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ABSTRACT

Congestion control algorithms, such as TCP or the closely-
related additive increase-multiplicative decrease algorithms,
are extremely difficult to simulate on a large scale. The
reasons for this include the complexity of the actual imple-
mentation of the algorithm and the randomness introduced in
the packet arrival and service processes due to many factors
such as arrivals and departures of sources and uncontrol-
lable short flows in the network. To make the simulation
tractable, often deterministic fluid approximations of these
algorithms are used. These fluid approximations are in the
form of deterministic delay differential equations. In this
paper, we ignore the complexity introduced by the window-
based implementation of such algorithms and focus on the
randomness in the network. We justify the use of determin-
istic models for proportionally-fair congestion controllers
under a limiting regime where the number of sources in a
network is large.

1 INTRODUCTION AND MODEL

There has been a lot of recent work on decentralized end-to-
end congestion control algorithms for the Internet. These
are based on ECN marking with the goal of building a
low-loss, low-queueing-delay network. The control algo-
rithms are designed on the premise that each user has a
utility function, which the user is trying to maximize, while
the network is simultaneously trying to maintain some sort
of fairness amongst various users. In the algorithms pro-
posed, the network tries to achieve it’s goal by marking
packets during congestion (see Ramakrishnan and Floyd
(1999), Kunniyur and Srikant (2000)). The notion of fair-
ness (from the network’s point of view) which has been
used is weighted proportional fairness (see Kelly (1997)).
Through appropriate choice of the weights, other fairness
criteria such as minimum potential delay fairness can be
realized. If we interpret the utility function of the user as
the users’ willingness to pay for bandwidth, and suppose
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that the price paid by the user is proportional to the num-
ber of marks received, then, a weighted proportionally fair
scheme leads to same price per unit bandwidth paid by
any user for utilizing some resource in the network. The
algorithms proposed have a decentralized implementation
to achieve the network and user objectives simultaneously.
In this paper, we focus on the case where all users have the
same utility function of log(x), leading to a proportionally
fair sharing of the bandwidth.

There have been various delay differential equation
models for Internet congestion control. The generic model
of such a system consists of a source, which sends data at
rate x(t), a router which signal congestion to sources by
marking packets, and a receiver which detects the marks and
informs the source to increase or decrease it’s transmission
rate. Associated with the router is a marking function, which
marks the a fraction of the flow as a function of the total
arrival rate. The larger the fraction is, the more aggressively
the source “backs off”. Such scenarios have been studied
(Kelly (1997), Kelly (1999), Kunniyur and Srikant (2000),
Kunniyur and Srikant (2001)), and in the absence of delays,
differential equation models of such systems have been
shown to converge. With delays, bounds have been derived
on the behavior of the flow (Shakkottai, Srikant and Meyn
(2001)). However, in a realistic scenario, we have short
flows which do not adapt, thus causing “noise” at the router.
Further, the marking function could base its decision on more
than the instantaneous arrival rate. A formal justification
of how delay differential equations models correspond to
“real” systems does not seem to exist in current literature.

In this paper, we study “noisy” congestion control algo-
rithms and show that the deterministic differential equations
that have been studied earlier in the literature are appropriate
limits in a many flows regime.

Related work includes that of Vojnovic, Le Boudec and
Boutremans (2000), where a stochastic approximations (see
Kushner and Yin (1997)) based model is considered. The
authors study the rate process for additive increase, multi-
plicative decrease (AIMD) algorithms in the rare negative
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feedback regime. Under the assumption of small gains (�
and β defined in Section 1.1 are small), they show that an
asynchronous implementation of a generic AIMD converges
to an ordinary differential equation. However, the small gain
assumption is not valid in practice. Further, this approach
leads to a fluid limit which does not capture the oscillations
due to delayed feedback. In fact, it is known that the rate
control algorithms do not always converge when delays
are present (see Johari and Tan (2000), Massoulie (2000),
Shakkottai, Srikant and Meyn (2001), Vinnicombe (2001)).
We believe that a justification of the delay-differential model
does not come from the previous approach, but rather, from
a many-sources approximation, where we scale the capacity
of the system along with the number of flows. We will
show that in this regime, the delay-differential equations
are suitable limits of such a system. Our approach can be
thought of as a functional-differential equation analog of
“averaging" used for ordinary differential equations as in
Kurtz (1970) and Khalil (1996).

We next describe a simple rate based marking model
marking model for a single link and all flows having the
same round trip delay. In a longer version of this paper,
available from the authors Shakkottai and Srikant (2001), we
have studied variants of these models, such as networks with
a general topology, different round-trip delays, “random”
marking functions, queue based marking, etc.

1.1 RATE BASED MARKING WITH NOISE

We consider a sequence of systems (indexed by n), where
the first system is the following. A single best-effort flow
accesses a link of capacity c. We first fix some (integer)
time T > 0, and the system is assumed to evolve in discrete
time-steps. At each time i = 0, 1, . . . , T , the user adapts it’s
transmission rate xi depending on the feedback it receives
from the router. The router marks some amount of the
flow it receives, and this amount is proportional to the user
transmission rate. In practice, for a packet based system,
such marking could be implemented using ECN marks (see
Ramakrishnan and Floyd (1999)). For a fluid model such as
ours, we assume that some volume of the fluid is marked (see
Kelly (1997), Kelly (1999), Kunniyur and Srikant (2000)).
The fraction of fluid marked is determined by means of a
marking function, about which we will discuss more later.
We assume that there is a round trip delay between the
source and router of d ∈ Z . Thus, the rate at time i + 1
depends on the amount marked at the router half a round trip
back, which in-turn, depends on the user transmission rate
a further half round-trip time back. Thus, we can describe
the evolution of the user transmission rate by

xi+1 = (
xi +�− βxi−d p(xi−d + êi−d )

)+
127
where �,β are positive constants which determine the rate
at which source increases or decreases it’s transmission rate;
p(.) is the marking function, and êi is a “noise” process.

In this case, we assume that two flows access the
router: the first is the user’s data flow, which is represented
by {xi } and the other flow is an uncontrolled flow, possibly
generated by some other short-duration flows, popularly
known as web-mice, passing through the link, which is
represented by the sequence {êi }. The sequence {êi} is
assumed to be a stochastic process, with E(ê1) = a > 0.
Let ẽi = êi − a. We assume that the “noise” process
ẽi is a bounded, stationary-ergodic zero-mean stochastic
process for i ≥ 0; and for i ≤ 0, ẽi = ẽ0. The mean
initial conditions (i.e., for t ≤ 0) is given by sampling
θ(t),−T ≤ t ≤ 0, where θ(t) is a non-negative, bounded,
Lipschitz continuous trajectory. Thus, the initial conditions
for above system is given by θ(−i) + ẽ0. Then, we have
the dynamics of the system governed by

xi+1 = (xi +�− βxi−d p(xi−d + a + ẽi−d ))
+

with x−i = θ(−i)+ ẽ0.
Finally, we comment on the marking function itself.

This function is based on the total data rate accessing the
router and determines the fraction of flow to be marked,
and satisfies satisfies the following criteria:

Assumption 1.1. We assume that p(.) satisfies

(i) 0 ≤ p(x) ≤ 1
(ii) p(x) = 0 for x < 0. Further, there exists a δ

satisfying 0 ≤ δ � � such that |βp(x)| < δ/a for
x < a.

(iii) p(x) is an increasing function.
(iv) p(x) is Lipschitz continuous.

The first property is obvious, as the marking function
represents the fraction of flow marked. To understand the
second property, we first note that a, the mean arrival rate
of the uncontrolled flows, is typically less than 25% of the
link capacity. Thus, condition (ii) expresses the intuitive
reasoning that, if the total arrival rate (i.e., sum of arrival
rates of uncontrolled and controlled rates) at a link is less
than 25%, no congestion indication should be provided. The
third property is again clear: the larger the arrival rate is, the
greater is the fraction marked. Finally, the last condition
is a technical condition, which says that the function is
“smooth”. As an example, a possible rate based marking
function is of the form

p(x) = (x − c̃)+

x
.

In a deterministic fluid model, this has the interpretation of
the fraction of fluid lost when the arrival rate exceeds the
6
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“virtual” capacity Nc̃. It has been noted in Kunniyur and
Srikant (2000) that this function is the marking function
derived by taking the limit of the M/M/1/B loss formula,
when we scale the arrival rate, target arrival rate (Nc) and
buffer size simultaneously. It is designed such that in the
absence of delays and noise (i.e., there is no fluctuation
in the uncontrolled flows), the flow rate xi converges to
(c − a). Thus, p(·) satisfies

� = β(c − a)p(c).

In the example marking function considered earlier, suppose
we wanted the source rate to be x = c − a, then c̃ should
be chosen to satisfy

c̃ = c − �c

β(c − a)
(1)

and should also satisfy c̃ ≥ a. Our goal in this study
is to determine when the above stochastic system can be
approximated by the following deterministic system:

ẋ = �− βx(t − d)p(x(t − d)+ a) (2)

with initial conditions given by θ(t), 0 ≥ t ≥ −T . The
congestion control algorithm corresponds to a resource al-
location problem where all flows have log(.) utility func-
tions (see Kelly, Maulloo and Tan (1998)). As an aside, we
note that the local stability of this equation (i.e., whether
x(t) → c − a for a linearized system) has been studied in
Johari and Tan (2000) and Massoulie (2000), while global
boundedness has been studied in Shakkottai, Srikant and
Meyn (2001).

Our objective here is to show that when we scale the
system such that many flows access the node and the capacity
of the link is nc, the above delay-differential equation is
a close approximation of the stochastic delay-difference
equation. We have so far described the system model when
a single flow accesses the link. We now describe how the
model scales in n. First, there are n flows, with link capacity
nc. For every time step in the first model, we assume that
there are n time-steps in the nth model. This represents the
fact that we need to increase the time resolution to study
n processes. In practice, we can view each time slot at a
measurement interval over which rates are measured in the
system and control actions by the routers and sources are
updated. Typically, this measurement interval is measured
in terms of the number of packets that can be processed by
a typical router. For example, the time-step could be “100
packets long." By scaling both the time-step and the capacity,
we maintain a constant time-step, as measured in packets.
The flows are now represented by {yk

i }, k = 1, 2, . . . , n
where the subscript i ∈ {0, 1, . . . , nT } represents the time-
index, and the superscript k represents the flow index. As
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the delay seen by a user does not change with n but the time
resolution increases in n, it follows that the delay (measured
in index steps) scales in n. Thus, (ignoring non-negativity
constraints, which is discussed later) each flow yk

i evolves
according to

yk
i+1 = yk

i + �

n
− β

n
yk

i−nd (3)

p


1

n

n∑
j=1

(y j
i−nd + ẽ j

i−nd + a)


 .

As in the single flow case, the above equations represent
n flows, each which has an additive increase factor of
and the backoff for each flow is proportional to the delayed
transmission rate, which the fraction marked being a function
of the total arrival rate to the router. We remark that the
above system can be interpreted as a decentralized means of
achieving a proportionally fair allocation (see Kelly (1997))
of bandwidth among the n users.

We note three things in the above equation. First, the
gain constants � and β are scaled by n. This is because
the time step in now 1

n of the first system. Thus, the gains
are also scaled to maintain the same gain for each flow over
the original time-step.

Second, there are now n uncontrolled flows (i.e.,
{ek

i }, k = 1, 2, . . . , n, i ≥ 0) accessing the system, with
each flow having a bounded rate, i.e., |ẽk

i | < K . We as-
sume that these flows are iid (across flows, although these
could be correlated in time), and are stationary and ergodic.
For i < 0, we assume a constant (random) initial condition,
i.e., ek−i = ek

0. Then, we have for any ε > 0,

Pr


 sup

−nT ≤i≤nT

∣∣∣∣∣∣
1

n

n∑
j=1

ẽ j
i

∣∣∣∣∣∣ > ε



≤ (nT + 1)Pr




∣∣∣∣∣∣
1

n

n∑
j=1

ẽ j
0

∣∣∣∣∣∣ > ε




≤ (nT + 1)e−na

for some a = a(ε) > 0. The first step follows from the
union bound, and the fact that the flows are stationary.
The second step (i.e., existence of a > 0) follows from
Chernoff’s bound (it trivially follows that the MGF exists,
as the process is bounded). Thus, it follows that

Pr


 sup

−nT ≤i≤nT

∣∣∣∣∣∣
1

n

n∑
j=1

ẽ j
i

∣∣∣∣∣∣ > ε


 n→∞−→ 0
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exponentially fast. Now, applying Borel-Cantelli Lemma,
it follows that

sup
−nT ≤i≤nT

∣∣∣∣∣∣
1

n

n∑
j=1

ẽ j
i

∣∣∣∣∣∣ → 0 a.s. (4)

We remark that the above model allows each “noise” process
to be long-range dependent. We only need the flows to be
bounded and iid.

Third, the marking function is seen to scale its argument
by n (the marking function acts on the average arrival rate as
opposed to the total arrival rate), i.e., if the marking function
for the nth system were to be represented by pn(x), then,
we would have

pn(nx) = p(x).

This is done so that for each n, if the centered error pro-
cesses {ẽk

i }, k = 1, . . . , n were identically zero, the delay-
difference equations (if they converge) would have a steady
state value of limk→∞ yk

i = c−a. We remark that adaptive
marking functions have been proposed (see Kunniyur and
Srikant (2001)) which automatically scale in n as described
above, without explicitly having knowledge of n.
Now, let xn

i represent the average rate at time i , and en
i

represent the average (centered) noise at time i , i.e.,

xn
i = 1

n

n∑
j=1

yk
i

en
i = 1

n

n∑
j=1

ẽk
i .

Then, (by adding the various equations for y j
i ), we have

that xn satisfies the following stochastic delay-difference
equation:

xn
i+1 = xn

i + �

n
− β

n
xn

i−nd p
(
xn

i−nd + a + en
i−nd

)
Now, we embed the above equation in “continuous-time”,
i.e., we study the above process over an interval of time
[0, T ] (without loss of generality, assume that T = kd , for
some k > 1). For nt ∈ Z, we let

xn(t) = xn
nt

en(t) = en
nt

and use a straight line approximation to interpolate between
the times t = i

n . Thus, we see that the above equation can
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be represented by the equation

ẋ n(t) = �− βxn(
�n(t − d)�

n
) (5)

p

(
xn(

�n(t − d)�
n

)+ a + en(
�n(t − d)�

n
)

)
.

Further, assume that the initial condition is given by

xn(t) = θ(t)+ en(0) − T ≤ t ≤ 0, nt ∈ Z

and a straight line interpolation is used for nt /∈ Z . This
means that each flow {yk}, k = 1, 2, . . . , n could have a
different initial condition, but the nominal initial condition
is given by θ(t). Also, note that from (4), it follows that
en(t) → 0 uniformly in [−T, T ]. We note that the above
differential equation is to be interpreted as a shorthand
notation to represent the process xn(t) given by the unique
trajectory solving the integral equation

xn(t) = xn(0)+
∫ t

s=0
�− βxn(

�n(s − d)�
n

)

p

(
xn(

�n(s − d)�
n

)+ a + en(
�n(s − d)�

n
)

)
ds

In this paper, unless otherwise stated, any differential equa-
tion is to be interpreted as a representation of the corre-
sponding integral equation.

We note that as this model has delays, the above model
allows xn(t) to be negative as well. From a practical
standpoint, we know that the rates are non-negative. For
now, we will ignore this constraint. In Shakkottai and Srikant
(2001), we show that for n sufficiently large, the rates xn(t)
driven by the above equation will be non-negative (under
suitable initial conditions). Thus, the constraint xn(t) ≥ 0
will be redundant, and hence, in the many-flows regime,
the above system is a valid model of reality.

Our objective is to show that the trajectory generated
by (5) and that in (2) are “close” in some suitable sense. In
the next section, we will state a general convergence result
for functional differential equations. We will then show
that the system we have described fits into this framework,
and the desired results can be proved.

2 CONVERGENCE OF FUNCTIONAL
DIFFERENTIAL EQUATIONS

Let R2 be endowed with the L1 norm, and C([0, T ],R2)

be the space of continuous, R2 valued functions on
[0, T ] with the supremum norm. We denote any element
of C([0, T ],R2) by the tuple (φ̄, ψ̄), and ||(φ̄, ψ̄)|| =
supt∈[0,T ](|φ(t)| + |ψ(t)|). Now, consider a sequence of
functionals bn : C([0, T ],R2) 	→ R, such that {bn} are
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Lipschitz continuous and bounded with parameters L and
M respectively, i.e.,

Assumption 2.1.

|bn(φ̄, ψ̄)| ≤ M

|bn(φ̄1, ψ̄1)− bn(φ̄2, ψ̄2)| ≤ L||(φ̄1, ψ̄1)− (φ̄2, ψ̄2)||

Let C([0, T ],R) be the space of continuous, real valued
functions on [0, T ], and endowed with the sup topology. Fix
a, b, c > 0 and let C̃[0, T ]a,b,c = {x̄t ∈ C([0, T ],R) : x̄t

is Lipschitz continuous with parameter a, x(t) ≥ −c and
x(t) ≤ b}. As an aside, it can be shown that C̃[0, T ]a,b,c

is a compact subset of C([0, T ],R).
Now, we consider the following stochastic functional

differential equations (SFDEs). Let xn(t) be the unique,
continuous solution of the following FDE. By the conditions
imposed on bn , there exists such a solution Hale (1977)
(the Caratheodory conditions). For t ∈ [0, T ], consider

ẋ n(t) = bn

(
x̄ n

�nt�
n
, 0̄

)

where x̄ n
t
�= [xn(s), s ∈ [t − T, t]] ∈ C([0, T ],R), 0̄ is a

process identically equal to zero in [−T, T ], and the initial
condition is given by

xn(t) = θ(t) − T ≤ t ≤ 0, nt ∈ Z

and a straight line interpolation is used for nt /∈ Z .
Assume |θ(.)| < A, and that θ(t) is Lipschitz contin-

uous with parameter M . Then, it follows x(t) is Lipschitz
continuous with Lipschitz constant M and bounded (with
bounds ±(A + MT )).

Next, consider for t ∈ [0, T ], the SFDE

ẋn(t) = bn

(
x̄n

�nt�
n
, ēn

�nt�
n

)

here x̄n
t ∈ C[0, T ], is given by x̄n

t = [xn(s), s ∈ [t − T, t]],
ēn

t ∈ C([0, T ],R) is given by ēn
t = [en(s), s ∈ [t − T, t]],

and the initial condition is given by

xn(t) = θ(t)+ en(t) − T ≤ t ≤ 0, nt ∈ Z

and a straight line interpolation is used for nt /∈ Z .
[en(t),−T ≤ t ≤ T ] is a zero mean “error” process,

satisfying the following condition.

Assumption 2.2. Assume that ∃K > 0 such that |en(t)| <
K uniformly in n, and satisfying the following condition:

sup
t∈[−T ,T ]

|en(t)| n→∞−→ 0 a.s.
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Now, let b : C([0, T ],R2) 	→ R satisfy the following
condition.

Assumption 2.3. Assume that b(., .) is a Lipschitz continu-
ous and bounded function with parameters L,M respectively
(without loss of generality, assume L ≥ 1), satisfying

sup
x̄t∈C̃[0,T ]M,A+MT ,−(A+MT )

|bn(x̄t , 0̄)− b(x̄t , 0̄)| n→∞−→ 0

Finally, for t ∈ [0, T ], consider the FDE

ẋ(t) = b
(
x̄t , 0̄

)
where x̄t

�= [x(s), s ∈ [t − T, t]] ∈ C[0, T ], and the initial
condition is given by

x(t) = θ(t) − T ≤ t ≤ 0.

For n large, it seems reasonable to believe that the trajectories
of x(t), xn(t) and xn(t) are “close”. The following result
has been proved in Shakkottai and Srikant (2001).

Theorem 2.1.

sup
t∈[0,T ]

|x(t)− xn(t)| n→∞−→ 0 a.s.

3 RATE BASED MARKING AND THE MANY
FLOWS LIMIT

In this section, we show that in the many-flows regime, the
trajectories for the stochastic and deterministic rate-based
marking differential equations introduced earlier are “close”.
We recall from the model description in Section 1.1 that we
currently ignore the non-negativity constraint on the flows.
This issue is handled in Shakkottai and Srikant (2001),
where we show that for “reasonable” initial conditions, the
trajectories remain non-negative.

Formally, we consider the delay-differential equations

ẋ n(t) = �− βxn(
�n(t − d)�

n
) (6)

p

(
xn(

�n(t − d)�
n

)+ a + en(
�n(t − d)�

n
)

)

with initial conditions given by

xn(t) = θ(t)+ en(0) − T ≤ t ≤ 0, nt ∈ Z

and a straight line interpolation is used for nt /∈ Z . The
candidate limiting system is described by

ẋ(t) = �− βx(t − d)p(x(t − d)+ a)
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with initial conditions given by θ(t). Using Theorem 2.1,
we show the following result.

Lemma 3.1. For the systems described above, we have

sup
t∈[0,T ]

|xn(t)− x(t)| → 0 a.s.

as n → ∞.

Proof. We prove some properties of (6). First, we
note that as |en

i | < K , we have that if a+xn(
�n(t−d)�

n ) < −K ,

p
(

xn(
�n(t−d)�

n )+ a + en(
�n(t−d)�

n )
)

= 0 (as p(z) = 0 for

z < 0). Thus, we have that

xn(
�n(t − d)�

n
) p

(
xn(

�n(t − d)�
n

)+ a + en(
�n(t − d)�

n
)

)
≥ −(K + a)

and

ẋ n(t) ≤ �+ β(K + a).

As we are studying the process over the interval [0, T ], and

|xn(0)| < K + θ(0)
�= A, we can uniformly upper bound

(in n) xn(t) by A + (� + β(a + K ))T . Next, we lower
bound xn(t). As p(z) ≤ 1, and using our upper bound, we
have

ẋ n(t) ≥ −β[A + (�+ β(a + K ))T ]

Thus, we have

xn(t) ≥ θ(0)− K − Tβ[A + (�+ β(a + K ))T ].
Next, we define

Mx = max

( |θ(0) − K − Tβ[A + (�+ β(a + K ))T ]|,
A + (�+ β(a + K ))T

)
Lx = max(β[A + (�+ β(a + K ))T ],�+ β(K + a)).

We observe that |xn(t)| ≤ Mx and is Lipschitz continuous
with parameter Lx . Let M = max(K ,Mx ). For any z ∈ R,
define [z] = (−M)

∨
(z

∧
M). Define

b(xt , et ) = �− β[x(t − d)] p ([x(t − d)] + [e(t − d)] + a) .

As we note that in (5), |xn(t)| ≤ M and |en(t)| ≤ M , we
can rewrite it as

ẋ n(t) = �− β[xn(
�n(t − d)�

n
)]

p

(
[xn(

�n(t − d)�
n

)] + a + [en(
�n(t − d)�

n
)]

)
= b(xn

�nt�
n
, en

�nt�
n
). (7)
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Now, we show that b(., .) is bounded and Lipschitz contin-
uous. First, as 0 ≤ p(.) ≤ 1, we have

|b(xt , et )| = |�− β[x(t − d)]
p ([x(t − d)] + [e(t − d)] + a) |

≤ �+ βM

Next, we have

|b(xt , et )− b(yt , rt )|

= |β[y(t − d)] p ([y(t − d)] + [r(t − d)] + a)

−β[x(t − d)] p ([x(t − d)] + [e(t − d)] + a) |
≤ β|[y(t − d)] p ([y(t − d)] + [r(t − d)] + a)

−[x(t − d)] p ([y(t − d)] + [r(t − d)] + a)

+[x(t − d)] p ([y(t − d)] + [r(t − d)] + a)

−[x(t − d)] p ([x(t − d)] + [e(t − d)] + a) |.

As p(.) is Lipschitz continuous with parameter P , and
[x] ≤ M , we have

|b(xt , et )− b(yt , rt )|

≤ β|[y(t − d)] − [x(t − d)]|
+βP M(|[y(t − d)] − [x(t − d)]|
+|[e(t − d)] − [r(t − d)]|)

≤ β(1 + P M)|x(t − d)− y(t − d)|
+βP M|e(t − d)− r(t − d)|

≤ β(1 + P M)||(xt , et )− (yt , rt )||.

Thus, the conditions for Theorem 2.1 are satisfied, and we
have the desired result, i.e., as n → ∞, we have

sup
t∈[0,T ]

|xn(t)− x(t)| → 0 a.s.

�
Next, we study a similar limit for each flow as opposed

to the aggregate flow. Recall that the rate of flow i (when
there are n flows in the system) adapts according to (3),
which can be represented by

ẏi,n(t) = �− βyi,n(
�n(t − d)�

n
) (8)

p

(
xn(

�n(t − d)�
n

)+ a + en(
�n(t − d)�

n
)

)

with the initial conditions given by θ(t) + ẽi
0, sampled

appropriately and interpolated. It can be shown using an
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analysis similar to that carried out for the aggregate flow
that as n → ∞, the flow trajectory approaches the trajectory
of the following delay-differential equation

ẏi (t) = �− βyi (t − d)p(x(t − d)+ a) (9)

and with random initial conditions given by θ(t)+ ẽi
0, with

|ẽi
0| < K .

In Shakkottai and Srikant (2001), we address the issue
of non-negativity of the trajectories of yi,n(t), xn(t) and
x(t). We show that under reasonable initial conditions, for
n large enough, the trajectories will remain non-negative.
We also deal with other marking schemes, such as those
based on queue-length. A discussion of general network
topologies and multiple delays is also available there.
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