃i

R̃
= C

N
, (20)

R̃ = d + q̃

C
= d + U ′( C

N
), (21)

where U ′(x) = d
dx U(x). With a little abuse of notation we

let

δW (t) = W (t) − W̃ ,

δq(t) = q(t) − q̃ = q(t) − U ′( C

N
) · C,

where W̃ denotes the window size of the users at the
equilibrium, i.e., W̃ = C

N (d+U ′( C
N )). Again, from (20) and

(21) every user has the same window size at the equilibrium.
From above one can write the linearized model as

δẆ (t) = µ · U ′′( C
N )

R̃2
δW (t)

− µ

R̃2

(
d

C
+ U ′( C

N )

C
+ U ′′( C

N )

N

)
δq(t − R̃), (22)

δq̇(t) = N

R̃
δW (t) − 1

R̃
δq(t), (23)

where µ = κ
d+U ′( C

N )+ C
N U ′′( C

N )

R̃
. The dynamics of the net-

work are illustrated in Figure 3.
Ignoring the delay in feedback for the moment one can

show that the poles of the closed-loop transfer function lie
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Figure 3: Block Diagram of the Network with the Global
Optimization Algorithm

in the left half-plane from the assumption on the utility
functions in section 2. This corroborates the stability result
in La and Anantharam (2001).

In the case with a delay, similarly as in the previous
case, we can find the characteristic function from (22) and
(23)

s + A′ + B ′ A′

s + D′ e−s R̃ = 0 , (24)

where

A′ = −µ · U ′′( C
N )

R̃2
, C ′ = N

R̃
, D′ = 1

R̃
, and

B′ = µ

QR2

(
d

C
+ U ′( C

N )

C
+ U ′′( C

N )

N

)
.

A solution to (24) satisfies the following conditions:

∣∣∣∣ B ′ · C ′

( jw + A′)( jw + D′)

∣∣∣∣ = 1 (25)

or

w4 + (A′2 + D′2)w2 + (A′2 D′2 − B ′2C ′2) = 0 (26)

and

∠ B ′C ′

( jw + A′)( jw + D′)
e− jw R̃ = (2k + 1)π , k ∈ Z . (27)

A positive, real solution to (26) exists only if B ′2C ′2 −
A′2 D′2 > 0 and is given by

w(µ, R̃, N) =
√

−E ′ +
√

E ′2 + 4 · F ′
2

,
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where

E ′ = A′2 + D′2 = µ2
(
U ′′( C

N )
)2

R̃4
+ 1

R̃2

and

F ′ = B ′2C ′2 − A′2 D′2

= µ2

R̃6

(
N
(
d + U ′( C

N )
)

C
+ U ′′( C

N
)

)2

− µ2

R̃6

(
U ′′( C

N
)

)2

.

The condition on angle yields

w R̃ + arctan
( w

A′
)

+ arctan
( w

D′
)

= (2k + 1)π , k ∈ Z . (28)

One can show that w(µ, R̃, N) is an increasing function
of R̃ (and equivalently d given the utility function and N)
for the utility functions that satisfy the assumption stated
in section 2. The smallest R that solves (28) tells us when
one of the roots first lies on the imaginary axis. Since the
poles of the closed-loop transfer function remain in the left
half-plane for all round trip delays smaller than the solution
to (28), the system is stable. Therefore, given the choice of
gain κ one can find the range of feedback delay for which
system is stable.

4 CASCADE CONTROLLERS

The parameter κ in both the (p, 1)-proportionally fair algo-
rithm and the global optimization algorithm determines the
gain in the feedback loop. Thus, one can to some extent
control the transient or steady-state behavior by changing
this gain parameter. However, there is a limit on how
much one can improve the transient or steady-state behav-
ior just by changing the gain in the feedback-loop (Hollot
et al. 2001b). One can increase the flexibility in the design
of a desired transient or steady-state response by introducing
a (cascade) compensator to the system. It is well known in
control theory that one can improve the steady-state error
of a feedback control system using cascade compensation
without appreciably affecting the transient response (Nise
1992). An ideal integral compensation, which uses a pure
integrator to place an open-loop, forward-path pole at the
origin, increases the system type and reduces the steady-
state error to zero (Hollot et al. 2001b, Nise 1992). On the
other hand a pure differentiator, which places a zero to the
open-loop, forward-path transfer function, can be added to
improve the transient response.
6
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In this and the following sections we describe various
cascade controllers and investigate how these controllers
can be implemented in conjunction with the algorithms in
section 2 to improve the transient response and steady-state
error of the algorithms. In the subsequent section we give
a few numerical examples to show the performance of the
system with the (p, 1)-proportionally fair algorithm. Since
the (p,1)-proportionally fair algorithm is a special case of
the global optimization algorithm with the utility function
of pi · log(·), the results can be easily extended to the global
optimization algorithm.

4.1 The Proportional Controller

A proportional controller simply acts as an amplifier. The
feedback signal generated in proportional control is the
regulated output multiplied by some gain, which is the design
parameter (Hollot et al. 2001b, Nise 1992). In our problem
the regulated output is the queue size or the queueing delay at
the link. Since both the (p,1)-proportionally fair algorithm
and the global optimization algorithm use the estimated
queueing delay to update the window size, it is equivalent to
selecting the appropriate value for the parameter κ described
in section 2 in order to adjust the gain parameter of the
controller (La and Anantharam 2001). The performance
of the proportional controller with different gain parameter
values is demonstrated in section 5.2.

4.2 The Proportional-plus-Integral

Hollot et al. (Hollot et al. 2001b) have observed that in
their model for stable operation of the Proportional controller
it requires a shallow slope in the loss profile. In our
problem this translates to a small value of κ in the (p,
1)-proportionally fair algorithm and the global optimization
algorithm. This means slow response of the system.

Steady-state error can be improved by placing an open-
loop pole at the origin since this increases the system type
by one. In order to compensate for the change in the angular
contribution of the open-loop poles due to the addition of
a pole at the origin, one needs to add a zero close to the
pole at the origin as well. Such a compensator with a pole
at the origin and a zero close to the pole is called an ideal
integral compensator (Nise 1992).

K

s
2

K1

Figure 4: A PI Controller
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A method of implementing an ideal integral compen-
sator is shown in Figure 4. The value of the zero can be
adjusted by varying K2

K1
. Systems that feed the error for-

ward to the plant are called proportional control systems.
Systems that feed the integral of the error to the plant are
called integral control systems. The controller, or compen-
sator, is thus given the name PI controller, which stands
for “Proportional plus Integral" (Nise 1992).

4.3 The Proportional-plus-Derivative

One can improve the transient response of a feedback control
system by using ideal derivative compensation. With ideal
derivative compensation a pure differentiator is added to the
forward path of the feedback control system (Nise 1992).
This results in the addition of a zero to the forward-path
transfer function. We call an ideal derivative compensator a
“Proportional plus Derivative (PD) controller" because the
implementation consists of feeding the error (proportional)
plus the derivative of the error forward to the plant. This
is shown in Figure 5.

K1

K s2

Figure 5: A PD Controller

4.4 The Proportional-plus-Integral-plus-Derivative

Using a combination of the PI controller and PD controller,
one can improve both the steady-state and transient response
of the system. One can either first improve the transient
response by using PD control and then steady-state error
of this compensated system by applying PI control or vice
versa. One disadvantage of the first approach is that there
will be slight degradation in the transient behavior after
adding the PI control, and in the second case the steady-
state response may be somewhat compromised. This can
be achieved by the following combination of PI and PD
controllers in Figure 6.

In order to implement any of the cascade compensators
with the algorithms in section 2 one needs not only to
estimate the queueing delay, but also to compute the dif-
ference in the successive queueing delay estimates and/or
integrate the difference between the estimated number of
queued packets and the target queue size, which is pi

and xi (t)
U ′

i (xi (t))
λ

in the (p, 1)-proportionally fair algorithm
and the global optimization algorithm, respectively. This
additional computation requires two subtractions and one
addition and is done only once every round trip time. There-
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Figure 6: A PID Controller

fore, the computational requirement is not likely to be an
issue.

5 NUMERICAL EXAMPLES

In this section we give a few numerical examples. The first
simulation is run using simulink to investigate the behavior
of the linearized models with the controllers described in
section 4. The second simulation is run using ns-2 (Net-
work Simulator) to evaluate the performance of the ( p,
1)-proportionally fair algorithm with different control.

5.1 The Linearized Networks

In this subsection we simulate the linearized system with
the (p,1)-proportionally fair algorithm with the controllers
described in section 4 and compare their performance. We
set N = 100, d = 100 ms, p = 2 packets, C = 2, 000
packets/sec, and κ = 0.5. All users’ window sizes are
set to 0 at the beginning, and the queue is initially empty.
At the equilibrium the feedback delay R∗ is 0.2 seconds
because the queueing delay is p·N

C = 0.1 seconds. The
regulated output, which is the queue size, is normalized by
the capacity, i.e., the information fed back to the users is
the queueing delay. The gains of the controllers are set to
K1 = 100, K2 = 10, and K3 = 20. These parameters of the
controller should be selected based on the desired transient
response, such as the percent overshoot and settling time,
and the location of the open-loop zero close to the origin.
We do not discuss the selection of the parameters in this
paper. Interested readers may refer to (Nise 1992).

Figures 7 through 10 plot δq(t) as a function of time
and show the system response with various controllers. One
can easily see that the transient response is better for PD
and PID controllers than for P and PI controllers. The P
and PI control exhibits much larger overshoot than PD and
PID control. Clearly, this large overshoot is undesirable in
a network since it leads to a larger variation in queue size
and results in a temporary increase in round trip delay and
potential congestion. Further, the settling time of PD and
PID control is much smaller than that of P and PI control.
This faster convergence to the equilibrium of PD and PID
control is desirable especially with dynamic arrivals and
1288
Figure 7: P Controller

Figure 8: PD Controller

departures of the users. If the convergence time is too
large, the system may never converge to the equilibrium
with the arrivals and departures of the users. One can also
see that the steady-state error of P and PD control is non-
zero, while that of PI and PID converges to zero. This is
consistent with the claims in section 4.

5.2 The ns-2 Simulation

We have run the simulation of a network with single link.
The link is shared by 100 users. Each user has a round trip
propagation delay that is randomly selected from [10 ms,
190 ms] with a mean of 100 ms. The first 25 users start
randomly between 0 ms and 200 ms, another 25 users start
randomly between 7.0 sec and 7.2 sec, and the other users
start randomly between 12.0 sec and 12.2 sec. In the first
simulation we have set the parameters in the ns-2 to the same
settings as in the simulation in the previous subsection except
for the round trip propagation delay of the users. Note that
the users’ propagation delays are assumed to be the same
in the analysis of the linearized system and the simulation
in the previous subsection. Since users measure the round
trip time and estimate the queueing delay of the link, we
implement the various controllers within the TCP protocol.
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Figure 9: PI Controller

Figure 10: PID Controller

In other words, at the arrival of each acknowledgment (ACK)
the user computes the derivative and/or integral necessary
for the controller and use the information to update the
congestion window size. The packet size is fixed at 1,000
bytes, and the capacity of the link is set to 15 Mbps. The
topology of the simulated network is shown in Figure 11.

The evolution of the queue sizes are shown in Figures
12 and 13 with P and PID control, respectively. As one
can see the system with PID controller implemented at the
end users performs better in terms of overshoot and settling
time. This is consistent with the simulation results from the
subsection 5.1. The P controller results in a large overshoot
after the second and third group of users start at t = 7 sec
and t = 12 sec and requires 6-8 seconds to settle to a point
close to the equilibrium, while the PID controller does not
lead to a large overshoot and requires less than 3 seconds
to settle to the equilibrium.

In order to find out how small the gain in the closed-
loop path needs to be in the P control, so as to avoid a
large overshoot, we have run the simulation with various
κ values and observed that κ = 0.1, i.e., the gain of 1

5 of
the previous gain, leads to similar overshoot as in the PID
control case. The evolution of the queue size is shown in
1289
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Figure 11: Topology of the Simulated Network

P controller

queue

queue

time
0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

140.0000

160.0000

180.0000

200.0000

220.0000

240.0000

260.0000

280.0000

0.0000 5.0000 10.0000 15.0000 20.0000 25.0000

Figure 12: P Controller (κ = 0.5)

Figure 14. One can easily see that reducing the overshoot
comes at the price of much slower response. With the
smaller gain in the closed-loop path the system takes much
longer to settle to the equilibrium.

6 CONCLUSIONS

We have investigated two queueing delay-based congestion
control algorithms proposed in the past. We have shown
that these algorithms are stable as long as the delay in
feedback lies within some range, which depends on the
system parameters. Various cascade compensators have
been introduced and the improvement in both the transient
behavior and steady-state response has been demonstrated.

We have simulated both the linearized systems and
the non-linear systems. The simulation results demonstrate
that these algorithms are stable with a delay in feedback.
Moreover, it is shown that the PID controller does improve
the transient behavior significantly in that the system does
not overshoot as much and the settling time is significantly
reduced.
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Figure 13: PID Controller (κ = 0.5)
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Figure 14: P Controller (κ = 0.1)
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